The Land of Maps and Charts: Geospatial Ecology

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

I love maps. I love charts. As a random bit of trivia, there is a difference between a map and a chart. A map is a visual representation of land that may include details like topology, whereas a chart refers to nautical information such as water depth, shoreline, tides, and obstructions.

Map of San Diego, CA, USA. (Source: San Diego Metropolitan Transit System)
Chart of San Diego, CA, USA. (Source: NOAA)

I have an intense affinity for visually displaying information. As a child, my dad traveled constantly, from Barrow, Alaska to Istanbul, Turkey. Immediately upon his return, I would grab our standing globe from the dining room and our stack of atlases from the coffee table. I would sit at the kitchen table, enthralled at the stories of his travels. Yet, a story was only great when I could picture it for myself. (I should remind you, this was the early 1990s, GoogleMaps wasn’t a thing.) Our kitchen table transformed into a scene from Master and Commander—except, instead of nautical charts and compasses, we had an atlas the size of an overgrown toddler and salt and pepper shakers to pinpoint locations. I now had the world at my fingertips. My dad would show me the paths he took from our home to his various destinations and tell me about the topography, the demographics, the population, the terrain type—all attribute features that could be included in common-day geographic information systems (GIS).

Uncle Brian showing Alexa where they were on a map of Maui, Hawaii, USA. (Photo: Susan K. circa 1995)

As I got older, the kitchen table slowly began to resemble what I imagine the set from Master and Commander actually looked like; nautical charts, tide tables, and wind predictions were piled high and the salt and pepper shakers were replaced with pencil marks indicating potential routes for us to travel via sailboat. The two of us were in our element. Surrounded by visual and graphical representations of geographic and spatial information: maps. To put my map-attraction this in even more context, this is a scientist who grew up playing “Take-Off”, a board game that was “designed to teach geography” and involved flying your fleet of planes across a Mercator projection-style mapboard. Now, it’s no wonder that I’m a graduate student in a lab that focuses on the geospatial aspects of ecology.

A precocious 3-year-old Alexa, sitting with the airplane pilot asking him a long list of travel-related questions (and taking his captain’s hat). Photo: Susan K.

So why and how did geospatial ecology became a field—and a predominant one at that? It wasn’t that one day a lightbulb went off and a statistician decided to draw out the results. It was a progression, built upon for thousands of years. There are maps dating back to 2300 B.C. on Babylonian clay tablets (The British Museum), and yet, some of the maps we make today require highly sophisticated technology. Geospatial analysis is dynamic. It’s evolving. Today I’m using ArcGIS software to interpolate mass amounts of publicly-available sea surface temperature satellite data from 1981-2015, which I will overlay with a layer of bottlenose dolphin sightings during the same time period for comparison. Tomorrow, there might be a new version of software that allows me to animate these data. Heck, it might already exist and I’m not aware of it. This growth is the beauty of this field. Geospatial ecology is made for us cartophiles (map-lovers) who study the interdependency of biological systems where location and distance between things matters.

Alexa’s grandmother showing Alexa (a very young cartographer) how to color in the lines. Source: Susan K. circa 1994

In a broader context, geospatial ecology communicates our science to all of you. If I posted a bunch of statistical outputs in text or even table form, your eyes might glaze over…and so might mine. But, if I displayed that same underlying data and results on a beautiful map with color-coded symbology, a legend, a compass rose, and a scale bar, you might have this great “ah-ha!” moment. That is my goal. That is what geospatial ecology is to me. It’s a way to SHOW my science, rather than TELL it.

Would you like to see this over and over again…?

A VERY small glimpse into the enormous amount of data that went into this map. This screenshot gave me one point of temperature data for a single location for a single day…Source: Alexa K.

Or see this once…?

Map made in ArcGIS of Coastal common bottlenose dolphin sightings between 1981-1989 with a layer of average sea surface temperatures interpolated across those same years. A picture really is worth a thousand words…or at least a thousand data points…Source: Alexa K.

For many, maps are visually easy to interpret, allowing quick message communication. Yet, there are many different learning styles. From my personal story, I think it’s relatively obvious that I’m, at least partially, a visual learner. When I was in primary school, I would read the directions thoroughly, but only truly absorb the material once the teacher showed me an example. Set up an experiment? Sure, I’ll read the lab report, but I’m going to refer to the diagrams of the set-up constantly. To this day, I always ask for an example. Teach me a new game? Let’s play the first round and then I’ll pick it up. It’s how I learned to sail. My dad described every part of the sailboat in detail and all I heard was words. Then, my dad showed me how to sail, and it came naturally. It’s only as an adult that I know what “that blue line thingy” is called. Geospatial ecology is how I SEE my research. It makes sense to me. And, hopefully, it makes sense to some of you!

