Defining Behaviors

Clara Bird, PhD Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

When I started working on my thesis, I anticipated many challenges related to studying the behavioral ecology of gray whales. From processing five-plus years of drone footage to data analysis, there has been no shortage of anticipated and unexpected issues. I recently hit an unexpected challenge when I started video processing that piqued my interest. As I’ve discussed in a previous blog, ethograms are lists of defined behaviors that help us properly and consistently collect data in a standardized approach. Ethograms form a crucial foundation of any behavior study as the behaviors defined ultimately affect what questions can be asked and what patterns are detected. Since I am working off of the thorough ethogram of Oregon gray whales from Torres et al. (2018), I had not given much thought to the process of adding behaviors to the ethogram. But, while processing the first chunk of drone videos, I noticed some behaviors that were not in the original ethogram and struggled to decide whether or not to add them. I learned that ethogram development can lead down several rabbit holes. The instinct to try and identify every movement is strong but dangerous. Every minute movement does not necessarily need to be included and it’s important to remember the ultimate goal of the analysis to avoid getting bogged down.

Fundamental behavior questions cannot be answered without ethograms. For example, Baker et al. (2017) developed an ethogram for bottlenose dolphins in Ireland in order to conduct an initial quantitative behavior analysis. They did so by reviewing published ethograms for bottlenose dolphins, consulting with multiple experts, and revising the ethogram throughout the study. They then used their data to test inter-observer variability, calculate activity budgets, and analyze how the activity budgets varied across space and time.

Howe et al. (2015) also developed an ethogram in order to conduct quantitative behavior analyses. Their goals were to use the ethogram and subsequent analyses to better understand the behavior of beluga whales in Cook Inlet, AK, USA and to inform conservation. They started by writing down all behaviors they observed in the field, then they consolidated their notes into a formal ethogram that they used and refined during subsequent field seasons. They used their data to analyze how the frequencies of different behaviors varied throughout the study area at different times. This study served as an initial analysis investigating the effect of anthropogenic disturbance and was refined in future studies.

My research is similarly geared towards understanding behavior patterns to ultimately inform conservation. The primary questions of my thesis involve individual specialization, patterns of behavior across space, the relationship between behavior and body condition, and social behavior (check out this blog to learn more). While deciding what behaviors to add to my ethogram I’ve had to remind myself of these main questions and the bigger picture. The drone footage lets us see so much detail that it’s tempting to try to define every movement we can observe. One rabbit hole I’ve had to avoid a few times is locomotion. From the footage, it is possible to document fluke beats and pectoral fin strokes. While it could be interesting to investigate how different whales move in different ways, it could easily become a complicated mess of classifying different movements and take me deep into the world of whale locomotion. Talking through what that work would look like reminded me that we cannot answer every question and trying to assess all exciting side projects can cause us to lose focus on the main questions.

While I avoided going down the locomotion rabbit hole, there were some new behaviors that I did add to my ethogram. I’ll illustrate the process with the examples of two new behaviors I recently added: fluke swish and pass under (Clips 1 and 2). Clip 1 shows a whale rapidly moving its fluke to the side. I chose to add fluke swish because it’s such a distinct movement and I’m curious to see if there’s a pattern across space, time, individual, or nearby human activity that might explain its function. Clip 2 shows a calf passing under its mom.  It’s not nursing because the calf doesn’t spend time under its mom, it just crosses underneath her. The calf pass under behavior could be a type of mom-calf tactile interaction. Analyzing how the frequency of this behavior changes over time could show how a calf’s dependency on its mom changes over as it ages.

In defining these behaviors, I had to consider how many different variations of this behavior would be included in the definition. This process involves considering at what point a variation of that behavior could serve a different function, even without knowing the function of the original behavior. For fluke swish this process involved deciding to only count a behavior as a fluke swish if it was a big, fast movement. A small and slow movement of the fluke a little to the side could serve a different function, such as turning, or be a random movement.

