Speeding Up, Slowing Down, and Choosing My Fig

Celest Sorrentino, incoming master’s student, OSU Dept of Fisheries, Wildlife, and Conservation Sciences, GEMM Lab

It’s late June, a week before I head back to the West Coast, and I’m working one of my last shifts as a server in New York. Summer had just turned on and the humidity was just getting started, but the sun brought about a liveliness in the air that was contagious. Our regulars traded the city heat for beaches in the Hamptons, so I stood by the door, watching the flow of hundreds upon hundreds of people fill the streets of Manhattan. My manager and I always chatted to pass the time between rushes, and he began to ask me how I felt to move across the country and start my master’s program so soon.

“I am so excited!” I beamed, “Also a bit nervous–”

Nervous? Why? 

Are you nervous you’ll become the person you’re meant to be?”

As a first-generation Hispanic student, I found solace in working in hospitality. Working in a restaurant for four years was a means to support myself to attain an undergraduate degree–but I’d be lying if I said I didn’t also love it. I found joy in orchestrating a unique experience for strangers, who themselves brought their own stories to share, each day bestowing opportunity for new friendships or new lessons. This industry requires you to be quick on your feet (never mess with a hungry person’s cacio e pepe), exuding a sense of finesse, continuously alert to your client’s needs and desires all the while always exhibiting a specific ambiance.

So why leave to start my master’s degree?

Fig 1: Me as a server with one of my regulars before his trip to Italy. You can never go wrong with Italian!

For anyone I have not had the pleasure yet to meet, my name is Celest Sorrentino, an incoming master’s student in the GEMM Lab this fall. I am currently writing to you from the Port Orford Field Station, located along the charming south coast of Oregon. Although I am new to the South Coast, my relationship with the GEMM Lab is not, but rather has been warmly cultivated ever since the day I first stepped onto the third floor of the Gladys Valley Building, as an NSF REU intern just two summers ago. Since that particular summer, I have gravitated back to the GEMM Lab every summer since: last summer as a research technician and this summer as a co-lead for the TOPAZ/JASPER Project, a program I will continue to spearhead the next two summers. (The GEMM Lab and me, we just have something– what can I say?)

 In the risk of cementing “cornball” to my identity, pursuing a life in whale research had always been my dream ever since I was a little girl. As I grew older, I found an inclination toward education, in particular a specific joy that could only be found when teaching others, whether that meant teaching the difference between “bottom-up” and “top-bottom” trophic cascades to my peers in college, teaching my 11 year old sister how to do fun braids for middle school, or teaching a room full of researchers how I used SLEAP A.I. to track gray whale mother-calf pairs in drone footage.

Onboarding to the TOPAZ/JASPER project was a new world to me, which required me to quickly learn the ins and outs of a program, and eventually being handed the reins of responsibility of the team, all within 1 month and a half. While the TOPAZ/JASPER 2024 team (aka Team Protein!) and I approach our 5th week of field season, to say we have learned “so much” is an understatement.

Our morning data collection commences at 6:30 AM, with each of us alternating daily between the cliff team and kayak team. 

For kayak team, its imperative to assemble all supplies swiftly given that we’re in a race against time, to outrun the inevitable windy/foggy weather conditions. However, diligence is required; if you forget your paddles back at lab or if you run out of charged batteries, that’s less time on the water to collect data and more time for the weather to gain in on you. We speed up against the weather, but also slow down for the details.

Fig 2: Throwback to our first kayak training day with Oceana (left), Sophia(middle), and Eden (right).

For cliff team, we have joined teams with time. At some point within the last few weeks, each of us on the cliff have had to uncover the dexterity within to become true marine mammal observers (for five or six hours straight). Here we survey for any slight shift in a sea of blue that could indicate the presence of a whale– and once we do… its go time. Once a whale blows, miles offshore, the individual manning the theodolite has just a few seconds to find and focus the reticle before the blow dissipates into the wind. If they miss it… its one less coordinate of that whale’s track. We speed up against the whale’s blow, but also slow down for the details. 

Fig 3: Cliff team tracking a whale out by Mill Rocks!

I have found the pattern of speeding up and slowing down are parallels outside of field work as well. In Port Orford specifically, slowing down has felt just as invigorating as the first breath one takes out of the water. For instance, the daily choice we make to squeeze 5 scientists into the world’s slowest elevator down to the lab every morning may not be practical in everyday life, but the extra minute looking at each other’s sleepy faces sets the foundation for our “go” mode. We also sit down after a day of fieldwork, as a team, eating our 5th version of pasta and meatballs while we continue our Hunger Games movie marathon from the night prior. And we chose our “off-day” to stroll among nature’s gentle giants, experiencing together the awe of the Redwoods trees.

Fig 4A & 4B: (A) Team Protein (Sophia, Oceana, Allison, Eden and I) slow morning elevator ride down to the lab. (B) Sophia hugging a tree at the Redwoods!

When my manager asked the above question, I couldn’t help but think upon an excerpt, popularly known as “The Fig Tree” by Sylvia Plath.

Fig 5: The Fig Tree excerpt by Sylvia Plath. Picture credits to @samefacecollective on Instagram.

For my fig tree, I imagine it as grandiose as those Redwood trees. What makes each of us choose one fig over the other is highly variable, just as our figs of possibilities, some of which we can’t make out quite yet. At some point along my life, the fig of owning a restaurant in the Big Apple propped up. But in that moment with my manager, I imagined my oldest fig, with little Celest sitting on the living room floor watching ocean documentaries and wanting nothing more than to conduct whale research, now winking at me as I start my master’s within the GEMM Lab. Your figs might be different from mine but what I believe we share in common is the alternating pace toward our fig. At times we need speeding up while other times we just need slowing down.

Then there’s that sweet spot in between where we can experience both, just as I have being a part of the 2024 TOPAZ/JASPER team.

Fig 6A and 6B: (A) My sister and I excited to go see some dolphins for the first time! (~2008). (B) Taking undergraduate graduation pics with my favorite whale plushy! (2023)

Fig 7: Team Protein takes on Port Orford Minimal Carnival, lots of needed booging after finishing field work!

Reflecting on a solitary journey surrounded by an incredible team

Clara Bird, PhD Candidate, OSU Department of Fisheries, Wildlife, and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

Graduate school is an odd phase of life, at least in my experience. You spend years hyperfocused on a project, learning countless new skills – and the journey is completely unique to you. Unlike high school or undergrad, you are on your own timeline. While you may have peers on similar timelines, at the end of day your major deadlines and milestone dates are your own. This has struck me throughout my time in grad school, and I’ve been thinking about it a lot lately as I approach my biggest, and final milestone – defending my PhD! 

I defend in just about two months, and to be honest, it’s very odd approaching a milestone like this alone. In high school and college, you count down to the end together. The feelings of anticipation, stress, excitement, and anticipatory grief that can accompany the lead-up to graduation are typically shared. This time, as I’m in an intense final push to the end while processing these emotions, most of the people around me are on their own unique timeline. At times grad school can feel quite lonely, but this journey would have been impossible without an incredible community of people.

A central contradiction of being a grad student is that your research is your own, but you need a variety of communities to successfully complete it. Your community of formal advisors, including your advisor and committee members, guide you along the way and provide feedback. Professors help you fill specific knowledge and skill gaps, while lab mates provide invaluable peer mentorship. Finally, fellow grad students share the experience and can celebrate and commiserate with you. I’ve also had the incredible fortune of having the community of the GRANITE team, and I’ve recently been reflecting on how special the experience has been.