Alexa’s dad teaching her how to sail. (Source: Susan K. circa 2000)
Alexa’s first solo sailboat race in Coronado, San Diego, CA. Notice: Alexa’s dad pushing the bow off the dock and the look on Alexa’s face. (Source: Susan K. circa 2000)
Alexa mapping data using ArcGIS in the Oregon State University Library. (Source: Alexa K circa a few minutes prior to posting).

I strongly believe a meaningful career allows you to highlight your passions and personal strengths. For me, that means photography, all things nautical, the great outdoors, wildlife conservation, and maps/charts.  If I converted that into an equation, I think this is a likely result:

Photography + Nautical + Outdoors + Wildlife Conservation + Maps/Charts = Geospatial Ecology of Marine Megafauna

Or, better yet:

📸 + ⚓ + 🏞 + 🐋 + 🗺 =  GEMM Lab

This lab was my solution all along. As part of my research on common bottlenose dolphins, I work on a small inflatable boat off the coast of California (nautical ✅, outdoors ✅), photograph their dorsal fin (photography ✅), and communicate my data using informative maps that will hopefully bring positive change to the marine environment (maps/charts ✅, wildlife conservation✅). Geospatial ecology allows me to participate in research that I deeply enjoy and hopefully, will make the world a little bit of a better place. Oh, and make maps.

Alexa in the field, putting all those years of sailing and chart-reading to use! (Source: Leila L.)

 

Living the Dream – life as a marine mammal observer

By Florence Sullivan, MSc.

Living the dream as a marine mammal observer onboard the R/V Bell Shimada Photo credit: Dave Jacobsen

I first learned that “Marine Mammal Observer” was a legitimate career field during the summer after my junior year at the University of Washington.  I had the good fortune to volunteer for the BASIS fisheries-oceanography survey onboard the R/V Oscar Dyson where I met two wonderful bird observers who taught me how to identify various pelagic bird species and clued me in to just how diverse the marine science job market can be. After the cruise, younger Florence went off with an expanded world view and a small dream that maybe someday she could go out to sea and survey for marine mammals on a regular basis (and get paid for it?!).  Eight years later, I am happy to report that I have just spent the last week as the marine mammal observer on the North California Current Survey on the Dyson’s sister ship, the R/V Bell M. Shimada.  While we may not have seen as many marine mammals as I would have liked, the experience has still been everything younger Florence hoped it would be.

Finally leaving port a few days behind schedule due to stormy weather! photo credit: Florence Sullivan

If you’ve ever wondered why the scientists in your life may refer to summer as “field work season”, it’s because attempting to do research outside in the winter is an exercise in frustration, troubleshooting, and flexibility. Case in point; this cruise was supposed to sail away from port on the 24th of February, but did not end up leaving until the 27th due to bad weather.  This weather delay meant that we had to cut some oceanographic stations we would like to have sampled, and even when we made it out of the harbor, the rough weather made it impossible to sample some of the stations we still had left on our map.  That being said, we still got a lot of good work done!

The original station map. The warm colors are the west coast of the US, the cold colors are the ocean, and the black dots are planned survey stations

The oceanographers were able to conduct CTD casts at most planned stations, as well as sample the water column with a vertical zooplankton net, a HAB net (for looking for the organisms that cause Harmful Algal Blooms),  and a Bongo Net (a net that specializes in getting horizontal samples of the water column).  When it wasn’t too windy, they were also able to sample with the Manta net (a net specialized for surface sampling – it looks like a manta ray’s mouth) and at certain near-shore stations they did manage to get some bottom beam trawls in to look at the benthic community of fishes and invertebrates.  All this was done while dodging multitudes of crab pots and storm fronts.  The NOAA corps officers who drive the boat, and the deck crew who handle all the equipment deployments and retrievals really did their utmost to make sure we were able to work.