Clip 1: Fluke swish behavior (Video filmed under NOAA/NMFS research permit #16111​​ by certified drone pilot Todd Chandler).
Clip 2: Pass under behavior (Video filmed under NOAA/NMFS research permit #16111​​ by certified drone pilot Todd Chandler).

The next step involved deciding if the behavior would be a ‘state’ or ‘point’ event. A state event is a behavior with a start and stop moment; a point event is instantaneous and assigned to just a point in time. I would categorize a behavior as a state event if I was interested in questions about its duration. For example, I could ask “what percentage of the total observation time was spent in a certain behavior state?” A point event would be a behavior where duration is not applicable, but I could ask a question like “Did whale 1 perform more point event A than whale 2?”. Both fluke swish and pass under are point events because they only happen for an instant. In a pass under the calf is passing under its mom for just a brief point in time, making it a point event. The final step was to name the behavior. As I discussed in this blog, the name of the behavior does not matter as much as the definition but it is important that the name is clear and descriptive. We chose the name fluke swish because the fluke rapidly moves from side to side and pass under because the calf crosses under its mom.

Frankly, in the beginning, I was a bit overwhelmed by the realization that the content of my ethogram would ultimately control the questions I could answer. I could not help but worry that after processing all the videos, I would end up regretting not defining more behaviors. However, after reading some of the literature, chatting with Leigh, and reviewing the initial chunk of videos several times, I am more confidence in my judgment and my ethogram. I have accepted the fact that I can’t anticipate everything, and I am confident that the behaviors I need to answer my research questions are included. The process of reviewing and updating my ethogram has been a rewarding challenge that resulted in a valuable lesson that I will take with me for the rest of my career.

References

Baker, I., O’Brien, J., McHugh, K., & Berrow, S. (2017). An ethogram for bottlenose dolphins (Tursiops truncatus) in the Shannon Estuary, Ireland. Aquatic Mammals, 43(6), 594–613. https://doi.org/10.1578/AM.43.6.2017.594

Howe, M., Castellote, M., Garner, C., McKee, P., Small, R. J., & Hobbs, R. (2015). Beluga, Delphinapterus leucas, ethogram: A tool for cook inlet beluga conservation? Marine Fisheries Review, 77(1), 32–40. https://doi.org/10.7755/MFR.77.1.3

Torres, L. G., Nieukirk, S. L., Lemos, L., & Chandler, T. E. (2018). Drone up! Quantifying whale behavior from a new perspective improves observational capacity. Frontiers in Marine Science, 5(SEP). https://doi.org/10.3389/fmars.2018.00319

Looking Back: Three Years After Grad School

By Courtney Hann (NOAA Fisheries, West Coast Sustainable Fisheries Division)

Thinking back, as Leigh’s first M.Sc. student for the GEMM Lab, I wonder what poignant insight could have prepared me for my future endeavors. And having faced years of perseverance and dedication in the face of professional unknowns, perhaps the answer is none at all; fore maybe it was the many unknown challenges met that led me to where I am today.

I graduated in December of 2015, with my Masters in Marine Resource Management, and stamped completion of my research with the GEMM Lab. While my research focused on marine mammals, my broader love for the Earth’s oceans and lands guided my determination to help keep our planet’s precious ecosystem resources wild and free. So when I landed a position in terrestrial ecology after graduating, I chose to embrace the challenging decision of jumping away from theoretical research and moving back towards applied research. Consequently, I fell in love with botany, moth identification, birding, and explored the unknowns of a whole new world of conservation biology in Scotland with the Royal Society for the Protection of Birds. Not only was this work incredibly fun, interesting, and spontaneous, it offered me an opportunity to take my knowledge of developing research projects and apply it to nature reserve management. Every survey I completed and dataset I analyzed provided information required to determine the next land management steps for maximizing the conservation of rare and diverse species. From the GEMM Lab, I brought skills on: how to work through what, at times, seemed like an impassible barrier, complete tasks efficiently under a tight deadline, juggle multiple activities and obligations, and still make time to ponder the importance of seeing the bigger picture, while having fun learning new things.