To briefly recap, GRANITE stands for Gray whale Response to Ambient Noise Informed by Technology and Ecology (read this blog to learn more). This project is one of the GEMM lab’s long-running gray whale projects focused on studying gray whale behavior, physiology, and health to understand how whales respond to ocean noise. Given the many questions under this project, it takes a team of researchers to accomplish our goals. I have learned so much from being on the team. While we spend most of the year working on our own components, we have annual meetings that are always a highlight of the year. Our team is made up of ecologists, physiologists, and statisticians with backgrounds across a range of taxa and methodologies. These meetings are an incredible time to watch, and participate in, scientific collaboration in action. I have learned so much from watching experts critically think about questions and draw inspiration from their knowledge bases. It’s been a multi-year masterclass and a critically important piece of my PhD. 

The GRANITE team during our first in person meeting

These annual meetings have also served as markers of the passage of time. It’s been fascinating to observe how our discussions, questions, and ideas have evolved as the project progressed. In the early years, our presentations shared proposed research and our conversations focused on working out how on earth we were going to tackle the big questions we were posing. In parallel, it was so helpful to work out how I was going to accomplish my proposed PhD questions as part of this larger group effort. During the middle years, it was fun to hear progress updates and to learn from watching others go through their process too. In grad school, it’s easy to feel like your setbacks and stumbles are failures that reflect your own incompetence, but working alongside and learning from these scientists has helped remind me that setbacks and stumbles are just part of the process. Now, in the final phase, as results abound, it feels extra exciting to celebrate with this team that has watched the work, and me grow, from the beginning. 

The GRANITE team taking a beach walk after our second in person meeting.

We just wrapped up our last team meeting of the GRANITE project, and this year provided a learning experience in a phase of science that isn’t often emphasized in grad school. For graduate students, our work tends to end when we graduate. While we certainly think about follow-up questions to our studies, we rarely get the opportunity to follow through. In our final exams, we are often asked to think of next steps outside the constraints of funding or practicality, as a critical thinking exercise. But it’s a different skillset to dream up follow-up questions, and to then assess which of those questions are feasible and could come together to form a proposal. This last meeting felt like a cool full-story moment. From our earliest meetings determining how to answer our new questions, to now deciding what the next new questions are, I have learned countless lessons from watching this team operate. 

The GRANITE team after our third in person meeting.

There are a few overarching lessons I’ll take with me. First and foremost, the value of patience and kindness. As a young scientist stumbling up the learning curve of many skills all at once, I am so grateful for the patience and kindness I’ve been shown. Second, to keep an open mind and to draw inspiration from anything and everything. Studying whales is hard, and we often need to take ideas from studies on other animals. Which brings me to my third takeaway, to collaborate with scientists from a wide range of backgrounds who can combine their knowledges bases with yours, to generate better research questions and approaches to answering them.

I am so grateful to have worked with this team during my final sprint to the finish. Despite the pressure of the end nearing, I’m enjoying moments to reflect and be grateful. I am grateful for my teachers and peers and friends. And I can’t wait to share this project with everyone.

P.S. Interested in tuning into my defense seminar? Keep an eye on the GEMM lab Instagram (@gemm_lab) for the details and zoom link.

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly alert when we make a new post! Just add your name into the subscribe box below!

Loading

First Flight

By Lindsay Wickman, Postdoc, OSU Department of Fisheries, Wildlife, and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

I’ve had the privilege of attending several marine mammal surveys aboard ships at sea, but I had never surveyed for marine mammals from the air. So, when given the opportunity to participate in ongoing aerial surveys off the Oregon Coast with the US Coastguard’s helicopter fleet, I enthusiastically said yes. As Craig Hayslip, a Faculty Research Assistant with the Marine Mammal Institute, prepared me for my first helicopter survey, I was all excitement and no nerves. That is, until he explained the seating arrangement.

“There are two types of helicopters you’ll be flying on, and because of the seating arrangement in the Jayhawk, we fly with the door open when surveying for whales – it’s the only way to get a sufficient view,” Craig casually explained. I stared at the iPad I would use for recording data and imagined it flying through that open door and toward the sea, while I looked on flustered and helpless. Sensing my worry, Craig quickly showed me a set of straps that attached to the iPad, so it could be secured to one of my legs.

In addition to ensuring the iPad stayed in the aircraft, the straps also meant my hands would still be free to handle the camera (to aid in species identification), and a small tool called a geometer (developed by Pi Techology). By lining up the whale sighting in the sight of the geometer, the observer can record the angle between the aircraft and the sighting. Since we also know the height of the helicopter (we fly at a constant altitude of 500 feet), this angle can be used to calculate horizontal distance from the aircraft, allowing an accurate location to be estimated for each sighting.

My first flight was from Warrenton, Oregon, a four-hour drive north from the Hatfield Marine Science Center in Newport. Once at the airport, our first stop was to head to the flight operations office (a.k.a. “Ops”), who set us up with proper clothing and headgear for the flight. As we checked in, rock music played on a speaker while uniformed Coast Guardsmen serviced a helicopter in the hangar. I started to feel like a cool insider, until I clumsily donned the canvas flight suit and tried on several helmets. Suddenly several pounds heavier, all my movements became very awkward.

Lindsay outside the hangar wearing flight gear, in front of the survey’s helicopter. Photo by Craig Hayslip.

After my safety briefing, the entire crew gathered for a pre-flight meeting. We discussed weather conditions, did a wellness check, and discussed the flight’s mission. The conversation also included a brief overview of our scientific aims – why exactly were we looking for whales?

Craig briefly described the research project we were contributing to, titled Overlap Predictions About Large whales (OPAL). The main goal of this project is to better understand the overlap between whales and fisheries, with the aim of reducing entanglement risk. Fishing methods that use fixed, vertical lines in the water column, like the Dungeness crab fishery, can entangle whales as they migrate and feed along Oregon’s coastline. Since reports of whale entanglements have increased on the West Coast in the last 10 years, managing this threat is essential to ensure both the health of whale populations and the stability of Oregon’s crab fishery. Preventing these entanglements requires an understanding of where whales are distributed along the coast, as well as the times of year overlap with fisheries is most likely to occur. The OPAL project isn’t just mapping whale sightings, though. By using models to correlate whale sightings with oceanographic conditions, OPAL is also aiming to predict where whales are likely to occur.

After explaining the mission, the crew had to reach a consensus on both the level of “risk” in the mission and its level of “gain.” For a whale survey flight, risk was deemed low, with medium gain. While I initially felt mild offence that our scientific work was deemed to have just “medium” gain, I quickly reminded myself that when the crew is not flying scientists around, they are literally saving human lives. It was also a reminder that our whale surveys could easily be interrupted if necessary – Craig had mentioned several instances where flights were diverted to assist in rescue or medical emergencies.

With the briefing over, each of us had to consent to the flight plan by saying, “I accept this mission.” I’d heard this phrase from secret agents and soldiers in movies, but never from a marine scientist. I felt out of place saying them at first, but the words undeniably helped me establish a self-assured confidence I would give the survey my 100%.

Finally, it was time to head out of the hangar and to the aircraft. With both a pair of earplugs and my flight helmet on, the whirring of the blades was just a soft hum. I couldn’t hear speech, so we all relied on hand signals to communicate until our headsets were connected to the aircraft. The crew helped make sure I correctly put on my seatbelt harness, which had not just one, but five buckles. While I still felt some mild concern for the iPad strapped to my leg, at least I knew I wouldn’t fall out.

Lindsay holds up the geometer during the flight. Photo by Craig Hayslip.