Stormy seas make for difficult sampling conditions! photo credit: Florence Sullivan

For my part, I spent the hours between stations searching the wind-tossed waves for any sign of marine mammals. Over the course of the week, I saw a few Northern fur seals, half a dozen gray whales, and a couple of unidentified large cetaceans.  When you think about the productivity of the North Pacific Ecosystem this may not seem like very much.  But remember, it is late winter, and I do not have x-ray vision to see through the waves.  It is likely that I missed a number of animals simply because the swell was too large, and when we calculate our “detection probability” these weather factors will be taken into account. In addition, many of our local marine mammals are migrators who might be in warmer climates, or are off chasing different food sources at the moment.  In ecology, when you want to know how a population of animals is distributed across a land- or sea-scape, it is just as important to understand where the animals are NOT as where they ARE. So all of this “empty” water was very important to survey simply because it helps us refine our understanding of where animals don’t want to be.  When we know where animals AREN’T we can ask better questions about why they occur where they ARE.

Black Footed Albatross soars near the boat. Photo credit: Florence Sullivan

Notable species of the week aside from the marine mammals include Laysan and Black Footed Albatrosses, a host of Vellella vellella (sailor by the wind hydroid colonies) and the perennial favorite of oceanographers; the shrinking Styrofoam cup.  (See pictures)

We sent these styrofoam cups down to 1800 meters depth. The pressure at those depths causes all the air to escape from the styrofoam, and it shrinks! This is a favorite activity of oceanographers to demonstrate the effects on increased pressure!

These sorts of interdisciplinary cruises are quite fun and informative to participate in because we can build a better picture of the ecosystem as a whole when we use a multitude of methods to explore it.  This strength of cooperation makes me proud to add my little piece to the puzzle. As I move forward in life, whether I get to be the marine mammal observer, the oceanographer, or perhaps an educator, I will always be glad to contribute to collaborative research.

 

GEMM Lab 2017: A Year in the Life

By Dawn Barlow, MSc Student, Department of Fisheries and Wildlife

The days are growing shorter, and 2017 is drawing to a close. What a full year it has been for the GEMM Lab! Here is a recap, filled with photos, links to previous blogs, and personal highlights, best enjoyed over a cup of hot cocoa. Happy Holidays from all of us!

The New Zealand blue whale team in action aboard the R/V Star Keys. Photo by L. Torres.

Things started off with a bang in January as the New Zealand blue whale team headed to the other side of the world for another field season. Leigh, Todd and I joined forces with collaborators from Cornell University and the New Zealand Department of Conservation aboard the R/V Star Keys for the duration of the survey. What a fruitful season it was! We recorded sightings of 68 blue whales, collected biopsy and fecal samples, as well as prey and oceanographic data. The highlight came on our very last day when we were able to capture a blue whale surface lunge feeding on krill from an aerial perspective via the drone. This footage received considerable attention around the world, and now has over 3 million views!

A blue whale surfaces just off the bow of R/V Star Keys. Photo by D. Barlow.

In the spring Rachael made her way to the remote Pribilof Islands of Alaska to study the foraging ecology of red-legged kittiwakes. Her objectives included comparing the birds that reproduce successfully and those that don’t, however she was thrown a major curveball: none of the birds in the colony were able to successfully reproduce. In fact, they didn’t even build nests. Further analyses may elucidate some of the reasons for the reproductive failure of this sentinel species of the Bering Sea… stay tuned.

red-legged kittiwakes
Rachael releases a kittiwake on St. George Island. Photo by A. Fleishman.

 

The 2017 Port Orford field team. Photo by A. Kownacki.

Florence is a newly-minted MSc! In June, Florence successfully defended her Masters research on gray whale foraging and the impacts of vessel disturbance. She gracefully answered questions from the room packed with people, and we all couldn’t have been prouder to say “that’s my labmate!” during the post-defense celebrations. But she couldn’t leave us just yet! Florence stayed on for another season of field work on the gray whale foraging ecology project in Port Orford, this time mentoring local high school students as part of the projectFlorence’s M.Sc. defense!

Upon the gray whales’ return to the Oregon Coast for the summer, Leila, Leigh, and Todd launched right back into the stress physiology and noise project. This year, the work included prey sampling and fixed hydrophones that recorded the soundscape throughout the season. The use of drones continues to offer a unique perspective and insight into whale behavior.

Video captured under NOAA/NMFS permit #16111.

 

Solene with a humpback whale biopsy sample. Photo by N. Job.

Solene spent the austral winter looking for humpback whales in the Coral Sea, as she participated in several research cruises to remote seamounts and reefs around New Caledonia. This field season was full of new experiences (using moored hydrophones on Antigonia seamount, recording dive depths with SPLASH10 satellite tags) and surprises. For the first time, whales were tracked all the way from New Caledonia to the east coast of Australian. As her PhD draws to a close in the coming year, she will seek to understand the movement patterns and habitat preferences of humpback whales in the region.

