Marine Mammal Observing: Standardization is key

By: Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

For the past two years, I’ve had the opportunity to be the marine mammal observer aboard the NOAA ship Bell M. Shimada for 10 days in May. Both trips covered transects in the Northern California Current Ecosystem during the same time of year, but things looked very different from my chair on the fly bridge. This trip, in particular, highlighted the importance of standardization, seeing as it was the second replicate of the same area. Other scientists and crew members repeatedly asked me the same questions that made me realize just how important it is to have standards in scientific practices and communicating them.

Northern right whale dolphin porpoising out of the water beside the ship while in transit. May 2019. Image source: Alexa Kownacki

The questions:

  1. What do you actually do here and why are you doing it?
  2. Is this year the same as last year in terms of weather, sightings, and transect locations?
  3. Did you expect to see greater or fewer sightings (number and diversity)?
  4. What is this Beaufort Sea State scale that you keep referring to?

All of these are important scientific questions that influence our hypothesis-testing research, survey methods, expected results, and potential conclusions. Although the entire science party aboard the ship conducted marine science, we all had our own specialties and sometimes only knew the basics, if that, about what the other person was doing. It became a perfect opportunity to share our science and standards across similar, but different fields.

Now, to answer those questions:

  1. a) What do you actually do here and b) why are you doing it?

a) As the only marine mammal observer, I stand watch during favorable weather conditions while the ship is in transit, scanning from 0 to 90 degrees off the starboard side (from the front of the ship to a right angle towards the right side when facing forwards). Meanwhile, an application on an iPad called SeaScribe, records the ship’s exact location every 15 seconds, even when no animal is sighted. This process allows for the collection of absence data, that is, data when no animals are present. The SeaScribe program records the survey lines, along with manual inputs that I add, including weather and observer information. When I spot a marine mammal, I immediately mark an exact location on a hand held GPS, use my binoculars to identify the species, and add information to the sighting on the SeaScribe program, such as species, distance to the sighted animal(s), the degree (angle) to the sighting, number of animals in a group, behavior, and direction if traveling.

b) Marine mammal observing serves many different purposes. In this case, observing collects information about what species are where at what time. By piggy-backing on these large-scale, offshore oceanographic NOAA surveys, we have the unique opportunity to survey along standardized transect lines during different times of the year. From replicate survey data, we can start to form an idea of which species use which areas and what oceanographic conditions may impact species distributions. Currently there is not much consistent marine mammal data collected over these offshore areas between Northern California and Washington State, so our work is aiming to fill this knowledge gap.

Alexa observing on the R/V Shimada in May 2019, all bundled up. Image Source: Alexa Kownacki
  1. What is this Beaufort Sea State scale that you keep referring to?

Great question! It took me a while to realize that this standard measuring tool to estimate wind speeds and sea conditions, is not commonly recognized even among other sea-goers. The Beaufort Sea State, or BSS, uses an empirical scale that ranges from 0-12 with 0 being no wind and calm seas, to 12 being hurricane-force winds with 45+ ft seas. It is frequently referenced by scientists in oceanography, marine science, and climate science as a universally-understood metric. The BSS was created in 1805 by Francis Beaufort, a hydrographer in the Royal Navy, to standardize weather conditions across the fleet of vessels. By the mid-1850s, the BSS was standardized to non-naval use for sailing vessels, and in 1916, expanded to include information specific to the seas and not the sails1. We in the marine mammal observation field constantly collect BSS information while on survey to measure the quality of survey conditions that may impact our observations. BSS data allows us to measure the extent of our survey range, both in the distance that we are likely to sight animals and also the likelihood of sighting anything. Therefore, the BSS scale gives us an important indication of how much absence data we have collected, in addition to presence data.

A description of the Beaufort Sea State Scale. Image source: National Weather Service.

 

  1. Is this year the same as last year in terms of weather, sightings, and transect locations?

The short answer is no. Observed differences in marine mammal sightings in terms of both species diversity and number of animals between years can be normal. There are many potential explanatory variables, from differences in currents, upwelling strength, El Nino index levels, water temperatures, or, what was obvious in this case: sighting conditions. The weather in May 2019 varied greatly from that in May 2018. Last year, I observed for nearly every day because the Beaufort Sea State (BSS) was frequently less than a four. However, this year, more often than not, the BSS greater than or equal to five. A BSS of 5 equates to approximately 17-21 knots of breeze with 6-foot waves and the water appears to have many “white horses” or pronounced white caps with sea spray. Additionally, mechanical issue with winches delayed and altered our transect locations. Therefore, although multiple transects from May 2018 were also surveyed during May 2019, there were a few lines that do not have data for both cruises.

May 2018 with a BSS 1
May 2019 with a BSS 6

 

 

 

 

 

  1. Did you expect to see greater or fewer sightings (number and diversity)?

Knowing that I had less favorable sighting conditions and less amount of effort observing this year, it is not surprising that I observed fewer marine mammals in total count and in species diversity. Even less surprising is that on the day with the best weather, where the BSS was less than a five, I recorded the most sightings with the highest species count. May 2018 felt a bit like a tropical vacation because we had surprisingly sunny days with mild winds, and during May 2019 we had some rough seas with gale force winds. Additionally, as an observer, I need to remove as much bias as possible. So, yes, I had hoped to see beaked whales or orca like I did in May 2018, but I was still pleasantly surprised when I spotted fin whales feeding in May 2019.

Marine Mammal Species Number of Sightings
May 2018 May 2019
Humpback whale 31 6
Northern right whale dolphin 1 2
Pacific white-sided dolphin 3 6
UNID beaked whale 1 0
Cuvier’s beaked whale 1 0
Gray whale 4 1
Minke whale 1 1
Fin whale 4 1
Blue whale 1 0
Transient killer whale 1 0
Dall’s porpoise 2 0
Northern fur seal 1 0
California sea lion 0 1
Pacific white-sided dolphin. Image source: Alexa Kownacki

Standardization is a common theme. Observing between years on standard transects, at set speeds, in different conditions using standardized tools is critical to collecting high quality data that is comparable across different periods. Scientists constantly think about quality control. We look for trends and patterns, similarities and differences, but none of those could be understood without having standard metrics.

The entire science party aboard the R/V Shimada in May 2019, including a marine mammal scientist, phytoplankton scientists, zooplankton scientists, and fisheries scientists, and oceanographers. Image Source: Alexa Kownacki

Literature Cited:

1Oliver, John E. (2005). Encyclopedia of world climatology. Springer.

 

 

Sea lions eat prey bigger than their heads

By Rachael Orben, Assistant Professor (Senior Research), Seabird Oceanography Lab

There aren’t that many Steller sea lions that call the Pribilof Islands home. The way I learned to spot them, was to watch for excited groups of kittiwakes materializing out of nowhere, just off-shore. The kittiwakes circle, periodically dipping down to grab something from the water. Then a sea lion head emerges from the water and more often than not, the lion would have a flatfish. The sea lion whips the fish back and forth, splashing and causing pieces to break off. The kittiwakes drop down and pick up the little bits. The black-legged kittiwakes that we were tracking with GPS dataloggers often flew in laps around the island (Paredes et al. 2012, 2014); stopping at the outflow of the fish processing plant, and perhaps, also on the lookout for foraging Steller sea lions to pick up an extra snack.

A Steller’s sea lion with a small flock of kittiwakes viewed from the cliffs of St. George Island. Photo: R. Orben

Gape limitation

At first glance, one might assume that sea lions are gape-limited. What do I mean by this? Basically, gape limitation means that predators can’t consume anything that doesn’t fit into their mouths whole. This idea is typically considered in the context of fish but does come up in seabird and marine mammal ecology from time-to-time. Specifically, when a predator doesn’t have a method for pulling its prey apart so is required to consume it whole. For instance, seabirds that feed their chicks whole fish can encounter this problem (e.g. puffins, terns, murres). Small chicks can starve if parents are bringing back fish that are too large to fit into the gape of the chick.

Gape limitation of cartoon fishes. Art: R. Orben

Sea lions and their eclectic large prey

I don’t know if the flatfish consumed by the Steller sea lions are too large to be swallowed whole. But, I do know that they use a strategy known as ‘shake feeding’ (Kienle et al. 2017). This feeding style is important as it offers the behavioral mechanism that allows sea lions to consume prey that exceeds their gape limitations. When sea lions are observed eating large prey it often occurs in surprising circumstances, but I suspect this foraging tactic is fairly common (e.g. Hocking et al. 2016). I have compiled a few examples both from the scientific literature and the internet to see.