Craig helped ensure I had all the equipment set up properly: the iPad’s survey program, the GPS tracking, and the computer recording the geometer’s measurements. Soon after, the helicopter slowly rose, hovering above the runway, before turning and heading towards the coast at speed. My stomach dropped slightly, my ears popped, and cold air rushed through the open door. I looked out at the Columbia River as it stretched toward the coastline and out to sea, and I couldn’t stop smiling.

A rainbow mid-air. Photo by Craig Hayslip.

As we approached the ocean, my attention shifted back to the mission, and I started scanning the surface for whale blows. With the large helmet on, I noticed the camera and geometer were much more difficult to use, so I also made “practice sightings” of passing boats and buoys. It didn’t take long before my first real whale sighting though – two gray whales (Eschrichtius robustus). Over the next two hours, I saw four more gray whales, and six more whales I was unable to identify due to distance. With each sighting, I had to act fast to make each geometer recording. The helicopter travels at a speed of 90 knots and whales can disappear soon after surfacing.

Two hours of flying with the door open meant my nose was running and my typing skills were worsening due to cold fingers. As exciting as it was to spot whales from the air, I was a little relieved when we arrived back at the airport and I could warm back up. Luckily, my nightmare of losing an iPad from the helicopter did not come true, and I was returning home with another survey to add to over 200 (and counting!) helicopter surveys completed for the OPAL project. Four different flights covering different parts of the Oregon coast are completed each month, so I know I have more flights to look forward to. After a successful first mission, I feel ready to take on my next flight.

The four flight routes completed monthly for the OPAL project. Helicopter flights are enabled through a partnership with the US Coastguard.

If you’d like to learn more about the OPAL research project, check out these past blog posts:

A Matter of Time: Adaptively Managing the Timescales of Ocean Change and Human Response

The pathway to advancing knowledge of rorqual whale distribution off Oregon

From land, sea,… and space: searching for whales in the vast ocean

The ups and downs of the ocean

Recent publications presenting findings from the first two years of OPAL include:

Derville, S., Barlow, D. R., Hayslip, C., & Torres, L. G. (2022). Seasonal, Annual, and Decadal Distribution of Three Rorqual Whale Species Relative to Dynamic Ocean Conditions Off Oregon, USA. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.868566

Derville, S., Buell, T. v., Corbett, K. C., Hayslip, C., & Torres, L. G. (2023). Exposure of whales to entanglement risk in Dungeness crab fishing gear in Oregon, USA, reveals distinctive spatio-temporal and climatic patterns. Biological Conservation, 281. https://doi.org/10.1016/j.biocon.2023.10998

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly message when we post a new blog. Just add your name and email into the subscribe box below.

Loading

A MOSAIC of species, datasets, tools, and collaborators

By Dr. Dawn Barlow, Postdoctoral Scholar, OSU Department of Fisheries, Wildlife, and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

Imagine you are 50 nautical miles from shore, perched on the observation platform of a research vessel. The ocean is blue, calm, and seems—for all intents and purposes—empty. No birds fly overhead, nothing disturbs the rolling swells except the occasional whitecap from a light breeze. The view through your binoculars is excellent, and in the distance, you spot a disturbance at the surface of the water. As the ship gets closer, you see splashing, and a flurry of activity emerges as a large group of dolphins leap and dive, likely chasing a school of fish. They swim along with the ship, riding the bow-wave in a brief break from their activity. Birds circle in the air above them and float on the water around them. Together with your team of observers, you rush to record the species, the number of animals, their distance to the ship, and their behavior. The research vessel carries along its pre-determined trackline, and the feeding frenzy of birds and dolphins fades off behind you as quickly as it came. You return to scanning the blue water.

Craig Hayslip and Dawn Barlow scan for marine mammals from the crow’s nest (elevated observation platform) of the R/V Pacific Storm.

The marine environment is highly dynamic, and resources in the ocean are notoriously patchy. One of our main objectives in marine ecology is to understand what drives these ephemeral hotspots of species diversity and biological activity. This objective is particularly important now as the oceans warm and shift. In the context of rapid global climate change, there is a push to establish alternatives to fossil fuels that can support society’s energy needs while minimizing the carbon emissions that are a root cause of climate change. One emergent option is offshore wind, which has become a hot topic on the West Coast of the United States in recent years. The technology has the potential to supply a clean energy source, but the infrastructure could have environmental and societal impacts of its own, depending on where it is placed, how it is implemented, and when it is operational.

Northern right whale dolphins leap into the air. Photo by Craig Hayslip.

Any development in the marine environment, including alternative energy such as offshore wind, should be undertaken using the best available scientific knowledge of the ecosystem where it will be implemented. The Marine Mammal Institute’s collaborative project, Marine Offshore Species Assessments to Inform Clean energy (MOSAIC), was designed for just this reason. As the name “MOSAIC” implies, it is all about using different tools to compile different datasets to establish crucial baseline information on where marine mammals and seabirds are distributed in Oregon and Northern California, a region of interest for wind energy development.

A MOSAIC of species

The waters of Oregon and Northern California are rich with life. Numerous cetaceans are found here, from the largest species to ever live, the blue whale, to one of the smallest cetaceans, the harbor porpoise, with many species filling in the size range in between: fin whales, humpback whales, sperm whales, killer whales, Risso’s dolphins, Pacific white-sided dolphins, northern right whale dolphins, and Dall’s porpoises, to name a few. Seabirds likewise rely on these productive waters, from the large, graceful albatrosses that feature in maritime legends, to charismatic tufted puffins, to the little Leach’s storm petrels that could fit in the palm of your hand yet cover vast distances at sea. From our data collection efforts so far, we have already documented 16 cetacean species and 64 seabird species.

A Laysan albatross glides over the water’s surface. Photo by Will Kennerley.

A MOSAIC of data and tools

Schematic of the different components of the MOSAIC project. Graphic created by Solene Derville.

Through the four-year MOSAIC project, we are undertaking two years of visual surveys and passive acoustic monitoring from Cape Mendocino to the mouth of the Columbia River on the border of Oregon and Washington and seaward to the continental slope. Six comprehensive surveys for cetaceans and seabirds are being conducted aboard the R/V Pacific Storm following a carefully chosen trackline to cover a variety of habitats, including areas of interest to wind energy developers.

These dedicated surveys are complemented by additional surveys conducted aboard NOAA research vessels during collaborative expeditions in the Northern California Current, and ongoing aerial surveys in partnership with the United States Coast Guard through the GEMM Lab’s OPAL project. Three bottom-mounted hydrophones were deployed in August 2022, and are recording cetacean vocalizations and the ambient soundscape, and these recordings will be complemented by acoustic data that is being collected continuously by the Oceans Observing Initiative. In addition to these methods to collect broad-scale species distribution information, concurrent efforts are being conducted via small boats to collect individual identification photographs of baleen whales and tissue biopsy samples for genetic analysis. Building on the legacy of satellite tracking here at the Marine Mammal Institute, the MOSAIC project is breathing new life into tag data from large whales to assess movement patterns over many years and determine the amount of time spent within our study area.

A curious fin whale approaches the R/V Pacific Storm during one of the visual surveys. Photo by Craig Hayslip.
Survey tracklines extending between the Columbia River and Cape Mendocino, designed for the MOSAIC visual surveys aboard the R/V Pacific Storm.