A humpback whale observed during the 2017 coral sea research cruise. Photo by S. Derville.

This summer we were joined by two new lab members! Dom Kone will be studying the potential reintroduction of sea otters to the Oregon Coast as a MSc student in the Marine Resource Management program, and Alexa Kownacki will be studying population health of bottlenose dolphins in California as a PhD student in the Department of Fisheries and Wildlife. We are thrilled to have them on the GEMM Lab team, and look forward to seeing their projects develop. Speaking of new projects from this year, Leigh and Rachael have launched into some exciting research on interactions between albatrosses and fishing vessels in the North Pacific, funded by the NOAA Bycatch Reduction Engineering Program.

During the austral wintertime when most of us were all in Oregon, the New Zealand blue whale project received more and more political and media attention. Leigh was called to testify in court as part of a contentious permit application case for a seabed mine in the South Taranaki Bight. As austral winter turned to austral spring, a shift in the New Zealand government led to an initiative to designate a marine mammal sanctuary in the South Taranaki Bight, and awareness has risen about the potential impacts of seismic exploration for oil and gas reserves. These tangible applications of our research to management decisions is very gratifying and empowers us to continue our efforts.

In the fall, many of us traveled to Halifax, Nova Scotia to present our latest and greatest findings at the 22nd Biennial Conference on the Biology of Marine Mammals. The strength of the lab shone through at the meeting during each presentation, and we all beamed with pride when we said our affiliation was with the GEMM Lab at OSU. In other conference news, Rachael was awarded the runner-up for her presentation at the World Seabird Twitter Conference!

GEMM Lab members present their research. From left to right, top to bottom: Amanda Holdman, Leila Lemos, Solène Derville, Dawn Barlow, Sharon Nieukirk, and Florence Sullivan.

Leigh had a big year in many ways. Along with numerous scientific accomplishments—new publications, new students, successful fieldwork, successful defenses—she had a tremendous personal accomplishment as well. In the spring she was diagnosed with breast cancer, and after a hard fight she was pronounced cancer-free this November. We are all astounded with how gracefully and fearlessly she navigated these times. Look out world, this lab’s Principle Investigator can accomplish anything!

This austral summer we will not be making our way south to join the blue whales. However, we are keenly watching from afar as a seismic survey utilizing the largest seismic survey vessel in the world has launched in the South Taranaki Bight. This survey has been met with considerable resistance, culminating in a rally led by Greenpeace that featured a giant inflatable blue whale in front of Parliament in Wellington. We are eagerly planning our return to continue this study, but that will hopefully be the subject of a future blog.

New publications for the GEMM Lab in 2017 include six for Leigh, three for Rachael, and two for Alexa. Highlights include Classification of Animal Movement Behavior through Residence in Space and Time and A sense of scale: Foraging cetaceans’ use of scale-dependent multimodal sensory systems. Next year is bound to be a big one for GEMM Lab publications, as Amanda, Florence, Solene, Leila, Leigh, and I all have multiple papers currently in review or revision, and more in the works from all of us. How exciting!

In our final lab meeting of the year, we went around the table to share what we’ve learned this year. The responses ranged from really grasping the mechanisms of upwelling in the California Current to gaining proficiency in coding and computing, to the importance of having a supportive community in graduate school to trust that the right thing will happen. If you are reading this, thank you for your interest in our work. We are looking forward to a successful 2018. Happy holidays from the GEMM Lab!

GEMM Lab members, friends, and families gather for a holiday celebration.

Skype a Scientist – Are you smarter than a middle schooler?

By Florence Sullivan, MSc

What do baby whales eat?

Does the mom whale take care of the baby whale alone?

How do whales communicate?

What are their behaviors?

These are the questions 4th grade students half a world away asked me.  They are studying biodiversity and were very curious to meet a real life scientist.  It was 2:00pm on a Tuesday here in Newport, OR, while in Australia, this classroom full of students was sitting in their 9:00am Wednesday science class.  We had an hour-long conversation about gray whale behaviors, habitat, life cycle, and general biology – all thanks to the wonders of science, technology and the computer program, Skype. The next day, I did it all again, and Skyped in to a classroom in British Columbia, to field questions about gray whales, right whales and science careers from a group of enthusiastic 5th and 6th grade students.