Observations

Galapagos sea lions and tuna. This example is amazing and features Galapagos sea lions working together to herd tuna into shallow lagoons. Compared to the sea lions, the tuna are large! (When you are done looking at the amazing photos please return and finish reading my blog.)

Besides the flatfish I observed Steller’s sea lions eating, there is an observation of a Steller catching a shark (the online photo account stops before the shark is consumed so I don’t know what happened) and catching and consuming northern fur seal pups (Gentry & Johnson, 1981).

Gentry & Johnson 1981, include a particularly gruesome description of the predation events: “Fur seal young most often were caught by the abdomen and eviscerated with a sideways shake of the sea lion’s head (in the same manner used to tear apart large fish). Sea lions most often dived with the prey still moving and surfaced father offshore, usually beyond the kelp beds, with the pup motionless. …Larger sea lions broke apart their prey under water, surfacing only to swallow large bits of tissue. Smaller sea lions vigorously shook the carcass at the surface using the same sideways snapping motion used to eviscerate the pup at capture.”

Photo of a Steller Sea Lion and its prey: a northern fur seal pup. Photo: Gentry & Johnson 1981.

I found a fascinating series of photographs of a California Sea Lion and a Mola Mola. It is a little hard to tell what is going on, but the photographer has labeled his photos “A California Sea Lion kills, and eats, a Mola Mola”.

Southern sea lions consume large prey in the form of penguins and more surprisingly fur seals. Thus far these observations are limited to males.

Eating octopus

Sea lions also use shake feeding to consume octopus. Though an octopus might be smalled enough to be eaten in one gulp, they are a smart and agile prey whose tentacles make them harder to swallow. I have seen Southern sea lions flipping octopus at the surface using the ‘shake feeding’ mode. Once I watched a young juvenile bring one ashore to eat (photos below). Perhaps foraging on octopus offers some opportunities for learning how to eat large prey?

References

Gentry, R. L., & Johnson, J. H. (1981). Predation by sea lions on northern fur seal neonates. Mammalia, 45(4), 423–430. http://doi.org/10.1515/mamm.1981.45.4.423

Hocking DP, Ladds MA, Slip DJ, Fitzgerald EMG, Evans AR (2016) Chew, shake, and tear: Prey processing in Australian sea lions (Neophoca cinerea). Marine Mammal Sci 33:541–557

Kienle SS, Law CJ, Costa DP, BERTA A, Mehta RS (2017) Revisiting the behavioural framework of feeding in predatory aquatic mammals. Proc Biol Sci 284:20171035–4

Paredes R, Harding AMA, Irons DB, Roby DD, Suryan RM, Orben RA, Renner HM, Young R, Kitaysky AS (2012) Proximity to multiple foraging habitats enhances seabirds’ resilience to local food shortages. Mar Ecol Prog Ser 471:253–269

Paredes R, Orben RA, Suryan RM, Irons DB, Roby DD, Harding AMA, Young RC, Benoit-Bird KJ, Ladd C, Renner H, Heppell S, Phillips RA, Kitaysky AS (2014) Foraging Responses of Black-Legged Kittiwakes to Prolonged Food-Shortages around Colonies on the Bering Sea Shelf. PLoS ONE 9:e92520

The “demon whale-biter”, and why I am learning about an elusive little shark

By Dawn Barlow, PhD student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

There is an ancient Samoan legend that upon entry into a certain bay in Samoa, tuna would sacrifice pieces of their flesh to the community chief1. This was the explanation given for fish with circular shaped wounds where a plug of flesh had been removed. Similar round wounds are also observed on swordfish2, sharks3, and marine mammals including whales4,5, dolphins6, porpoises7, and pinnipeds8,9. In 1971, Everet C. Jones posited that the probable cause of these crater wounds was a small shark only 42-56 cm in length, Isistius brasiliensis1. The species was nicknamed “demon whale-biter” by Stewart Springer, who subsequently popularized the common name for the species, cookie cutter shark.

Figure 1. A yellowfin tuna with a circular bite, characteristic of a cookie cutter shark (Isistius brasiliensis). Photo: John Soward.

I am currently preparing a manuscript on blue whale skin condition. While this is only tangentially related to my doctoral research, it is an exciting side project that has encouraged me to stretch my comfort zone as an ecologist. This analysis of skin condition is part of a broader health assessment of blue whales in New Zealand, where we will be linking skin lesion severity with stress and reproductive hormone levels as well as body condition. Before I continue, I owe a major shout-out to Acacia Pepper, a senior undergraduate student at Oregon State University who has been working with me for nearly the past year through the Fisheries and Wildlife mentorship program. Acacia’s rigor in researching methodologies led us to develop a comprehensive protocol that can be applied widely to any cetacean photo-identification catalog. This method allows us to quantify prevalence and severity of different marking types in a standardized manner. Her passion for marine mammal science and interest in the subject matter is enough to excite this ecologist into fascination with wound morphology and blister concavity. Next thing you know, we are preparing a paper for publication together with P.I. Dr. Leigh Torres on a comprehensive skin condition assessment of blue whales that includes multiple markings and lesion types, but for the purpose of this blog post, I will share just a “bite-sized” piece of the story.

Figure 2. Jaws of a cookie cutter shark. Photo: George Burgess.

Back to the demon whale-biter. What do we know about cookie cutter sharks? Not a whole lot, it turns out. They are elusive, and are thought to live in deep (>1,000 m), offshore waters. They are considered to be both an ectoparasite and an ambush predator. Their distribution is tropical and sub-tropical. Much of what we know and assume about their distribution comes from the bite wounds they leave on their prey2.

In New Zealand where we study a unique population of blue whales10, the southernmost record of cookie cutter sharks is ~ 39⁰S11. We found that in our dataset of 148 photo-identified blue whales, 96% were affected by cookie cutter shark bites. Furthermore, 38% were categorized as having “severe” cookie cutter bite wounds or scars. The latitude of our blue whale sightings ranges from 29-48⁰S and blue whales are highly mobile, so any of the whales in our dataset could theoretically swim in and out of the known range of cookie cutter sharks. In our skin condition assessment, we also categorized cookie cutter bite “freshness” and phase of healing as follows:

We wanted to know if the freshness of cookie cutter shark bites was related in to the latitude at which the whales were photographed. Of the whales photographed north of 39⁰S (n=46), 76% had phase 1 or 2 cookie cutter shark bites present. In contrast, 57.1% of whales photographed south of 39⁰S (n=133) had phase 1 or 2 cookie cutter shark bites. It therefore appears that in New Zealand, the freshness of cookie cutter shark bites on blue whales is related to the latitude at which the whales were sighted, with fresher bites being more common at more northerly latitudes.

Figure 3. A whale with fresh cookie cutter shark bites, photographed in the Bay of Islands, latitude 35.164⁰S. Photo courtesy of Dr. Catherine Peters.
Figure 4. A whale with mostly healed cookie cutter shark bites, photographed off of Kaikoura, latitude 42.464⁰S. Photo courtesy of Jody Weir.

In the midst of a PhD on distribution modeling and habitat use of blue whales, I find myself reading about Samoan legends of tuna with missing flesh and descriptions of strange circular lesions from whaling records, and writing a paper about blue whale skin condition. Exciting “side projects” like this one emerge from rich datasets and good collaboration.