The resulting species occurrence data from visual surveys and acoustic monitoring will be integrated to develop Species Distribution Models for the many different species in our study region. Identification photographs of individual baleen whales, DNA profiles from whale biopsy samples, and data from satellite-tagged whales will provide detailed insight into whale population structure, behavior, and site fidelity (i.e., how long they typically stay in a given area), which will add important context to the distribution data we collect through the visual surveys and acoustic monitoring. The models will be implemented to produce maps of predicted species occurrence patterns, describing when and where we expect different cetaceans and seabirds to be under different environmental conditions.

With five visual surveys down, the MOSAIC team is gearing up for one final survey this month. The hydrophones will be retrieved this summer. Then, with data in-hand, the team will dive deep into analysis.

A MOSAIC of collaborators

The MOSAIC-4 team waves from the crow’s nest (observation platform) of the R/V Pacific Storm. Photo by Craig Hayslip.

The collaborative MOSAIC team brings together a diverse set of tools. The depth of expertise here at the Marine Mammal Institute spans a broad range of disciplines, well-positioned to provide robust scientific knowledge needed to inform alternative energy development in Oregon and Northern California waters.  

I have had the pleasure of participating in three of the six surveys aboard the R/V Pacific Storm, including leading one as Chief Scientist, and have collected visual survey data aboard NOAA Ship Bell M. Shimada and from United States Coast Guard helicopters over the years that will be incorporated in the MOSAIC of datasets for the project. This ecosystem is one that I feel deeply connected to from time spent in the field. Now, I am thrilled to dive into the analysis, and will lead the modeling of the visual survey data and the integration of the different components to produce species distribution maps for cetaceans and seabirds our study region.

This project is funded by the United States Department of Energy. The Principal Investigator is the Institute’s Director Dr. Lisa Ballance, and Co-Principal Investigators include Scott Baker, Barbara Lagerquist, Rachael Orben, Daniel Palacios, Kate Stafford, and Leigh Torres of the Marine Mammal Institute; John Calambokidis of the Cascadia Research Collective; and Elizabeth Becker of ManTech International Corp. For more information, please visit the project website, and stay tuned for updates as we enter the analysis phase.

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly alert when we make a new post! Just add your name into the subscribe box below!

Loading

Learning from the unexpected: the first field season of the SAPPHIRE project

By Dr. Dawn Barlow, Postdoctoral Scholar, OSU Department of Fisheries, Wildlife, and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

The SAPPHIRE project’s inaugural 2024 field season has officially wrapped up, and the team is back on shore after an unexpected but ultimately fruitful research cruise. The project aims to understand the impacts of climate change on blue whales and krill, by investigating their health under variable environmental conditions. In order to assess their health, however, a crucial first step is required: finding krill, and finding whales. The South Taranaki Bight (STB) is a known foraging ground where blue whales typically feed on krill found in the cool and productive upwelled waters. This year, however, both krill and blue whales were notoriously absent from the STB, leaving us puzzled as we compulsively searched the region in between periods of unworkable weather (including an aerial survey one afternoon).

A map of our survey effort during the 2024 field season. Gray lines represent our visual survey tracklines, with the aerial survey shown in the dashed line. Red points show blue whale sighting locations. Purple stars are the deployment locations of two hydrophones, which will record over the next year.

The tables felt like they were turning when we finally found a blue whale off the west coast of the South Island, and were able to successfully fly the drone to collect body condition information, and collect a fecal sample for genetic and hormone analysis. Then, we returned to the same pattern. Days of waiting for a weather window in between fierce winds, alternating with days of searching and searching, with no blue whales or krill to be found. Photogrammetry measurements of our drone data over the one blue whale we found determined it to be quite small (only ~17 m) and in poor body condition. The only krill we were able to find and collect were small and sparsely mixed in to a massive gelatinous swarm of salps. Where were the whales? Where was their prey?

Above: KC Bierlich and Dawn Barlow search for blue whales. Below: salps swarm beneath the surface.

Then, a turn of events. A news story with the headline “Acres of krill washing up on the coastline” made its way to our inboxes and news feeds. The location? Kaikoura. On the other side of the Cook Strait, along the east coast of the South Island. With good survey coverage in the STB resulting in essentially no appearances of our study species, this report of krill presence along with a workable weather forecast in the Kaikoura area had our attention. In a flurry of quick decision-making (Leigh to Captain: “Can we physically get there?” Captain to Leigh: “Yes, we can.” Leigh to Captain: “Let’s go.”), we turned the vessel around and surfed the swells to the southeast at high speed.

The team in action aboard the R/V Star Keys, our home for the duration of the three-week survey.

Twelve hours later we arrived at dusk and anchored off the small town of Kaikoura, with plans to conduct a net tow for krill before dawn the next morning. But the krill came to us! In the wee hours of the morning, the research vessel was surrounded by swarming krill. The dense aggregation made the water appear soup-like, and attracted a school of hungry barracuda. These abundant krill were just what was needed to run respiration experiments on the deck, and to collect samples to analyze their calories, proteins, and lipids back in the lab.

Left: An illuminated swarm of krill just below the surface. Right: A blue whale comes up for air with an extended buccal pouch, indicating a recent mouthful of krill. Drone piloted by KC Bierlich.

With krill in the area, we were anxious to find their blue whale predators, too. Once we began our visual survey effort, we were alerted by local whale watchers of a blue whale sighting. We headed straight to this location and got to work. The day that followed featured another round of krill experiments, and a few more blue whale sightings. Predator and prey were both present, a stark contrast to our experience in the previous weeks within the STB and along the west coast of the South Island. The science team and crew of the R/V Star Keys fell right into gear, carefully maneuvering around these ocean giants to collect identification photos, drone flights, and fecal samples, finding our rhythm in what we came here to do. We are deeply grateful to the regional managers, local Iwi representatives, researchers, and tourism operators that supported making our time in Kaikoura so fruitful, on just a moment’s notice.

The SAPPHIRE 2024 field team on a day of successful blue whale sightings. Clockwise, starting top left: Dawn Barlow and Leigh Torres following a sunset blue whale sighting, Mike Ogle in position for biopsy sample collection, Kim Bernard collecting blue whale dive times, KC Bierlich collecting identification photos.

What does it all mean? It’s hard to say right now, but time and data analysis will hopefully tell. While this field season was certainly unexpected, it was valuable in many ways. Our experiences this year emphasize the pay-off of being adaptable in the field to maximize time, money, and data collection efforts (during our three-week cruise we slept in 10 different ports or anchorages, did an aerial survey, and rapidly changed our planned study area). Oftentimes, the cases that initially “don’t make sense” are the ones that end up providing key insights into larger patterns. No doubt this was a challenging and at times frustrating field season, but it could also be the year that provides the greatest insights. After two more years of data collection, it will be fascinating to compare this year’s blue whale and krill data in the greater context of environmental variability.

A blue whale comes up for air. Photo by Dawn Barlow.

One thing is clear, the oceans are without question already experiencing the impacts of global climate change. This year solidified the importance of our research, emphasizing the need to understand how krill—a crucial marine prey item—and their predators are being affected by warming and shifting oceans.  

A blue whale at sunset, off Kaikoura. Photo by Leigh Torres.

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly alert when we make a new post! Just add your name into the subscribe box below!

Loading

How big, how blue, how beautiful! Studying the impacts of climate change on big, (and beautiful) blue whales

Dr. KC Bierlich, Postdoctoral Scholar, OSU Department of Fisheries, Wildlife, & Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

The SAPPHIRE Project is in full swing, as we spend our days aboard the R/V Star Keys searching for krill and blue whales (Figure 1) in the South Taranaki Bight (STB) region of Aotearoa New Zealand. We are investigating how changing ocean conditions impact krill availability and quality, and how this in turn impacts blue whale behavior, health, and reproduction. Understanding the link between changing environmental conditions on prey species and predators is key to understanding the larger implications of climate change on ocean food webs and each populations’ resiliency. 