Above: Botanizing and birding in Scotland with the best botanist I have ever known and my boss, Jeff Waddell, with the Royal Society for the Protection of Birds.

For me, the long game of seeing the bigger picture has always been key. And at the end of the day, I remained steadfast in answering the questioned I posed myself: Why do all of this work if not to make a truly positive impact? With that in mind, and with an expiring visa, I moved back to the West Coast of the U.S. and landed a contracting position with NOAA Fisheries. Where I met my second female mentor, Heidi Taylor, who inspired me beyond words and introduced me to the amazing world of fisheries management. All the while, I kept working my second part-time job with the West Coast Regional Planning Body (now called the West Coast Ocean Alliance, WCOA). Working two jobs allowed me to not only accelerate my learning capacity through more opportunities, but also allowed me to extend the reach of growing a positive impact.  For example, I learned about coordinating region-wide ocean management, facilitation of diverse groups, and working with tribes, states, and federal agencies while working for the WCOA. While there were moments that I struggled with overworking and fatigue, my training in graduate school to persevere really kicked in. Driven by the desire to attain a permanent position that complimented my talents and determination to provide sustained help for our Earth’s ecosystems, I worked for what sometimes felt endlessly to reach my goal. Getting there was tough, but well worth it!

One of the most challenging aspects for me was finishing my last publication for the GEMM Lab. I was no longer motivated by the research, since my career path had taken a different turn, and I was already burnt out form working overtime every week. Therefore, if it was not for Leigh’s encouraging words, the promise I made to her to complete the publication, and my other co-author’s invitation to submit a paper for a particular journal, then I likely would have thrown in the towel. I had to re-do the analysis several times, had the paper rejected once, and then ended up re-writing and re-structuring the entire paper for the final publication. In total, it took me two and half years and 100s of hours to complete this paper after graduating. Of course, there was no funding, so I felt a bit like an ongoing graduate student until the paper was finally accepted and the work complete. But the final acceptance of the paper was so sweet, and after years of uncertain challenges, a heavy weight had finally been lifted. So perhaps, if there is one piece of advice I would say to young graduate students, it is to get your work published before you graduate! I had one paper and one book chapter published before I graduated, and that made my life much easier. While I am proud for finishing the final third publication, I would have much preferred to have just taken one extra semester and finished that publication while in school. But regardless, it was completed. And in a catharsis moment, maybe the challenge of completing it taught me the determination I needed to persevere through difficult situations.

Above: Elephant seal expressing my joy of finishing that last publication! Wooohoooooo!

With that publication out of the way, I was able to focus more time on my career. While I no longer use R on a daily basis and do not miss the hours of searching for that one pesky bug, I do analyze, critique, and use scientific literature everyday. Moreover, the critical thinking, creative, and collaborative skills I honed in the GEMM Lab, have been and will be useful for the rest of my life. Those hours of working through complicated statistical analyses and results in Leigh’s office pay off everyday. Reading outside of work, volunteering and working second jobs, all of this I learned from graduate school. Carrying this motivation, hard work, determination, and perseverance on past graduate school was undeniably what led me to where I am today. I have landed my dream job, working for NOAA Fisheries Sustainable Fisheries Division on salmon management and policy, in my dream location, the Pacific Northwest.  My work now ties directly into ongoing management and policy that shapes our oceans, conservation efforts, and fisheries management. I am grateful for all the people who have supported me along the way, with this blog post focusing on the GEMM Lab and Leigh Torres as my advisor. I hope to be a mentor and guide for others along their path, as so many have helped me along mine. Good luck to any grad student reading this now! But more than luck, carry passion and determination forward because that is what will propel you onward on your own path. Thank you GEMM Lab, it is now time for me to enjoy my new job.