References

  1. Jones, E. C. Isistius brasiliensis, a squaloid shark, the probable cause of crater wounds on fishes and cetaceans. Fish. Bull. 69, 791–798 (1971).
  2. Papastamatiou, Y. P., Wetherbee, B. M., O’Sullivan, J., Goodmanlowe, G. D. & Lowe, C. G. Foraging ecology of Cookiecutter Sharks (Isistius brasiliensis) on pelagic fishes in Hawaii, inferred from prey bite wounds. Environ. Biol. Fishes 88, 361–368 (2010).
  3. Hoyos-Padilla, M., Papastamatiou, Y. P., O’Sullivan, J. & Lowe, C. G. Observation of an Attack by a Cookiecutter Shark ( Isistius brasiliensis ) on a White Shark ( Carcharodon carcharias ) . Pacific Sci. 67, 129–134 (2013).
  4. Mackintosh, N. A. & Wheeler, J. F. G. Southern blue and fin whales. Discov. Reports 1, 257–540 (1929).
  5. Best, P. B. & Photopoulou, T. Identifying the ‘demon whale-biter’: Patterns of scarring on large whales attributed to a cookie-cutter shark Isistius sp. PLoS One 11, (2016).
  6. Heithaus, M. R. Predator-prey and competitive interactions between sharks (order Selachii) and dolphins (suborder Odontoceti): A review. J. Zool. 253, 53–68 (2001).
  7. Van Utrecht, W. L. Wounds And Scars In The Skin Of The Common Porpoise, Phocaena Phocaena (L.). Mammalia 23, 100–122 (1959).
  8. Gallo‐Reynoso, J. ‐P & Figueroa‐Carranza, A. ‐L. A COOKIECUTTER SHARK WOUND ON A GUADALUPE FUR SEAL MALE. Mar. Mammal Sci. 8, 428–430 (1992).
  9. Le Boeuf, B. J., McCosker, J. E. & Hewitt, J. Crater wounds on northern elephant seals: the cookiecutter shark strikes again. Fish. Bull. 85, 387–392 (1987).
  10. Barlow, D. R. et al. Documentation of a New Zealand blue whale population based on multiple lines of evidence. Endanger. Species Res. 36, 27–40 (2018).
  11. Dwyer, S. L. & Visser, I. N. Cookie cutter shark (Isistius sp.) bites on cetaceans, with particular reference to killer whales (Orca) (Orcinus orca). Aquat. Mamm. 37, 111–138 (2011).

Digging to uncover the roots of scientific writing and publication: how much (if anything) has changed?

By Lisa Hildebrand, MSc student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

In our most recent lab meeting, the GEMM lab discussed a recent paper about how blue whale migrations may be driven by memory and resource tracking (Abrahms et al. 2019). Most of our discussion was about the choices made by the authors in terms of their analyses used and the figures produced, as Leigh always pushes us graduate students to think critically about the scientific papers we read. However, a portion of our discussion focused less on the actual science behind the paper, but more on the language used. This change in direction was initiated by myself as I mentioned how much I liked the phrase “goldilocks zone”, which the authors used to describe an area between 15-17ºC that blue whales tended to occupy for the majority of the annual migration cycle.

The classic goldilocks tale vs. the blue whale version of goldilocks. Source: Slideshare.

What I liked so much about using this phrase was that the authors were using a childhood fairy tale that probably every 5-year old kid knows of to explain some pretty complex science and analysis. Our team then proceeded to go down a rabbit-hole for
a few minutes where we discussed uses of creative words in scientific writing. Although during our meeting we got back on track quite quickly, my mind has still continued down this rabbit-hole for quite some time. I started to wonder about the origins of scientific publication, when and why the structure and style of writing became so rigid, and when and why authors have decided to become a little more creative or colloquial in their writing since then. So, sit back and delve into the history of scientific writing with me…

Humankind has made scientific observations for thousands of years. Perhaps the earliest known culture to have done this are the Mesopotamian peoples who recorded observations of their surroundings around 3,500 BC in Sumer, which is now known as Iraq (Rochberg 2004). Most of the observations relate to astronomy, however there is some evidence to suggest that the Mesopotamians had recognized the existence of Pythagorean triplets (3, 4, 5; 5, 12, 13), long before Pythagoras himself was alive (Hoffman 1999).

However, formal publication of scientific observations is still a relatively new occurrence compared to when the Mesopotamians first started to note down their observations since such documentation of science first occurred in 1665. Interestingly, the birth of scientific publication was achieved by not one journal, but two; Journal des Sçavans in France and Philosophical Transactions of the Royal Society in London. Even though Journal des Sçavans beat out Philosophical Transactions of the Royal Society by publishing its first journal two months before the other, it ultimately lost the fight since it ceased publication in 1792, whereas Philosophical Transactions of the Royal Society is still in print, making it the world’s longest running scientific journal.

 

Journal covers for the first editions of Journal des Sçavans and Philosophical Transactions of the Royal Society from 1665. Source: Wikipedia.

Early publications were descriptive by nature. Instead of planning experiments, carrying them out, detailing results and interpreting them, authors described observations they made about their surroundings. An example is by a certain Mr. R.W. S.R.S from 1693. The opening lines of his publication entitled ‘Some Observations in the Dissection of a Ratt’ are as follows:

“The fore-feet of a Rat resemble those of the Castor. The Hair is also some fine, some course; as in that Animal. The Tail scaly, with Hairs between every Scale, like the Castors, which shews these two Animals to be something akin; and indeed the Water-Rat comes very near to the Beaver, and makes it’s Holes in the bank-sides of Ponds after the same manner.”

While not all publications were as purely descriptive as this example, those that did undertake experiments discussed them in a very chronological and almost basic manner. An example is by Allen Moulen in his publication ‘Some experiments on a black shining sand brought from Virginia, suppos’d to contain iron, made in March 1689’. An excerpt of the paper is as follows:

“6. I flux’d another parcel of it with Salt-Peter and Flowers of Brimstone, without being able to procure any Regulus. 7. I pour’d good Spirit of Salt on a parcel of this Sand, but could observe no Luctation thereby produc’d. 8. I pour’d Spirit of Nitre both strong and weakned with Water on parcels of the same Sand, without being able to discover any Conflict.”

Publications continued to be written in this nature for quite some time, however by the second half of the 19th century, science and the publication thereof distinctly changed and a lot of this can be credited to Louis Pasteur.

Louis Pasteur. Source: Wikipedia.

When Pasteur first had breakthroughs that provided evidence for the germ theory of disease, he was met by a lot of criticism by fellow scientists that were firm believers in the theory of spontaneous generation. As a way to prove that he was right, Pasteur started to document his experiments in extreme detail. This situation and Pasteur’s recognition of the importance of methodology resulted in the idea of reproducibility and essentially in the IMRaD structure we still follow today.

IMRaD stands for Introduction, Methods, Results and Discussion, which for scientists nowadays is probably as comforting as a cuddly blanket or a hot chocolate on a cold day. We find comfort in this structure because in a way it makes writing scientific papers less daunting because it tells us exactly what we need to do. It’s like a checklist with boxes that we can neatly tick off as we fill in the details of each section.

While IMRaD was first initiated during Pasteur’s era, it became widely adopted in the late 1950s when there was a strong boost in scientific output as more money was being funneled to the sciences. The result of this boost was strong pressure on scientific journals and their editors as authors were submitting papers at a never before seen rate. In an effort to keep up with the influx of submissions, editors felt the need to become more stringent and so enforced strict rules on article length, organization and structure, in order to weed out papers that didn’t make the cut right off the bat. This included IMRaD becoming more widely used in journals as a way to bring conformity to the sciences. This resulted in strong pressure on authors to be concise in their writing, which means that there isn’t much room for creativity.

The topic of creativity in scientific writing has long been debated and many suggest that the writing style in publications should be as objective and frank as possible in order to avoid masking the science (Massoudi 2003). However, it has also been suggested by many that by limiting the creativity in scientific writing, you might actually be limiting the creativity going into the scientific process (Bohm & Peat 1987). While I do believe that objectivity and clarity in scientific writing is important, I do not see the harm in authors trying to be a little creative in the communication of their work. Sir Peter Medawar, a Nobel Prize winning biologist summed up this sentiment very nicely in his book ‘Advice to a Young Scientist’ published in 1979:

“Scientists are people of very dissimilar temperaments doing different things in very different ways. Among scientists are collectors, classifiers and compulsive tidier-up; many are detectives by temperament and many are explorers; some are artists and others artisans. There are poet-scientists and philosopher-scientists and even a few mystics. What sort of mind or temperament can all these people be supposed to have in common? Obligative scientist must be very rare, and most people who are in fact scientists could easily have been something else instead.”

I don’t know whether there is a right or a wrong answer on this matter. What I do know though is that I always give an emphatic nod of approval when I see a word not typically seen in scientific writing used creatively in a scientific publication and it often conjures a smile on my face and makes the paper more memorable to me.

It’s interesting to muse about the direction in which scientific writing is heading now. We are still seeing a proliferation in papers that are being submitted and published, and journals being established. However, I think we are starting to see a shift in how strict scientists are in the language that they use for their publications. That is not to say that manuscripts are now submitted filled with colloquialisms, poor grammar and punctuation, but I think there is a certain flexibility in how much creativity can be incorporated into publications. The extent of this flexibility is, I believe, still largely dependent on the journal. Journals that provide very limited word count and space on the page for a publication, like Nature for example, may limit the creative capabilities of authors. However, some of the more “liberal” journals (liberal in terms of length and space), like PLoS ONE, may allow authors to explore their creative writing abilities to a greater extent. In my personal opinion, I would quite like to see more authors take creative risks in their writing.