Figure 1. The SAPPHIRE team searching for blue whales. Top left) KC Bierlich, top right) Dawn Barlow, bottom left) Dawn Barlow, Kim Bernard (left to right), bottom right) KC Bierlich, Dawn Barlow, Leigh Torres, Mike Ogle (left to right).  

One of the many components of the SAPPHIRE Project is to understand how foraging success of blue whales is influenced by environmental variation (see this recent blog written by Dr. Dawn Barlow introducing each component of the project). When you cannot go to a grocery store or restaurant any time you are hungry, you must rely on stored energy from previous feeds to fuel energy needs. Body condition reflects an individual’s stored energy in the body as a result of feeding and thus represents the foraging success of an individual, which can then affect its potential for reproductive output and the individual’s overall health (see this previous blog). As discussed in a previous blog, drones serve as a valuable tool for obtaining morphological measurements of whales to estimate their body condition. We are using drones to collect aerial imagery of pygmy blue whales to obtain body condition measurements late in the foraging season between years 2024 and 2026 of the SAPPHIRE Project (Figure 2). We are quantifying body condition as Body Area Index (BAI), which is a relative measure standardized by the total length of the whale and well suited for comparing individuals and populations (Figure 3). 

The GEMM Lab recently published an article led by Dr. Dawn Barlow where we investigated the differences in BAI between three blue whale populations: Eastern North Pacific blue whales feeding in Monterey Bay, California; Chilean blue whales feeding in the Corcovado Gulf; and New Zealand Pygmy blue whales feeding in the STB (Barlow et al., 2023). These three populations are interesting to compare since blue whales that feed in Monterey Bay and Corcovado Gulf migrate to and from these seasonally productive feeding grounds, while the Pygmy blue whales stay in Aotearoa New Zealand year-round. Interestingly, the Pygmy blue whales had higher BAI (were fatter) compared to the other two regions despite relatively lower productivity in their foraging grounds. This difference in body condition may be due to different life history strategies where the non-migratory Pygmy blue whales may be able to feed as opportunities arrive, while the migratory strategies of the Eastern North Pacific and Chilean blue whales require good timing to access high abundant prey. Another interesting and unexpected result from our blue whale comparison was that Pygmy blue whales are not so “pygmy”; they are actually the same size as Eastern North Pacific and Chilean blue whales, with an average size around 22 m. Our findings from this blue whale comparison leads us to more questions about how environmental conditions that vary from year to year influence body condition and reproduction of these “not so pygmy” blue whales. 

Figure 2. An aerial image of a Pygmy blue whale in the South Taranaki Bight region of Aotearoa New Zealand collected during the SAPPHIRE 2024 field season using a DJI Inspire 2 drone. 
Figure 3. A drone image of a Pygmy blue whale and the length and body width measurements used to estimate Body Area Index (BAI), represented by the shaded blue region. Width measurements will also be used to help identify pregnant individuals.

The GEMM Lab has been studying this population of Pygmy blue whales in the STB since 2013 and found that years designated as a marine heatwave resulted with a reduction in blue whale feeding activity. Interestingly, breeding activity is also reduced during marine heatwaves in the following season when compared to the breeding season following a more productive, typical foraging season. These findings indicate that fluctuations in the environment, such as marine heatwaves, may affect not only foraging success, but also reproduction in Pygmy blue whales. 

To help us better understand reproductive patterns across years, we will use body width measurements from drone images paired with hormone concentrations collected from fecal and biopsy samples to identify pregnant individuals. Progesterone is a hormone secreted in the ovaries of mammals during the estrous cycle and gestation, making it the predominant hormone responsible for sustaining pregnancy. Recently, the GEMM Lab’s Dr. Alejandro Fernandez-Ajo wrote a blog discussing his publication identifying pregnant individual gray whales using drone-based body width measurements and progesterone concentrations from fecal samples (Fernandez et al., 2023). While individuals that were pregnant had higher levels of progesterone compared to when they were not pregnant, the body width at 50% of the body length served as a more reliable method for detecting pregnancy in gray whales. We will use similar methods to help identify pregnancy in Pygmy blue whales for the SAPPHIRE Project where will we examine body width measurement paired with progesterone concentrations collected from fecal and biopsy samples to identify pregnant individuals. We hope our work will help to better understand how climate change will influence Pygmy blue whale body condition and reproduction, and thus the overall health and resiliency of the population. Stay tuned! 

References

Barlow, D. R., Bierlich, K. C., Oestreich, W. K., Chiang, G., Durban, J. W., Goldbogen, J. A., Johnston, D. W., Leslie, M. S., Moore, M. J., Ryan, J. P., & Torres, L. G. (2023). Shaped by Their Environment: Variation in Blue Whale Morphology across Three Productive Coastal Ecosystems. Integrative Organismal Biology, 5(1). https://doi.org/10.1093/iob/obad039

Fernandez Ajó, A., Pirotta, E., Bierlich, K. C., Hildebrand, L., Bird, C. N., Hunt, K. E., Buck, C. L., New, L., Dillon, D., & Torres, L. G. (2023). Assessment of a non-invasive approach to pregnancy diagnosis in gray whales through drone-based photogrammetry and faecal hormone analysis. Royal Society Open Science10(7), 230452. https://doi.org/10.1098/rsos.230452

It’s getting hot in here: studying the impacts of marine heatwaves on krill, life-blood of the ocean

By Kim Bernard, Associate Professor, Oregon State University College of Earth, Ocean, and Atmospheric Sciences

Euphausiids, commonly known as “krill”, represent a globally distributed family of pelagic crustacean zooplankton, spanning from tropical to polar oceans. These remarkable organisms inhabit a vast range of marine habitats, from nearshore coastal waters to the expansive open ocean, and from the sea surface to abyssal depths. Notably, they claim the title of the largest biomass among non-domestic animal groups on Earth! Beyond their sheer abundance, euphausiids play a pivotal role in shaping global marine food webs, supporting both economically significant fisheries and extensive populations of marine megafauna.

Figure 1: Nyctiphanes australis. Photo credit: A. Slotwinski, CSIRO.

As our planet continues to warm, the ongoing and anticipated shifts in the distribution and biomass of krill populations herald potential disruptions to marine ecosystems and food webs globally. Marine heatwaves, which are expected to increase in frequency, intensity, and duration in the coming decades, have a significant impact on global krill populations, with knock-on effects through food webs. At our home-base off the coast of Oregon, a severe marine heatwave in 2014-2016 resulted in altered krill distributions and reduced biomass, causing a suite of ecological implications ranging from decline in salmon health to increased occurrence of whale entanglements in fishing gear (Daly et al. 2017; Santora et al. 2020).

Figure 2: (A) Simrad EK80 transducers (the larger one is a 38kHz transducer, the smaller is a 120kHz transducer) mounted to a pole that gets lowered into the water during our daily surveys. The transducers emit sound waves that bounce off objects, like krill, in the water and return to the instrument’s transceiver, allowing us to map krill within the water column. (B) The acoustic data collected by the echosounder appears in real-time on our computer screen allowing us to find krill that we can then target with the Bongo net. Photo credits: Kim Bernard.