Above: Enjoying in my new home in the Pacific Northwest.

 

 

 

Why Feeling Stupid is Great: How stupidity fuels scientific progress and discovery

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

It all started with a paper. On Halloween, I sat at my desk, searching for papers that could answer my questions about bottlenose dolphin metabolism and realized I had forgotten to check my email earlier. In my inbox, there was a new message with an attachment from Dr. Leigh Torres to the GEMM Lab members, saying this was a “must-read” article. The suggested paper was Martin A. Schwartz’s 2008 essay, “The importance of stupidity in scientific research”, published in the Journal of Cell Science, highlighted universal themes across science. In a single, powerful page, Schwartz captured my feelings—and those of many scientists: the feeling of being stupid.

For the next few minutes, I stood at the printer and absorbed the article, while commenting out loud, “YES!”, “So true!”, and “This person can see into my soul”. Meanwhile, colleagues entered my office to see me, dressed in my Halloween costume—as “Amazon’s Alexa”, talking aloud to myself. Coincidently, I was feeling pretty stupid at that moment after just returning from a weekly meeting, where everyone asked me questions that I clearly did not have the answers to (all because of my costume). This paper seemed too relevant; the timing was uncanny. In the past few weeks, I have been writing my PhD research proposal —a requirement for our department— and my goodness, have I felt stupid. The proposal outlines my dissertation objectives, puts my work into context, and provides background research on common bottlenose dolphin health. There is so much to know that I don’t know!

Alexa dressed as “Amazon Alexa” on Halloween at her office in San Diego, CA.

When I read Schwartz’s 2008 paper, there were a few takeaway messages that stood out:

  1. People take different paths. One path is not necessarily right nor wrong. Simply, different. I compared that to how I split my time between OSU and San Diego, CA. Spending half of the year away from my lab and my department is incredibly challenging; I constantly feel behind and I miss the support that physically being with other students provides. However, I recognize the opportunities I have in San Diego where I work directly with collaborators who teach and challenge me in new ways that bring new skills and perspective.

    Image result for different ways
    (Image source: St. Albert’s Place)
  2. Feeling stupid is not bad. It can be a good feeling—or at least we should treat it as being a positive thing. It shows we have more to learn. It means that we have not reached our maximum potential for learning (who ever does?). While writing my proposal I realized just how little I know about ecotoxicology, chemistry, and statistics. I re-read papers that are critical to understanding my own research, like “Nontargeted biomonitoring of halogenated organic compounds in two ecotypes of bottlenose dolphins (Tursiops truncatus) from the Southern California bight” (2014) by Shaul et al. and “Bottlenose dolphins as indicators of persistent organic pollutants in the western north Atlantic ocean and northern gulf of Mexico” (2011) by Kucklick et al. These articles took me down what I thought were wormholes that ended up being important rivers of information. Because I recognized my knowledge gap, I can now articulate the purpose and methods of analysis for specific compounds that I will conduct using blubber samples of common bottlenose dolphins

    Image result
    Image source: memegenerator.net
  3. Drawing upon experts—albeit intimidating—is beneficial for scientific consulting as well as for our mental health; no one person knows everything. That statement can bring us together because when people work together, everyone benefits. I am also reminded that we are our own harshest critics; sometimes our colleagues are the best champions of our own successes. It is also why historical articles are foundational. In the hunt for the newest technology and the latest and greatest in research, it is important to acknowledge the basis for discoveries. My data begins in 1981, when the first of many researchers began surveying the California coastline for common bottlenose dolphins. Geographic information systems (GIS) were different back then. The data requires conversions and investigative work. I had to learn how the data were collected and how to interpret that information. Therefore, it should be no surprise that I cite literature from the 1970s, such as “Results of attempts to tag Atlantic Bottlenose dolphins, (Tursiops truncatus)” by Irvine and Wells. Although published in 1972, the questions the authors tried to answer are very similar to what I am looking at now: how are site fidelity and home ranges impacted by natural and anthropogenic processes. While Irvine and Wells used large bolt tags to identify individuals, my project utilizes much less invasive techniques (photo-identification and blubber biopsies) to track animals, their health, and their exposures to contaminants.