 

References

Abrahms, B., et al., Memory and resource tracking drive blue whale migrations. PNAS, 2019. 116(12): 5582-5587.

Bohm, D., & Peat F.D. Science, Order, and Creativity.1987. Bantam Books, New York City.

Hoffman, P. The Man Who Loved Numbers: The Story of Paul Erdos and the Search for Mathematical Truth. 1999. Hyperion Books, New York City.

Massoudi, M. Can scientific writing be creative? Journal of Science Education and Technology, 2003. 12(2): 115-128.

Medawar, P. Advice to a Young Scientist. 1979. Basic Books, New York City.

Moulen, A. Some experiments on a black shining sand brought from Virginia, suppos’d to contain iron, made in March 1689. By Allen Moulen, M.D. and Fellow of the Royal Society, since dead. Philosophical Transactions of the Royal Society, 1693. 17: doi.org/10.1098/rstl.1693.0009.

Rochberg, F. The Heavenly Writing: Divination, Horoscopy, and Astronomy in Mesopotamian Culture. 2004. Cambridge University Press, Cambridge.

S.R.S., R.W. Some observations in the dissection of a ratt, communicated by Mr. R.W. S.R.S.Philosophical Transactions of the Royal Society, 1693. 17: doi.org/10.1098/rstl.1693.0006.

Knowing me, knowing you: the fate of the toninha, a small dolphin endemic to the Western South Atlantic

By Salvatore Siciliano (1,2)

(1) Laboratório de Enterobactérias, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
(2) Grupo de Estudos de Mamíferos Marinhos da Região dos Lagos (GEMM-Lagos)

 

 

Background information on Pontoporia blainvillei

The toninha (Pontoporia blainvillei) as it is called in Brazil, or franciscana (Fig.01), is a small dolphin endemic to coastal waters of southeastern and southern Brazil, Uruguay and Argentina. It is the only representative of an ancient lineage of odontocetes, once widely spread over the Pacific and Atlantic oceans. Toninhas occur in waters shallower than 30 m and present a discontinuous distribution from Itaúnas, Brazil (18º 25’S) to Golfo San Matías, Argentina (42º 10’S). The species is considered one of the most threatened small cetaceans in South America due to high, and possibly unsustainable, bycatch levels as well as increasing habitat degradation. Incidental catches in fishing gear, especially gillnets and trammel nets, have been reported along most of the species’ range since at least the 1940s. Other rapidly-increasing conservation issues of significant importance for the franciscana in this region include: (1) habitat degradation, (2) underwater noise, (3) chemical pollution from industrial and urban wastewater, (4) activities related to the exploration and production of oil and gas, and (5) vessel traffic. P. blainvilleiis currently listed as ‘Vulnerable’ in the IUCN Red List of Threatened Species and ‘Critically Endangered’ by the Brazilian Government.

 

Figure 01: A young Pontoporia blainvillei incidentally caught in gillnets set off the northern coast of the state of Rio de Janeiro, Brazil (December 2011).

 

In order to guide conservation and management actions on a regional basis, the franciscana range was divided into four zones, known as ‘Franciscana Management Areas’ (FMAs), in the early 2000s. FMA I includes Espírito Santo (ES) and northern Rio de Janeiro (RJ), states located in southeastern Brazil. FMA II corresponds to southern RJ, São Paulo (SP), Paraná (PR) and northern Santa Catarina (SC) states, in southeastern and southern Brazil. FMA III encompasses southern SC and Rio Grande do Sul (RS) states, in southern Brazil, in addition to Uruguay. The last FMA, the FMA IV, corresponds to the Argentina coast (Fig.02).

The absence of stranded or incidentally killed animals indicates a gap of approximately 320 km in the franciscana distribution between northern and southern RJ. This gap separates the southern border of FMA I and the northern border of FMA II.

 

Figure 02: The FMA areas (in blue) in P. blainvillei distribution range, and the gaps (in white) in toninha distribution along the Northern limit of its distribution in Southeastern Brazil.

 

The toninha is usually very shy and, for this reason, quite difficult to be seen in the wild. More recently, researchers and citizen science projects have succeeded in obtaining very nice pictures of these animals (Fig.03), which are aiding in elucidating the species mysterious behavior, feeding activity and their preferred habitat conditions.

Figure 03: Toninhas in their natural environment along shallow waters off northern São Paulo state, in the summer of 2019. Photo courtesy of Júlio Cardoso, Baleia à Vista Project.

 

Figure 04: Aerial view of the Restinga de Jurubatiba National Park and its adjacent waters, the main toninha habitat along the northern coast of Rio de Janeiro. Photo by Salvatore Siciliano (November 2017).

 

Threats to P. blainvillei along the Brazilian coast

Gillnets are still the main cause of toninha mortality along its entire range. They can be used at the surface or placed at the bottom of the ocean to catch fish, but these nets also entangle this small dolphin (Fig.05, Fig.06).

Figure 05: Gillnets, used at the surface or placed at the bottom of the ocean.

 

Figure 06: Data on gillnet incidental captures of toninhas (Pontoporia blainvillei) along the northern coast of Rio de Janeiro state collected since1988. Note the concentration of records in the Macaé – Quissamã and Cabo de São Thomé areas, adjacent to the Restinga de Jurubatiba National Park. Data on captures come from Prof. Ana Paula M. Di Beneditto/CBB/LCA/UENF.

 

Toninhas also face other threats along the Brazilian coast, including environmental chemical contamination by metals and persistent organic pollutants. These pollutants are persistent in the aquatic ecosystem and may accumulate and magnify throughout the tropic chain, causing deleterious effects in the aquatic fauna. Recently, an ecotoxicological assessment from our research group (GEMM-Lagos/Fiocruz) verified, for the first time, significant intracellular concentrations of several toxic metals, such as Hg and Pb (Fig.07), in P. blainvillei individuals sampled along the coast of the Rio de Janeiro state.

 

Figure 07: Novel HPLC-ICP-MS data on intracellular Pb and Hg in P. blainvillei liver (L), muscle (M) and kidney (K) samples from stranded individuals sampled off the coast of Rio de Janeiro, Brazil.

 

The monitoring of the contaminant levels in toninhas will potentially aid in conservation efforts, as we can identify which metals are of the most concern, because the intracellular presence of toxic metals indicates high bioavailability, probably leading to deleterious effects.

 

Conservation Efforts

What is a Whale Heritage Site (WHS) and why we are proposing ‘Mosaic Jurubatiba’ as a WHS?

Situated on the Northern coast of Rio de Janeiro state, Brazil, the Jurubatiba region (Fig.04; Fig.08) is now a Candidate Whale Heritage Site (WHS). The area has been termed ‘Mosaic Jurubatiba’ as the candidate site includes not only the Jurubatiba National Park, but also encompasses other significant sites for conservation along the central-north coast that lie across three municipalities: Macaé, Carapebus and Quissamã (Fig.08).

Figure 08: Proposed extension of the Jurubatiba National Park to the adjacent waters, home of a vigorous population of P. blainvillei.
Legend: green – Jurubatiba National Park; red – new terrestrial limit; yellow – new marine limit.

 

The location provides habitat to a diversity of wildlife. When considering cetaceans, the most regularly seen individuals are the humpback whales, the Guiana dolphins and the toninhas. This is an important site since it is part of the migration route of humpback whales from their breeding and calving grounds, in warm tropical waters, to their feeding grounds, in Antarctica. In addition, this locality is a significant habitat for the toninha, a restricted range species, and the Guiana dolphin, a data deficient species and, therefore, of great concern. The importance of the site becoming a fully accredited WHS is, therefore, evident to further conserve these species and their habitats.

There is a significant amount of active conservation in the Jurubatiba National Park. The Park is the first to exclusively comprise the Restinga ecosystem. Researchers worked alongside authorities and large organizations, such as IBAMA (Brazilian Ministry of Environment and the federal government), to achieve its national park status.

Figure 09: Outreach material produced for the campaign ‘Mosaic Jurubatiba’ to promote education and conservation of the Toninha.

 

In Quissamã, warning signs were placed along the beaches to alert the population of the importance of the coastal waters as habitat for dolphin species, especially the toninha. This type of cooperation and support of the government and other authorities will aid the candidate site to achieve a full status of WHS.

The long-term goals of the candidate site are to influence the transition away from fishing as a livelihood and to instead embrace the use of responsible tourism to make a living.