Here, off the coast of New Zealand, the krill species Nyctiphanes australis (Figure 1) is an important prey item for many marine predators, including slender tuna (Allothunnus fallai), Australian salmon (Kahawai, Arripis trutta), Jack mackerel (Trachurus declivis), short-tailed shearwater (Puffinus tenuirostris) (O’Brien 1988), and of course, the reason we are out here, blue whales (Balaenoptera musculus brevicauda) (Torres et al. 2020). In a precursor study to the SAPPHIRE project, members of our current research team demonstrated the potential negative impacts that marine heatwaves can have off the coast of New Zealand. During that study, our team noted declines in the abundance and changes in the distribution patterns of Nyctiphanes australis during a marine heatwave compared to normal conditions, with subsequent negative impacts on the distribution and behavior of the local New Zealand blue whale population (Barlow et al. 2020). The impetus of the SAPPHIRE project is to improve our understanding of the physiological mechanisms underlying the observed changes in both krill and blue whale populations, with the goal to better predict future changes.

As a zooplankton ecologist and “kriller”, my role on the SAPPHIRE project is to further our knowledge on the prey, Nyctiphanes australis. There are several components to this part of our research: (1) mapping distribution patterns of krill, (2) measuring the quality of krill as prey to whales, and (3) running experiments to test how warming affects krill physiology. To map the krill distribution patterns, we are using active acoustics (Figure 2). To measure the quality of krill, we first need to collect them, and we do that using a Bongo net (Figure 3) that gets towed behind the boat targeting krill we find using the echosounder.

Figure 3: Kim Bernard and Ngatokoa Tikitau empty the contents of one of the Bongo net cod-ends into a bucket to examine the catch. Unfortunately, it was not filled with krill as we had hoped, but rather a gelatinous zooplankton known as Salpa democratica. Photo credit: KC Bierlich.

Once we have the krill, we’ll flash freeze them in liquid nitrogen and take them back to Oregon where we’ll measure the amount of protein, fats (lipids), and calories each one contains. Finally, for the experiments on temperature effects, we will use live krill collected with the Bongo net placed individually into 1L Nalgene bottles, each outfitted with oxygen sensors so that we can measure the respiration rates of krill at a range of temperatures they would experience during normal conditions and marine heatwaves (Figure 4).

Figure 4: Respiration experiment set-up with two circulating waterbaths in the foreground feeding two temperature treatments in coolers (aka “chilly bins”) behind. Once we catch krill (which has yet to happen), we will use this set-up to test the effects of warming on krill respiration rates. Photo credit: Kim Bernard.
Loading


References

Barlow DR, Bernard KS, Escobar-Flores P, Palacios DM, Torres LG (2020) Links in the trophic chain: modeling functional relationships between in situ oceanography, krill, and blue whale distribution under different oceanographic regimes. Marine Ecology Progress Series 642:207-225. https://doi.org/10.3354/meps13339

Daly EA, Brodeur RD, Auth TD (2017) Anomalous ocean conditions in 2015: impacts on spring Chinook salmon and their prey field. Marine Ecology Progress Series 566:169-182. https://doi.org/10.3354/meps12021

O’Brien DP (1988) Surface schooling behaviour of the coastal krill Nyctiphanes australis (Crustacea: Euphausiacea) off Tasmania, Australia. Marine Ecology Progress Series 42: 219-233.

Santora JA, Mantua NJ, Schroeder ID, Field JC, Hazen EL, Bograd SJ, Sydeman WJ, Wells BK, Calambokidis J, Saez L, Lawson D, Forney KA (2020) Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nature Communications 11(1):536. doi: 10.1038/s41467-019-14215-w.

Torres LG, Barlow DR, Chandler TE, Burnett JD. 2020. Insight into the kinematics of blue whale surface foraging through drone observations and prey data. PeerJ 8:e8906 https://doi.org/10.7717/peerj.8906

Migrating back east

By: Kate Colson, MSc Oceans and Fisheries, University of British Columbia, Institute for the Oceans and Fisheries, Marine Mammal Research Unit

With the changing of the season, gray whales are starting their southbound migration that will end in the lagoons off the Baja California Mexico. The migration of the gray whale is the longest migration of any mammal—the round trip totals ~10,000 miles (Pike, 1962)! 

Map of the migration route taken by gray whales along the west coast of North America. (Image credit: Angle, Asplund, and Ostrander, 2017 https://www.slocoe.org/resources/parent-and-public-resources/what-is-a-california-gray-whale/california-gray-whale-migration/)

Like these gray whales, I am also undertaking my own “migration” as I leave Newport to start my post-Master’s journey. However, my migration will be a little shorter than the gray whale’s journey—only ~3,000 miles—as I head back to the east coast. As I talked about in my previous blog, I have finished my thesis studying the energetics of gray whale foraging behaviors and I attended my commencement ceremony at the University of British Columbia last Wednesday. As my time with the GEMM Lab comes to a close, I want to take some time to reflect on my time in Newport. 

Me in my graduation regalia (right) and my co-supervisor Andrew Trites holding the university mace (left) after my commencement ceremony at the University of British Columbia rose garden. 

Many depictions of scientists show them working in isolation but in my time with the GEMM Lab I got to fully experience the collaborative nature of science. My thesis was a part of the GEMM Lab’s Gray whale Response to Ambient Noise Informed by Technology and Ecology (GRANITE) project and I worked closely with the GRANITE team to help achieve the project’s research goals. The GRANITE team has annual meetings where team members give updates on their contributions to the project and flush out ideas in a series of very busy days. I found these collaborative meetings very helpful to ensure that I was keeping the big picture of the gray whale study system in mind while working with the energetics data I explored for my thesis. The collaborative nature of the GRANITE project provided the opportunity to learn from people that have a different skill set from my own and expose me to many different types of analysis. 

GRANITE team members hard at work thinking about gray whales and their physiological response to noise. 

This summer I also was able to participate in outreach with the partnership of the Oregon State University Marine Mammal Institute and the Eugene Exploding Whales (the alternate identity of the Eugene Emeralds) minor league baseball team to promote the Oregon Gray Whale License plates. It was exciting to talk to baseball fans about marine mammals and be able to demonstrate that the Gray Whale License plate sales are truly making a difference for the gray whales off the Oregon coast. In fact, the minimally invasive suction cup tags used in to collect the data I analyzed in my thesis were funded by the OSU Gray Whale License plate fund!

Photo of the GEMM Lab promoting Oregon Gray Whale License plates at the Eugene Exploding Whales baseball game. If you haven’t already, be sure to “Put a whale on your tail!” to help support marine mammal research off the Oregon Coast. 

Outside of the amazing science opportunities, I have thoroughly enjoyed the privilege of exploring Newport and the Oregon coast. I was lucky enough to find lots of agates and enjoyed consistently spotting gray whale blows on my many beach walks. I experienced so many breathtaking views from hikes (God’s thumb was my personal favorite). I got to attend an Oregon State Beavers football game where we crushed Stanford! And most of all, I am so thankful for all the friends I’ve made in my time here. These warm memories, and the knowledge that I can always come back, will help make it a little easier to start my migration away from Newport. 

Me and my friends outside of Reser Stadium for the Oregon State Beavers football game vs Stanford this season. Go Beavs!!!
Me and my friends celebrating after my defense. 