    Image result for that is why you fail yoda
    (Image source: imgflip.com)
  4. Struggling is part of the solution. Science is about discovery and without the feeling of stupidity, discovery would not be possible. Feeling stupid is the first step in the discovery process: the spark that fuels wanting to explore the unknown. Feeling stupid can lead to the feeling of accomplishment when we find answers to those very questions that made us feel stupid. Part of being a student and a scientist is identifying those weaknesses and not letting them stop me. Pausing, reflecting, course correcting, and researching are all productive in the end, but stopping is not. Coursework is the easy part of a PhD. The hard part is constantly diving deeper into the great unknown that is research. The great unknown is simultaneously alluring and frightening. Still, it must be faced head on. Schwartz describes “productive stupidity [as] being ignorant by choice.” I picture this as essentially blindly walking into the future with confidence. Although a bit of an oxymoron, it resonates the importance of perseverance and conviction in the midst of uncertainty.

    Image result for funny t rex
    (Image source: Redbubble)

Now I think back to my childhood when stupid was one of the forbidden “s-words” and I question whether society had it all wrong. Maybe we should teach children to acknowledge ignorance and pursue the unknown. Stupid is a feeling, not a character flaw. Stupidity is important in science and in life. Fascination and emotional desires to discover new things are healthy. Next time you feel stupid, try running with it, because more often than not, you will learn something.

Image may contain: 1 person, sitting, table, child and outdoor
Alexa teaching about marine mammals to students ages 2-6 and learning from educators about new ways to engage young students. San Diego, CA in 2016. (Photo source: Lori Lowder)

“Evolution”: a board game review

By Florence Sullivan MSc student, Department of Fish and Wildlife.

Another grad student once told me that in order to survive grad school, I would need three things:

(1) an exercise routine, (2) a pet, and (3) a hobby. My Pilates class on Wednesdays is a great mid-week reminder to stretch. I don’t have a pet, so that advice gets fulfilled vicariously through friends. As for my hobby, I think you’ll find that even when scientists take a break from work, we really don’t get that far away from the subject matter…..

Board games have evolved significantly since the early ‘90s when I grew up on such family staples as Monopoly, Risk, Sorry!, Candyland, and Chutes and Ladders, etc. Now, table-top games tend to fall into three loose categories – “Euro-games” that focus on strategy and economic themes as well as keeping all players in the game until the end, “American-style” that tend toward luck and direct player contact so that not everyone plays until the end, and “Party” that are easy to learn and are often played in large groups as social icebreakers or to provide entertainment.

img_20161106_200251024
A few of my favorite games.

As board games proliferate, we see the use of many themes and often, there are valuable educational lessons included in the game design!  There are militaristic or survival games (Betrayal at the House on the Hill, Dead of Winter), economic and engineering (Settlers of Catan, Istanbul, Ticket to ride, Carcassonne), fantasy and art (Small World, Dixit), cooperative vs competitive (Hanabi, Forbidden Desert vs. 7 Wonders), and some of my favorites – the sciences (Compounded, Bioviva, Pandemic).

Today, let’s talk about my current favorite – Evolution. It is immediately obvious that the game designers responsible are either giant nerds (I use this in the most loving way possible) or have spent some quality time with ecologists.  Not only is the art work beautiful, and the game play smooth, but the underlying mechanics allow serious ecological theories such as ‘predator and prey mediated population cycles’, ‘co-evolution’ and ‘evolutionary arms-races’ to be acted out and easily understood.

Players set up their species around the watering hole, and contemplate their next moves.
Players set up their species (1 green/yellow tile = 1 species) around the watering hole, and contemplate their next moves.