 

For more information on Whale Heritage Sites around the world, visit:

http://worldcetaceanalliance.org/

http://whaleheritagesites.org/candidate-site-jurubatiba/

 

For more information on the GEMM-Lagos Project:

contact:gemmlagos@gmail.com

visit their Instagram: toninha_cade_vc

 

Here you can also find a list of some of the Salvatore Siciliano’s publications on Pontoporia blainvillei:

  • Siciliano S, de Moura JF, Tavares DC, Kehrig HA, Hauser-Davis RA, Moreira I, Lavandier R, Lemos LS, EMin-Lima R, Quinete N. 2018. Legacy Contamination in Estuarine Dolphin Species From the South American Coast. In book: Marine Mammal Ecotoxicology. Eds. Fossi MC, Panti C. Publisher: Academic Press.
  • Baptista G, Kehrig HA, Di Beneditto APM, Hauser-Davis RA, Almeida MG, Rezende CE, Siciliano S, de Moura JF and Moreira I. 2016. Mercury, selenium and stable isotopes in four small cetaceans from the Southeastern Brazilian coast: Influence of feeding strategy. Environmental Pollution 218:1298-1307.
  • Frainer G, Siciliano S, Tavares DC. 2016. Franciscana calls for help: the short and long-term effects of Mariana’s disaster on small cetaceans of South-eastern Brazil. International Whaling Commission SC/66b/SM/04. Bled, Slovenia.
  • Lavandier R, Arêas J, Quinete N, de Moura JF, Taniguchi S, Montone RC, Siciliano S, Moreira I. 2015. PCB and PBDE levels in a highly threatened dolphin species from the Southeastern Brazilian coast. Environmental Pollution 208.
  • Lemos LS, de Moura JF, Hauser-Davis RA, de Campos RC, Siciliano S. 2013. Small cetaceans found stranded or accidentally captured in southeastern Brazil: Bioindicators of essential and non-essential trace elements in the environment. Ecotoxicology and Environmental Safety 97:166-175.
  • de Moura JF, Rodrigues ES, Sholl TGC, Siciliano S. 2009. Franciscana dolphin (Pontoporia blainvillei) on the north-east coast of Rio de Janeiro State, Brazil, recorded during a long-term monitoring programme. Marine Biodiversity Records 2:e66.

 

 

Highlights from the 11th Sea Otter Conservation Workshop

By Dominique Kone, Masters Student in Marine Resource Management

I recently attended and presented at the 11th biennial Sea Otter Conservation Workshop (the Workshop), hosted by the Seattle Aquarium. As the largest sea otter-focused meeting in the world, the Workshop brought together dozens of scientists, managers, and conservationists to share important information and research on sea otter conservation issues. Being new to this community, this was my first time attending the Workshop, and I had the privilege of meeting some of the most influential sea otter experts in the world. Here, I recount some of my highlights from the Workshop and discuss the importance of this meeting to the continued conservation and management of global sea otter populations.

Source: The Seattle Aquarium.

Sea otters represent one of the most successful species recovery stories in history. After facing near extinction at the close of the Maritime Fur Trade in 1911 (Kenyon 1969), they have made an impressive comeback due to intense conservation efforts. The species is no longer in such dire conditions, but some distinct populations are still considered at-risk due to their small numbers and persistent threats, such as oil spills or disease. We still have a ways to go until global sea otter populations are recovered, and collaboration across disciplines is needed for continued progress.

The Workshop provided the perfect means for this collaboration and sharing of information. Attendees were a mixture of scientists, managers, advocacy groups, zoos and aquarium staff, and graduate students. Presentations spanned a range of disciplines, including ecology, physiology, genetics, and animal husbandry, to name a few. On the first day of the Workshop, most presentations focused on sea otter ecology and management. The plenary speaker – Dr. Jim Estes (retired ecologist and University of California, Santa Cruz professor) – noted that one of the reasons we’ve had such success in sea otter recovery is due to our vast knowledge of their natural history and behavior. Much of this progress can be attributed to seminal work, such as Keyon’s 1969 report, which provides an extensive synthesis of several sea otter ecological and behavioral studies (Kenyon 1969). Beginning in the 1970’s, several other ecologists – such as David Duggins, Jim Bodkin, Tim Tinker, and Jim himself – expanded this understanding to complex trophic cascades, individual diet specialization, and population demographics.

Jim Estes and Tim Tinker. Source: Jim Estes.

These ecological studies have played an integral role in sea otter conservation, but other disciplines were and continue to be just as important. As the Workshop continued into the second and third days, presentations shifted their focus to physiology, veterinary medicine, and animal husbandry. Two of these speakers – who have played pivotal roles in these areas – are Dr. Melissa Miller (veterinarian specialist and pathologist with the California Department of Fish & Wildlife) and Dr. Mike Murray (director of veterinary services at the Monterey Bay Aquarium). Dr. Miller presented her years of work on understanding causes of mortality in wild southern sea otters in California. Her research showed that shark predation is a large source of mortality in the southern stock, but cardiac arrest, which has gained less attention, is also a large contributing factor.

Dr. Murray discussed his practice of caring for and studying the biology of captive sea otters. He provided an overview of some of the routine procedures (i.e. full body exams, oral surgeries, and radio transmitter implantation) his team conducts to assess and treat stranded wild otters, so they can be returned to the wild. Both presenters demonstrated how advances in veterinary medicine have helped us better understand the multitude of threats to sea otters in the wild, and what interventive measures can be taken to recover sick or injured otters so they can contribute to wild population recovery. By understanding how these threats are impacting sea otter health on an individual level, we can be better equipped to prevent population-wide consequences.

Dr. Melissa Miller conducting a sea otter necropsy. Source: California Department of Fish & Game.

Throughout the entire Workshop, experts with decades of experience presented their work. Yet, one of the most encouraging aspects of this meeting was that several graduate students also presented their research, including myself. In a way, listening to presenters both early and late in their careers gave us a glimpse into the past and future of sea otter conservation. Much of the work currently being conducted by graduate students addresses some of the most pressing and emerging issues (e.g. shark predation, plastic pollution, and diseases) in this field, but also builds off the great knowledge base acquired by many of those at the Workshop.

Perhaps even more encouraging was the level of collaboration and mentorship between graduate students and seasoned experts. Included in almost every graduate student’s acknowledgement section of their presentations, were the names of several Workshop attendees who either advised them or provided guidance on their research. These presentations were often followed up with further meetings between students and their mentors. These types of interactions really demonstrated how invested the sea otter community is in fostering the next generation of leaders in this field. This “passing of the mantel” is imperative to maintain knowledge between generations and to continue to make progress in sea otter conservation. As a graduate student, I greatly appreciated getting the opportunity to interact with and gain advice from many of these researchers, whom I’ve only read about in articles.

Source: Bay Nature.

To summarize my experience, it became clear how important this Workshop was to the broader sea otter conservation community. The Workshop provided the perfect venue for collaboration amongst experts, as well as mentorship of upcoming leaders in the field. It’s important to recognize the great progress and strides the community has made already in understanding the complex lives of sea otters. Sea otters have not recovered everywhere. Therefore, we need to continue to acquire knowledge across all disciplines if we are to make progress in the future, especially as new threats and issues emerge. It will take a village.

Literature Cited:

Kenyon, K. W. 1969. The sea otter in the eastern Pacific Ocean. North American Fauna. 68. 352pp.

Self-improvement as Revenge – a strategy of persistent hope

By Florence Sullivan, MSc (GEMM Lab alumni, 2017)

Frustrating. Exhausting. Time-consuming. Repetitive. Draining. De-Motivating. A sine wave of cautious excitement followed by the crash of disappointment at another rejection.  The longer my job search continues, the more adjectives I have to describe it.

Last spring, I got rejected from a marine mammal and bird survey technician position because I didn’t have enough experience identifying birds. I found this immensely frustrating. So, fueled by the desire to prove “them” wrong, I embarked on my journey of revenge. First, I registered for a free online bird ID course at the Cornell Lab of Ornithology. Then, I got my bird books out, and started paying more attention to the species I encountered in my neighborhood. Next, I attended a training session for the Puget Sound Seabird Survey with the Seattle Audubon Society, and joined a citizen science monitoring team. We are responsible for documenting seabird habitat use at 3 beaches in the South Puget Sound on the first Saturday of each month. Most of my team members have been birding for decades, and they have been helpfully pointing out ID tricks like flight patterns, wing shapes, and color bands to distinguish one species from another. I feel like my marine bird ID is coming along nicely, but there are SO MANY bird species out there…. I know I learn better, and am more focused, when I am working for a team effort, so two weeks ago I attended a training for the Secretive Wetland Bird Monitoring project with the Puget Sound Bird Observatory. We’ll be doing playback surveys for species like American Bittern, Virginia Rail, and Green Herons during three survey windows from April to June. I’m excited for this project because even if I don’t learn to ID the birds by sight (they are secretive after all), it’s a chance to improve my ‘birding by ear’ skills! With all this, I think the next time a job application asks about my experience with birds, I’ll be able to give some more informed answers.