Did you enjoy this blog? Want to learn more about marine life, research, and
conservation? Subscribe to our blog and get a weekly message when we post a new
blog. Just add your name and email into the subscribe box below

Loading

References

Pike, G. C. (1962). Migration and feeding of the gray whale (Eschrichtius gibbosus). Journal of the Fisheries Research Board of Canada19(5), 815–838. https://doi.org/10.1139/f62-051

A smaller sized gray whale: recent publication finds PCFG whales are smaller than ENP whales

Dr. KC Bierlich, Postdoctoral Scholar, OSU Department of Fisheries, Wildlife, & Conservation Sciences, Geospatial Ecology of Marine Megafauna (GEMM) Lab

A recent blog post by GEMM Lab’s PhD Candidate Clara Bird gave a recap of our 8th consecutive GRANITEfield season this year. In her blog, Clara highlighted that we saw 71 individual gray whales this season, 61 of which we have seen in previous years and identified as belonging to the Pacific Coast Feeding Group (PCFG). With an estimated population size of around 212 individuals, this means that we saw almost 1/3 of the PCFG population this season alone. Since the GEMM Lab first started collecting data on PCFG gray whales in 2016, we have collected drone imagery on over 120 individuals, which is over half the PCFG population. This dataset provides incredible opportunity to get to know these individuals and observe them from year to year as they grow and mature through different life history stages, such as producing a calf. A question our research team has been interested in is what makes a PCFG whale different from an Eastern North Pacific (ENP) gray whale, which has a population size around 16,000 individuals and feed predominantly in the Arctic during the summer months? For this blog, I will highlight findings from our recent publication in Biology Letters (Bierlich et al., 2023) comparing the morphology (body length, skull, and fluke size) between PCFG and ENP populations. 

Body size and shape reflect how an animal functions in their environment and can provide details on an individual’s current health, reproductive status, and energetic requirements. Understanding how animals grow is a key component for monitoring the health of populations and their vulnerability to climate change and other stressors in their environment.  As such, collecting accurate morphological measurements of individuals is essential to model growth and infer their health. Collecting such morphological measurements of whales is challenging, as you cannot ask a whale to hold still while you prepare the tape measure, but as discussed in a previous blog, drones provide a non-invasive method to collect body size measurements of whales. Photogrammetry is a non-invasive technique used to obtain morphological measurements of animals from photographs. The GEMM Lab uses drone-based photogrammetry to obtain morphological measurements of PCFG gray whales, such as their body length, skull length (as snout-to-blowhole), and fluke span (see Figure 1). 

Figure 1. Morphological measurements obtained via photogrammetry of a Pacific Coast Feeding Group (PCFG) gray whale. These measurements were used to compare to individuals from the Eastern North Pacific (ENP) population. 

As mentioned in this previous blog, we use photo-identification to identify unique individual gray whales based on markings on their body. This method is helpful for linking all the data we are collecting (morphology, hormones, behavior, new scarring and skin conditions, etc.) to each individual whale. An individual’s sightings history can also be used to estimate their age, either as a ‘minimum age’ based on the date of first sighting or a ‘known age’ if the individual was seen as a calf. By combining the length measurements from drone-based photogrammetry and age estimates from photo-identification history, we can construct length-at-age growth models to examine how PCFG gray whales grow. While no study has previously examined length-at-age growth models specifically for PCFG gray whales, another study constructed growth curves for ENP gray whales using body length and age estimates obtained from whaling, strandings, and aerial photogrammetry (Agbayani et al., 2020). For our study, we utilized these datasets and compared length-at-age growth, snout-to-blowhole length, and fluke span between PCFG and ENP whales. We used Bayesian statistics to account and incorporate the various levels of uncertainty associated with data collected (i.e., measurements from whaling vs. drone, ‘minimum age’ vs. ‘known age’). 

We found that while both populations grow at similar rates, PCFG gray whales reach smaller adult lengths than ENP. This difference was more extreme for females, where PCFG females were ~1 m (~3 ft) shorter than ENP females and PCFG males were ~0.5 m (1.5 ft) shorter than ENP males (Figure 2, Figure 3). We also found that ENP males and females have slightly larger skulls and flukes than PCFG male and females, respectively. Our results suggest PCFG whales are shaped differently than ENP whales (Figure 3)! These results are also interesting in light of our previous published study that found PCFG whales are skinnier than ENP whales (see this previous blog post). 

Figure 2. Growth curves (von Bertalanffy–Putter) for length-at-age comparing male and female ENP and PCFG gray whales (shading represents 95% highest posterior density intervals). Points represent mean length and median age. Vertical bars represent photogrammetric uncertainty. Dashed horizontal lines represent uncertainty in age estimates.

Figure 3. Schematic highlighting the differences in body size between Pacific Coast Feeding Group (PCFG) and Eastern North Pacific (ENP) gray whales. 

Our results raise some interesting questions regarding why PCFG are smaller: Is this difference in size and shape normal for this population and are they healthy? Or is this difference a sign that they are stressed, unhealthy and/or not getting enough to eat? Larger individuals are typically found at higher latitudes (this pattern is called Bergmann’s Rule), which could explain why ENP whales are larger since they feed in the Arctic. Yet many species, including fish, birds, reptiles, and mammals, have experienced reductions in body size due to changes in habitat and anthropogenic stressors (Gardner et al., 2011). The PCFG range is within closer proximity to major population centers compared to the ENP foraging grounds in the Arctic, which could plausibly cause increased stress levels, leading to decreased growth. 

The smaller morphology of PCFG may also be related to the different foraging tactics they employ on different prey and habitat types than ENP whales. Animal morphology is linked to behavior and habitat (see this blogpost). ENP whales feeding in the Arctic generally forage on benthic amphipods, while PCFG whales switch between benthic, epibenthic and planktonic prey, but mostly target epibenthic mysids. Within the PCFG range, gray whales often forage in rocky kelp beds close to shore in shallow water depths (approx. 10 m) that are on average four times shallower than whales feeding in the Arctic. The prey in the PCFG range is also found to be of equal or higher caloric value than prey in the Arctic range (see this blog), which is interesting since PCFG were found to be skinnier.

It is also unclear when the PCFG formed? ENP and PCFG whales are genetically similar, but photo-identification history reveals that calves born into the PCFG usually return to forage in this PCFG range, suggesting matrilineal site fidelity that contributes to the population structure. PCFG whales were first documented off our Oregon Coast in the 1970s (Figure 4). Though, from examining old whaling records, there may have been PCFG gray whales foraging off the coasts of Northern California to British Columbia since the 1920s.

Figure 4. First reports of summer-resident gray whales along the Oregon coast, likely part of the Pacific Coast Feeding Group. Capital Journal, August 9, 1976, pg. 2.

Altogether, our finding led us to two hypotheses: 1) the PCFG range provides an ecological opportunity for smaller whales to feed on a different prey type in a shallow environment, or 2) the PCFG range is an ecological trap, where individuals gain less energy due to energetically costly feeding behaviors in complex habitat while potentially targeting lower density prey, causing them to be skinnier and have decreased growth. Key questions remain for our research team regarding potential consequences of the smaller sized PCFG whales, such as does the smaller body size equate to reduced resilience to environmental and anthropogenic stressors? Does smaller size effect fecundity and population fitness? Stay tuned as we learn more about this unique and fascinating smaller sized gray whale. 

References

Agbayani, S., Fortune, S. M. E., & Trites, A. W. (2020). Growth and development of North Pacific gray whales (Eschrichtius robustus). Journal of Mammalogy101(3), 742–754. https://doi.org/10.1093/jmammal/gyaa028

Bierlich, K. C., Kane, A., Hildebrand, L., Bird, C. N., Fernandez Ajo, A., Stewart, J. D., Hewitt, J., Hildebrand, I., Sumich, J., & Torres, L. G. (2023). Downsized: gray whales using an alternative foraging ground have smaller morphology. Biology Letters19(8). https://doi.org/10.1098/rsbl.2023.0043

Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., & Heinsohn, R. (2011). Declining body size: A third universal response to warming? Trends in Ecology and Evolution26(6), 285–291. https://doi.org/10.1016/j.tree.2011.03.005

The whales keep coming and we keep learning: a wrap up of the eighth GRANITE field season.