In game play, as in life, the point of the game is to eat – victory is achieved by the player who has managed to ‘digest’ the most food tokens. All players begin with a single species, and with each turn, can either add traits (ie. fat tissue, scavenger, etc.) to the species, increase the body size of a species, gain a population level, or gain additional species.  Next, players take food from a limited, random supply until there is no food left. Species that have not been fed to their full capacity (population levels) will starve, and can even become extinct – much like the reality of environmental cycles.  Finally, all food that has been ‘eaten’ is digested, and the next round begins.

Since a player can never be sure how much food will appear on the watering hole each turn, it is a good strategy to capitalize on traits like foraging which allows a species to take twice as much food every time it feeds.  If your species cooperates with another, that means that it gets to eat every time you feed the first species. A player who combines foraging traits with multiple cooperating species in a “cooperation chain” can quickly empty the watering hole before any other players get a chance.  Much like a species perfectly adapted to its niche in the real world will out compete more generalist species.

img_20161106_195009550
The pack-hunting carnivore on the left can easily take down the fertile defensive herding species in the upper right. The efficient foraging species in the middle is protected by its horns, and cooperates with the next species to the right. The burrowing species is protected from carnivores only as long as it is full (and presumably no longer needs to venture out of its burrow).

One way to avoid the competition for food at the watering hole is to play the carnivore trait.  This species must now consume other species in order to feed itself.  A few caveats; a carnivore must be larger in body size than anything it tries to eat, and can no longer eat plant food as it is an obligate carnivore. As soon as a carnivore appears on the board, the evolutionary arms-race begins in earnest!  Traits such as burrowing, climbing, hard shells, horns, defensive herding and warning calls become vital to survival.  But carnivores can be clever, and apply ambush to species with warning call, or pack-hunting to a species with defensive herding.  In everything, there is a certain balance, and quickly, players will find themselves acting out a classic ‘boom and bust population growth cycle’ scenario, where herbivores go extinct due to low food supply at the watering hole and/or high predation pressure, and carnivores soon follow when there are no un-protected species for them to feed upon.

img_20161106_195518519
A flying creature must first pay the ‘upkeep cost’ of its body size in food, before it can feed its population. Good thing it has the extra cliff-side food source that is only accessible to other species with wings!

An expansion has been released for the game – it is called Flight – and introduces traits such as flight, camouflage, good eyesight, and others.  From an ecologist’s perspective, it fits the original game well both scientifically and thematically.  To achieve flight, a higher price must be paid (in terms of cards discarded) to gain the trait card, and unlike other species, an ‘upkeep cost’ must be gathered in food tokens before the species actually eats any food tokens during the round.  However, flight also gives access to a cliff-side watering hole that is not accessible to earthbound species. This neatly mirrors the real world where flight is an energetically costly activity that also opens new niches.

The next expansion is just arriving in stores, and I can’t wait to play it! It’s called Climate, and adds traits such as nocturnal, claws, and insectivore. Perhaps more exciting though, are the ‘event cards’ which will trigger things like desertification, cold snaps, heatwaves, volcanic eruptions and meteor strikes. A climate tracker will keep track of whether the planet is in an ice age or a warming period, and certain traits will make your species more or less likely to survive – can you guess which ones might be useful in either scenario? I think it will be enormously fun to play through different climate scenarios and see how traits stack and species interactions evolve.  Perhaps this new addition to the game will even cause a new game review in Nature – check out their initial assessment here: http://www.nature.com/nature/journal/v528/n7581/full/528192a.html

Games like evolution are useful thought exercises for students and researchers because they promote discussion of adaptive traits, predator-prey cycles, climate, and ecosystem dynamics as related to our own projects. Watching a story unfold in front of you is a great way to truly understand some of the core principles of ecology (and other subjects). This is especially relevant in the GEMM lab where we continuously ask ourselves why our study species act the way they do? How do they find prey, and how are/will they adapt(ing) to our changing climate?