In Summer 2018, I had a rather tumultuous field research experience with a very disorganized project leader.  I ended up leaving the project after a series of poor safety choices by the leadership culminated in the vessel running aground on a well-marked reef.  Several of my colleagues and I were injured in the accident, and it was the first time in my 10 year maritime career that I grabbed my emergency bag and seriously thought I might have to abandon ship.  In this case, we made it to shore, and there was a clinic nearby where we got treated, but what if there hadn’t been?  The more I reflected on what happened, the more I realized how bad the situation could have been.  My revenge on that feeling of helplessness was to sign up for a NOLS Wilderness First Aid Course.  During the course, we practiced patient assessment, discussed the most common injuries when adventuring in the remote areas, and played out scenarios, as both patients and first responders. We discussed proper scene assessment, basic wound care and splints (those were fun to practice), situations like hypo and hyperthermia, and how to make a radio call for help that transmits the most relevant information. After this two day course, I feel much more confident in my ability to manage emergency situations for myself and any team I work with. Handily enough, many field technician jobs list ‘Wilderness First Aid/Wilderness First Responder” in their desired qualifications sections, so I can check that bullet off now too!

One of the best bits of finishing my grad degree has been getting my evenings and weekends back from the depths of homework and research fueled need-to-be-productive-all-the-time depression.  I like making things.  Shortly after turning in my thesis, I traded labor for a sheep fleece & two alpaca fleeces.

This alpaca’s name was ‘Timid’. Here we are leading him to the shearing area.

An acquaintance needed help shearing his small flock, and I saw the opportunity to try a “Sheep to Shawl” project – where you take the raw fiber, clean it, spin it into thread, and weave it into a shawl. I learned how to weave in high school, but I did not know how to spin my own thread.  I borrowed a spinning wheel from my fiber arts mentor, found a spinning group at my local yarn store, and since January have been spinning my own thread!

The bundle of blue/green fiber front and center is the raw wool “roving” that is fed onto the bobbin in the spinning process. The bobbin on the spinning wheel holds a single thread. Thread from two bobbins is then “plyed” together to create yarn – The final yarn is draped over the wheel.

I started with some practice wool to figure the whole thing out, and have just started to spin the fleeces I helped to harvest. It’s going to take me a while, but I’m more interested in the process than any sort of speed. There’s an unfortunate cultural dichotomy between “art” and “science”, but I find that the sort of thinking needed to plan how the threads will intertwine to make a solid and beautiful cloth, is the same sort of thinking needed to understand the myriad processes that inform how an ecosystem functions. If you think about it sideways, knitting & weaving pattern drafts are the first form of binary computer programs – repetitive patterns that when followed result in a product. The creativity needed to make beautiful art is the same creativity that helps problem solve in the field, and long term project planning, forethought and tenacity are all necessary in both research and in fiber arts. While the art itself may not be relevant to the jobs I apply for, the skills are transferable, and the actions recharge my batteries so I can keep solving problems creatively.

I knit my first hand spun yarn into a fun scarf!

It’s an easy trap to fall into – the idea that learning only happens in the classroom, and that once you’ve finally finished school and thrown off the trappings of academia you’re done and never have to learn again.

But never learning anything new would get boring quickly, wouldn’t it?

I may be frustrated by how long it is taking me to find ‘a career’, but I can’t regret the lily pads that I have landed on in the mean-time, or the skills that I have had the opportunity to pick up.

Exciting. Inspiring. Educational. Opportunistic. Expanding my network. Hopeful. A sine wave of disappointment followed by renewed determination to keep trying.  The longer my job search continues, the more adjectives I have to describe it.

More data, more questions, more projects: There’s always more to learn

By Dawn Barlow, PhD student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab 

As you may have read in previous blog posts, my research focuses on the ecology of blue whales in New Zealand. Through my MS research and years of work by a dedicated team, we were able to document and describe a population of around 700 blue whales that are unique to New Zealand, present year-round, and genetically distinct from all other known populations [1]. While this is a very exciting discovery, documenting this population has also unlocked a myriad of further questions about these whales. Can we predict when and where the whales are most likely to be? How does their distribution change seasonally? How often do they overlap with anthropogenic activity? My PhD research will aim to answer these questions through models of blue whale distribution patterns relative to their environment at multiple spatial and temporal scales.

Because time at sea for vessel-based surveys is cost-limited and difficult to come by, it is in any scientist’s best interest to collect as many concurrent streams of data as possible while in the field. When Dr. Leigh Torres designed our blue whale surveys that were conducted in 2014, 2016, and 2017, she really did a miraculous job of maximizing time on the water. With more data, more questions can be asked. These complimentary datasets have led to the pursuit of many “side projects”. I am lucky enough to work on these questions in parallel with what will form the bulk of my PhD, and collaborate with a number of people in the process. In this blog post, I’ll give you some short teasers of these “side projects”!

Surface lunge feeding as a foraging strategy for New Zealand blue whales

Most of what we know about blue whale foraging behavior comes from studies conducted off the coast of Southern California[2,3] using suction cup accelerometer tags. While these studies in the California Current ecosystem have led to insights and breakthroughs in our understanding of these elusive marine predators and their prey, they have also led us to adopt the paradigm that krill patches are denser at depth, and blue whales are most likely to target these deep prey patches when they feed. We have combined our prey data with blue whale behavioral data observed via a drone to investigate blue whale foraging in New Zealand, with a particular emphasis on surface feeding as a strategy. In our recent analyses, we are finding that in New Zealand, lunge feeding at the surface may be more than just “snacking”. Rather, it may be an energetically efficient strategy that blue whales have evolved in the region with unique implications for conservation.

Figure 1. A blue whale lunges on an aggregation of krill. UAS piloted by Todd Chandler.

Combining multiple data streams for a comprehensive health assessment

In the field, we collected photographs, blubber biopsy samples, fecal samples, and conducted unmanned aerial system (UAS, a.k.a. “drone”) flights over blue whales. The blubber and fecal samples can be analyzed for stress and reproductive hormone levels; UAS imagery allows us to quantify a whale’s body condition[4]; and photographs can be used to evaluate skin condition for abnormalities. By pulling together these multiple data streams, this project aims to establish a baseline understanding of the variability in stress and reproductive hormone levels, body condition, and skin condition for the population. Because our study period spans multiple years, we also have the ability to look at temporal patterns and individual changes over time. From our preliminary results, we have evidence for multiple pregnant females from elevated pregnancy and stress hormones, as well as apparent pregnancy from the body condition analysis. Additionally, a large proportion of the population appear to be affected by blistering and cookie cutter shark bites.

Figure 2. An example aerial drone image of a blue whale that will be used to asses body condition, i.e. how healthy or malnourished the whale is. (Drone piloted by Todd Chandler).
Figure 3. Images of blue whale skin condition, affected by A) blistering and B) cookie cutter shark bites.

Comparing body shape and morphology between species

The GEMM Lab uses UAS to quantitatively study behavior[5] and health of large whales. From various projects in different parts of the world we have now assimilated UAS data on blue, gray, and humpback whales. We will measure these images to investigate differences in body shape and morphology among these species. We plan to explore how form follows function across baleen whales, based on their different  life histories, foraging strategies, and ecological roles.

Figure 4 . Aerial images of A) a blue whale in New Zealand’s South Taranaki Bight, B) a gray whale off the coast of Oregon, and C) a humpback whale off the coast of Washington. Drone piloted by Todd Chandler (A and B) and Jason Miranda (C). 

So it goes—my dissertation will contain a series of chapters that build on one another to explore blue whale distribution patterns at increasing scales, as well as a growing number of appendices for these “side projects”. Explorations and collaborations like I’ve described here allow me to broaden my perspectives and diversify my analytical skills, as well as work with many excellent teams of scientists. The more data we collect, the more questions we are able to ask. The more questions we ask, the more we seem to uncover that is yet to be understood. So stay tuned for some exciting forthcoming results from all of these analyses, as well as plenty of new questions, waiting to be posed.