Clara Bird, PhD Candidate, OSU Department of Fisheries, Wildlife, and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

As you may remember, last year’s field season was a remarkable summer for our team. We were pleasantly surprised to find an increased number of whales in our study area compared to previous years and were even more excited that many of them were old friends. As we started this field season, we were all curious to know if this year would be a repeat. And it’s my pleasure to report that this season was even better!

We started the season with an exciting day (6 known whales! see Lisa’s blog) and the excitement (and whales) just kept coming. This season we saw 71 individual whales across 215 sightings! Of those 71, 44 were whales we saw last year, and 10 were new to our catalog, meaning that we saw 17 whales this season that we had not seen in at least two years! There is something extra special about seeing a whale we have not seen in a while because it means that they are still alive, and the sighting gives us valuable data to continue studying health and survival. Another cool note is that 7 of our 12 new whales from last year came back this year, indicating recruitment to our study region.

Included in that group of 7 whales are the two calves from last year! Again, indicating good recruitment of new whales to our study area. We saw both Lunita and Manta (previously nick-named ‘Roly-poly’) throughout this season and we were always happy to see them back in our area and feeding on their own.

Drone image of Lunita from 2023
Drone image of Manta from 2023

We had an especially remarkable encounter with Lunita at the end of this season when we found this whale surface feeding on porcelain crab larvae (video 1)! This is a behavior that we rarely observe, and we’ve never seen a juvenile whale use this behavior before, inspiring questions around how Lunita knew how to perform this behavior.

Not only did we resight our one-year-old friends, but we found two new calves born to well-known mature females (Clouds and Spotlight). We had previously documented Clouds with a calf (Cheetah) in 2016 so it was exciting to see her with a new calf and to meet Cheetah’s sibling! Cheetah has become one of our regulars so we’re curious to see if this new calf joins the regular crew as well. We’re also hoping that Spotlight’s calf will stick around; and we’re optimistic since we observed it feeding alone later in the season.

Collage of new calves from 2023! Left: Clouds and her calf, Center: Spotlight and her calf, Right: Spotlight’s calf independently foraging

Of course, 71 whales means heaps of data! We spent 226 hours on the water, conducted 132 drone flights (a record!), and collected 61 fecal samples! Those 132 flights were over 64 individual whales, with Casper and Pacman tying for “best whale to fly over” with 10 flights each. We collected 61 fecal samples from 26 individual whales with a three-way tie for “best pooper” between Hummingbird, Scarlett, and Zorro with 6 fecal samples each. And we continued to collect valuable prey and habitat data through 80 GoPro drops and 79 zooplankton net tows.

And if you were about to ask, “but what about tagging?!”, fear not! We continued our suction cup tagging effort with a successful window in July where we were joined by collaborators John Calambokidis from Cascadia Research Collective and Dave Cade from Hopkins Marine Station and deployed four suction-cup tags.

It’s hard to believe all the work we’ve accomplished in the past five months, and I continue to be honored and proud to be on this incredible team. But as this season has come to a close, I have found myself reflecting on something else. Learning. Over the past several years we have learned so much about not only these whales in our study system but about how to conduct field work. And while learning is continuous, this season in particular has felt like an exciting time for both. In the past year our group has published work showing that we can detect pregnancy in gray whales using fecal samples and drone imagery (Fernandez Ajó et al., 2023), that PCFG gray whales are shorter and smaller than ENP whales (Bierlich et al., 2023), and that gray whales are consuming high levels of microplastics (Torres et al., 2023). We also have several manuscripts in review focused on our behavior work from drones and tags. While this information does not directly affect our field work, it does mean that while we’re observing these whales live, we better understand what we’re observing and we can come up with more specific, in-depth questions based on this foundation of knowledge that we’re building. I have enjoyed seeing our questions evolve each year based on our increasing knowledge and I know that our collaborative, inquisitive chats on the boat will only continue inspiring more exciting research.

On top of our gray whale knowledge, we have also learned so much about field work. When I think back to the early days compared to now, there is a stark difference in our knowledge and our confidence. We do a lot on our little boat! And so many steps that we once relied on written lists to remember to do are now just engrained in our minds and bodies. From loading the boat, to setting up at the dock, to the go pro drops, fecal collections, drone operations, photo taking, and photo ID, our team has become quite the well-oiled machine. We were also given the opportunity to reflect on everything we’ve learned over the past years when it was our turn to train our new team member, Nat! Nat is a new PhD student in the GEMM lab who is joining team GRANITE. Teaching her all the ins and outs of our fieldwork really emphasized how much we ourselves have learned.

On a personal note, this was my third season as a drone pilot, and honestly, I was pleasantly surprised by my experience this season. Since I started piloting, I have experienced pretty intense nerves every time I’ve flown the drone. From stress dreams, to mild nausea, and an elevated heart rate, flying the drone was something that I didn’t necessarily look forward to. Don’t get me wrong – it’s incredibly valuable data and a privilege to watch the whales from a bird’s eye view in real time. But the responsibility of collecting good data, while keeping the drone and my team members safe was something that I felt viscerally. And while I gained confidence with every flight, the nerves were still as present as ever and I was starting to accept that I would never be totally comfortable as a pilot. Until this season, when the nerves finally cleared, and piloting became as innate as all the other field work components. While there are still some stressful moments, the nerves don’t come roaring back. I have finally gone through enough stressful situations to not be fazed by new ones. And while I am fully aware that this is just how learning works, I write this reflection as a reminder to myself and anyone going through the process of learning any new skill to push through that fear. Remember there can be a disconnect between the time when you know how to do something well, or well-enough, and the time when you feel comfortable doing it. I am just as proud of myself for persevering as I am of the team for collecting so much incredible data. And as I look ahead to my next scary challenge (finishing my PhD!), this is a feeling that I am trying to hold on to. 

Stay tuned for updates from team GRANITE!

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly alert when we make a new post! Just add your name into the subscribe box below!

Loading

References

Bierlich, K. C., Kane, A., Hildebrand, L., Bird, C. N., Fernandez Ajo, A., Stewart, J. D., Hewitt, J., Hildebrand, I., Sumich, J., & Torres, L. G. (2023). Downsized: Gray whales using an alternative foraging ground have smaller morphology. Biology Letters19(8), 20230043. https://doi.org/10.1098/rsbl.2023.0043

Fernandez Ajó, A., Pirotta, E., Bierlich, K. C., Hildebrand, L., Bird, C. N., Hunt, K. E., Buck, C. L., New, L., Dillon, D., & Torres, L. G. (2023). Assessment of a non-invasive approach to pregnancy diagnosis in gray whales through drone-based photogrammetry and faecal hormone analysis. Royal Society Open Science10(7), 230452. https://doi.org/10.1098/rsos.230452

Torres, L. G., Brander, S. M., Parker, J. I., Bloom, E. M., Norman, R., Van Brocklin, J. E., Lasdin, K. S., & Hildebrand, L. (2023). Zoop to poop: Assessment of microparticle loads in gray whale zooplankton prey and fecal matter reveal high daily consumption rates. Frontiers in Marine Science10. https://www.frontiersin.org/articles/10.3389/fmars.2023.1201078