References

  1. Barlow DR et al. 2018 Documentation of a New Zealand blue whale population based on multiple lines of evidence. Endanger. Species Res. 36, 27–40. (doi:https://doi.org/10.3354/esr00891)
  2. Hazen EL, Friedlaender AS, Goldbogen JA. 2015 Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density. Sci. Adv. 1, e1500469–e1500469. (doi:10.1126/sciadv.1500469)
  3. Goldbogen JA, Calambokidis J, Oleson E, Potvin J, Pyenson ND, Schorr G, Shadwick RE. 2011 Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density. J. Exp. Biol. 214, 131–146. (doi:10.1242/jeb.048157)
  4. Burnett JD, Lemos L, Barlow DR, Wing MG, Chandler TE, Torres LG. 2018 Estimating morphometric attributes on baleen whales using small UAS photogrammetry: A case study with blue and gray whales. Mar. Mammal Sci. (doi:10.1111/mms.12527)
  5. Torres LG, Nieukirk SL, Lemos L, Chandler TE. 2018 Drone Up! Quantifying Whale Behavior From a New Perspective Improves Observational Capacity. Front. Mar. Sci. 5. (doi:10.3389/fmars.2018.00319)

Signs you’re an ecologist – you don’t spend nearly enough time geeking out about your study species…

By Lisa Hildebrand, MSc student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

This past week has been very busy for me as I gave three quite important, yet very different, presentations. The first was on Tuesday at the Pacific High School in Port Orford, near my study site. The aim of the game was recruitment – my quest for two eager local high schoolers to be my interns for this 2019 summer field season has begun (read blogs written by our 2017 HS interns Nathan Malamud and Quince Nye)! I was lucky enough to be given an entire class period to talk to the students and so I hope that the picture I painted of kayaks, gray whales and sun will be enough to entice students to apply to the internship.

The second was a short presentation in one of the classes I took this term, GEOG 561: GIScience II Analysis and Applications. The class focuses on developing and conducting geospatial analyses in R and throughout the term each student develops a small independent research project using some of their own data. For my research project, I decided to do a small cluster analysis of the zooplankton community data that we have collected from the kayak net samples.

The third and final presentation of the week happened on Thursday and marked one of the big milestones on my Master’s journey: my research review. The research review is a mandatory (and extremely helpful) process in the Department of Fisheries & Wildlife where the student (in this case me), the committee (Dr Leigh Torres, Dr Rachael Orben, Dr Kim Bernard and Dr Susanne Brander) and a department representative (Dr Brian Sidlauskas) all assemble to discuss the student’s research proposal, which lays out the intended work, chapters, analysis and timeline for the students’ thesis. My proposal (which currently bears the title: “Tonight’s specials include mysids, gammarids and more: An examination of the zooplankton prey of Oregon gray whales and its impact on individual foraging patterns”) proposes a two-chapter thesis where the first examines the quality of zooplankton prey, while the second looks at potential individual foraging specialization of gray whales along the Oregon coast. While my entire committee agreed that what I have set forth to do in the next two or so years is ambitious, they provided me with excellent feedback and confidence that I would be able to achieve what I have planned.

Now that it’s the weekend and I’ve had some time to sit back and think about the week, I realized one major commonality between all three presentations I gave. None of the Powerpoints featured more than one image of a gray whale. How could this be?! It is after all my study species and I spend so much of my summer looking at them – how could it be that so little of what I showed and talked about was the thing that I am most passionate about and is so central to my research?

In the course of doing research, it’s easy to get wound up in the nitty gritty and forget about the big picture. While the nitty gritty is also imperative to conducting the research (and ultimately getting results), I sometimes forget about why I do what I do, which is that gray whales are AWESOME. Looking into the past, it seems that some of my lab mates have had the same realizations about their study species before too: see here and here. So for this blog, I want to bring it back to basics and share some of the things that I think are most fascinating about gray whales.

  1. Gray whales are the only baleen whale that feeds benthically. This behavior is facilitated by the shorter and tougher baleen that gray whales possess in comparison to other baleen whale species (Pivorunas 1979). The majority of the Eastern North Pacific (ENP) gray whale population feeds benthically in the Bering Sea where they eat ampeliscid amphipods, which are a type of benthic invertebrates (Nerini 1984). It is estimated that gray whales must regain 11-29% of critical body mass during the feeding season (Villegas-Amtmann et al. 2015) in order to obtain the energy stores they require for the entire year. Besides the personal benefit of sea floor foraging, by using this feeding tactic gray whales create depressions in the soft sediment that benefit other species besides themselves. The highly disruptive nature of this action can increase the biodiversity of the seafloor and initiate scavenging events by lysiannassid amphipods on other infauna (Oliver & Slattery 1985). Furthermore, Grebmeier & Harrison (1992) documented that a variety of seabirds including northern fulmars, black-legged kittiwakes and thick-billed murres feed on benthic amphipods brought to the surface by this unique foraging behavior performed by gray whales.
  1. Gray whales are essentially acrobats. A preference for benthic prey goes hand in hand with a preference for shallow, coastal waters, as for example Pacific Coast Feeding Group gray whales tend to forage within the 5-15 m depth range (Weller et al. 1999). With female adults ranging between 13-15 m in length (females tend to be slightly larger than adult males) and weighing anywhere between 15-33 tons (Jones et al. 1984), I am continuously fascinated by how gracefully and slowly gray whales can navigate extremely shallow waters.

    However, it is more than just simple navigation – the behaviors and moves that some gray whales display while in the shallows is phenomenal too. Last year Torres et al. (2018) documented this agility through unmanned aerial systems (UAS) footage that provided evidence for some novel foraging tactics including headstands, side-swimming, and jaw snapping and flexing.

  1. They sure are resilient. Commercial whaling of gray whales began in 1846 after two commercial whaling vessels first discovered the winter breeding grounds in Baja California, Mexico (Henderson 1984). Following this discovery, the ENP were targeted for roughly a century before receiving full protection under the International Convention for the Regulation of Whaling in 1946 (Reeves 1984). Through genetic analyses, it has been estimated that the pre-whaling abundance of the ENP population was between 76,000 – 118,000 individuals (Alter et al. 2012), which is roughly three to five times larger than current estimates (24,000 – 26,000; Scordino et al. 2018). While the gray whale populations that once existed in the Atlantic Ocean were not as fortunate as those in the Pacific (Atlantic gray whales were declared extinct in the 18thcentury due to extensive whaling; Bryant 1995), the ENP has definitely made a strong comeback. Additionally, gray whale resilience is not only evident on this long temporal scale but it can also be seen annually when gray whale mothers fight relentlessly to keep their calves alive when under attack from killer whales. A study on predation of gray whales by transient killer whales in Alaska reported that attacks were quickly abandoned if calves were aggressively defended by their mothers or if gray whales succeeded in reaching depths of 3 m or less (Barrett-Lennard et al. 2011).
  1. For some unimaginable reason, gray whales appear to feel a strong connection to us. For many, gray whales might be best known for actively seeking out human contact during their breeding season in the Mexican lagoons. I find this actuality particularly interesting because of the bloody history we share with Pacific gray whales.

Those are just some of the things about gray whales that make them so fascinating to me. I look forward to potentially discovering one or two more things that we don’t know about them yet through my research. Even if that doesn’t turn out to be the case, I feel so lucky that I at least get to spend so much time with them during their feeding season here along the Oregon coast.

 

References

Alter, E.S., et al., Pre-whaling genetic diversity and population ecology in Eastern Pacific gray whales: Insights from ancient DNA and stable isotopes.PLoS ONE, 2012. doi.org/10.1371/journal.pone.0035039.

Barrett-Lennard, L.G., et al., Predation on gray whales and prolonged feeding on submerged carcasses by transient killer whales at Unimak Island, Alaska. Marine Ecology Progress Series, 2011. 421: 229-241.

Bryant, P.J., Dating remains of gray whales from the Eastern North Atlantic. Journal of Mammalogy, 1995. 76(3): 857-861.

Grebmeier, J.M., & Harrison, N.M., Seabird feeding on benthic amphipods facilitated by gray whale feeding activity in the northern Bering Sea. Marine Ecology Progress Series, 1992. 80: 125-133.

Henderson, D.A., Nineteenth century gray whaling: Grounds, catches and kills, practices and depletion of the whale population.Pages 159-186 inJones, M.L. et al., eds. The gray whale: Eschrichtius robustus, 1984. Academic Press, Orlando.

Jones, M.L., et al., The gray whale: Eschrichtius robustus. 1984. Academic Press, Orlando.

Nerini, M., A review of the gray whale feeding ecology. Pages 423-448 inJones, M.L. et al., eds. The gray whale: Eschrichtius robustus, 1984. Academic Press, Orlando.

Oliver, J.S., & Slattery, P.N., Destruction and obstruction on the sea floor: effects of gray whale feeding.Ecology, 1985. 66: 1965-1975.

Pivorunas, A., The feeding mechanisms of baleen whales.American Scientist, 1979. 67(4): 432-440.

Reeves, R.R., Modern commercial pelagic whaling for gray whales. Pages 187-200 inJones, M.L. et al., eds. The gray whale: Eschrichtius robustus, 1984. Academic Press, Orlando.

Scordino, J., et al., Report of gray whale implementation review coordination call on 5 December 2018.

Torres, L.G., et al., Drone up! Quantifying whale behavior from a new perspective improves observational capacity.Frontiers in Marine Science, 2018. 5: doi:10.3389/fmars.2018.00319.

Villegas-Amtmann, S., et al., A bioenergetics model to evaluate demographic consequences of disturbance in marine mammals applied to gray whales. Ecosphere, 2015. 6(10): 1-19.

Weller, D.W., et al., Gray whale (Eschrichtius robustus) off Sakhalin Island, Russia: Seasonal and annual patterns of occurrence. Marine Mammal Science, 1999. 15(4): 1208-1227.

Data Wrangling to Assess Data Availability: A Data Detective at Work

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

Data wrangling, in my own loose definition, is the necessary combination of both data selection and data collection. Wrangling your data requires accessing then assessing your data. Data collection is just what it sounds like: gathering all data points necessary for your project. Data selection is the process of cleaning and trimming data for final analyses; it is a whole new bag of worms that requires decision-making and critical thinking. During this process of data wrangling, I discovered there are two major avenues to obtain data: 1) you collect it, which frequently requires an exorbitant amount of time in the field, in the lab, and/or behind a computer, or 2) other people have already collected it, and through collaboration you put it to a good use (often a different use then its initial intent). The latter approach may result in the collection of so much data that you must decide which data should be included to answer your hypotheses. This process of data wrangling is the hurdle I am facing at this moment. I feel like I am a data detective.

Data wrangling illustrated by members of the R-programming community. (Image source: R-bloggers.com)

My project focuses on assessing the health conditions of the two ecotypes of bottlenose dolphins between the waters off of Ensenada, Baja California, Mexico to San Francisco, California, USA between 1981-2015. During the government shutdown, much of my data was inaccessible, seeing as it was in possession of my collaborators at federal agencies. However, now that the shutdown is over, my data is flowing in, and my questions are piling up. I can now begin to look at where these animals have been sighted over the past decades, which ecotypes have higher contaminant levels in their blubber, which animals have higher stress levels and if these are related to geospatial location, where animals are more susceptible to human disturbance, if sex plays a role in stress or contaminant load levels, which environmental variables influence stress levels and contaminant levels, and more!

Alexa, alongside collaborators, photographing transiting bottlenose dolphins along the coastline near Santa Barbara, CA in 2015 as part of the data collection process. (Image source: Nick Kellar).

Over the last two weeks, I was emailed three separate Excel spreadsheets representing three datasets, that contain partially overlapping data. If Microsoft Access is foreign to you, I would compare this dilemma to a very confusing exam question of “matching the word with the definition”, except with the words being in different languages from the definitions. If you have used Microsoft Access databases, you probably know the system of querying and matching data in different databases. Well, imagine trying to do this with Excel spreadsheets because the databases are not linked. Now you can see why I need to take a data management course and start using platforms other than Excel to manage my data.

A visual interpretation of trying to combine datasets being like matching the English definition to the Spanish translation. (Image source: Enchanted Learning)

In the first dataset, there are 6,136 sightings of Common bottlenose dolphins (Tursiops truncatus) documented in my study area. Some years have no sightings, some years have fewer than 100 sightings, and other years have over 500 sightings. In another dataset, there are 398 bottlenose dolphin biopsy samples collected between the years of 1992-2016 in a genetics database that can provide the sex of the animal. The final dataset contains records of 774 bottlenose dolphin biopsy samples collected between 1993-2018 that could be tested for hormone and/or contaminant levels. Some of these samples have identification numbers that can be matched to the other dataset. Within these cross-reference matches there are conflicting data in terms of amount of tissue remaining for analyses. Sorting these conflicts out will involve more digging from my end and additional communication with collaborators: data wrangling at its best. Circling back to what I mentioned in the beginning of this post, this data was collected by other people over decades and the collection methods were not standardized for my project. I benefit from years of data collection by other scientists and I am grateful for all of their hard work. However, now my hard work begins.

The cutest part of data wrangling: finding adorable images of bottlenose dolphins, photographed during a coastal survey. (Image source: Alexa Kownacki).

There is also a large amount of data that I downloaded from federally-maintained websites. For example, dolphin sighting data from research cruises are available for public access from the OBIS (Ocean Biogeographic Information System) Sea Map website. It boasts 5,927,551 records from 1,096 data sets containing information on 711 species with the help of 410 collaborators. This website is incredible as it allows you to search through different data criteria and then download the data in a variety of formats and contains an interactive map of the data. You can explore this at your leisure, but I want to point out the sheer amount of data. In my case, the OBIS Sea Map website is only one major platform that contains many sources of data that has already been collected, not specifically for me or my project, but will be utilized. As a follow-up to using data collected by other scientists, it is critical to give credit where credit is due. One of the benefits of using this website, is there is information about how to properly credit the collaborators when downloading data. See below for an example:

Example citation for a dataset (Dataset ID: 1201):

Lockhart, G.G., DiGiovanni Jr., R.A., DePerte, A.M. 2014. Virginia and Maryland Sea Turtle Research and Conservation Initiative Aerial Survey Sightings, May 2011 through July 2013. Downloaded from OBIS-SEAMAP (http://seamap.env.duke.edu/dataset/1201) on xxxx-xx-xx.

Citation for OBIS-SEAMAP:

Halpin, P.N., A.J. Read, E. Fujioka, B.D. Best, B. Donnelly, L.J. Hazen, C. Kot, K. Urian, E. LaBrecque, A. Dimatteo, J. Cleary, C. Good, L.B. Crowder, and K.D. Hyrenbach. 2009. OBIS-SEAMAP: The world data center for marine mammal, sea bird, and sea turtle distributions. Oceanography 22(2):104-115

Another federally-maintained data source that boasts more data than I can quantify is the well-known ERDDAP website. After a few Google searches, I finally discovered that the acronym stands for Environmental Research Division’s Data Access Program. Essentially, this the holy grail of environmental data for marine scientists. I have downloaded so much data from this website that Excel cannot open the csv files. Here is yet another reason why young scientists, like myself, need to transition out of using Excel and into data management systems that are developed to handle large-scale datasets. Everything from daily sea surface temperatures collected on every, one-degree of latitude and longitude line from 1981-2015 over my entire study site to Ekman transport levels taken every six hours on every longitudinal degree line over my study area. I will add some environmental variables in species distribution models to see which account for the largest amount of variability in my data. The next step in data selection begins with statistics. It is important to find if there are highly correlated environmental factors prior to modeling data. Learn more about fitting cetacean data to models here.

The ERDAPP website combined all of the average Sea Surface Temperatures collected daily from 1981-2018 over my study site into a graphical display of monthly composites. (Image Source: ERDDAP)

As you can imagine, this amount of data from many sources and collaborators is equal parts daunting and exhilarating. Before I even begin the process of determining the spatial and temporal spread of dolphin sightings data, I have to identify which data points have sex identified from either hormone levels or genetics, which data points have contaminants levels already quantified, which samples still have tissue available for additional testing, and so on. Once I have cleaned up the datasets, I will import the data into the R programming package. Then I can visualize my data in plots, charts, and graphs; this will help me identify outliers and potential challenges with my data, and, hopefully, start to see answers to my focal questions. Only then, can I dive into the deep and exciting waters of species distribution modeling and more advanced statistical analyses. This is data wrangling and I am the data detective.

What people may think a ‘data detective’ looks like, when, in reality, it is a person sitting at a computer. (Image source: Elder Research)

Like the well-known phrase, “With great power comes great responsibility”, I believe that with great data, comes great responsibility, because data is power. It is up to me as the scientist to decide which data is most powerful at answering my questions.

Data is information. Information is knowledge. Knowledge is power. (Image source: thedatachick.com)