 

A class of Australian 4th graders had many imaginative questions for me through the Skype a Scientist Program.

But how in the world did I end up answering questions over Skype for a classroom full of kids in the first place? Like many good things, it began with a conversation.  During the 2016 USA election cycle, it became apparent that many people in this country distrust scientists. Sarah McAnulty, a PhD student at the University of Connecticut who studies the immune system of bob tail squid, had already been engaging in informal science communication through a profile on tumblr.  But posting things on tumblr is like preaching to the choir – your audience tends to be people who are already interested in your subject. If the problem is trying to change the public perception of scientists from aloof and insular to trustworthy and approachable, you need to start by finding people who have a lot of questions, and few pre-existing prejudices.  Who fits the bill perfectly? Kids!

After conversations with colleagues, she came up with the idea of using Skype to reach classrooms of students outside of the range where scientists usually congregate (large cities and universities).  Sarah started by connecting a handful of UConn colleagues with K-12 teachers through Facebook, but the idea quickly gained steam through mentions at a scientific conference, posts on the ‘March for Science’ Facebook group, media coverage, and word-of-mouth sharing between colleagues on both the teaching and the research side of the story.  Now, there is a full-fledged website (https://www.skypeascientist.com/) where teachers and scientists can sign up to be matched based on availability, topic, and sometimes, demographic.  When pairing classrooms and scientists, Sarah makes an effort for minority students (whether this means race, gender, disability, language, or other) to see themselves represented in the scientists they get to talk to, if possible.  Representation matters –we are beyond the age of old white men in lab coats being the only ‘real scientists’ represented in media, but unfortunately, the stereotype is not dead yet! In less than a year, the program has grown to over 1900 scientists, with new fields of expertise being added frequently as people spread the word and get interested.  The program has been, and promises to continue being, an excellent resource for teachers who want to show the relevance of the subjects being discussed in their classrooms. As evidenced by the fact that I spoke with a classroom in Australia, this is a global program – check out the maps below to see where students and scientists are coming from!

This map shows the locations of all participating classrooms, current on Oct 12, 2017.
This map shows the locations of all participating scientists, current on October 22, 2017.

As for myself, I got involved because my lab mate, Alexa, mentioned how much fun she had Skyping with students.  The sign-up process was incredibly easy, and when I got matched with two classrooms, the organizers even provided a nice mad-libs style ‘fill in the blank’ introduction letter so that I didn’t waste time agonizing over how to introduce myself.

Introductory Mad-libs for scientists. Courtesy of the Skype a Scientist program.

I sent the classrooms the youtube video of my field work, and a couple of these blog posts, and waited to hear back.  I was very impressed with the 5th/6th grade class from British Columbia because the teacher actually let the students take the lead from the get-go.  One of the students replied to my email, told me what they were studying, and started the process of scheduling a meeting time that would work for both of us. When I called in, two other students took the reins, and acted as spokespeople for the rest of their classmates by repeating questions from the back of the room so that I could hear everything clearly. It was so fun to see and hear the enthusiasm of the students as they asked their questions.  Their deep curiosity and obvious excitement about the subject matter was contagious, and I found my own tone, body language, and attitude shifting to match theirs as I helped them discover the building blocks of marine ecology that I have long accepted as normal. This two way street of learning is a good reminder that we all start somewhere.

If you are interested in the program at all, I encourage you to sign up at this link: (https://www.skypeascientist.com/). Who knows, engaging with kids like this just might remind you of the innocent curiosity of childhood that brought you to your scientific career in the first place.

 

Here are some of my favorite question that I was asked, and the responses I gave:

  • How do gray whales communicate?

With songs and underwater sounds! Check out this great website for some great examples, and prepare to be amazed! (I played the Conga and the belch-like call during the skype session, much to the amusement of the students)  https://www.sanignaciograywhales.org/project/acoustics/

  • What do baby whales eat?

Whales are mammals just like us, so believe it or not, baby whales drink their mother’s milk!

  • How long have you been a marine special ecologist for?

My favorite bit here was the mis-spelling, which made me a ‘special’ ecologist instead of a ‘spatial’ ecologist.  So I talked about how spatial ecology is a special type of ecology where we look at how big things move in the ocean!

  • My question is, can a grey whale bite people if people come close to them?
    This was a chance to show off our lab baleen samples!  I also took the time to look this up, and it turns out that bite is defined as “using teeth to cut into something” and a gray whale doesn’t have teeth!  Instead, they have baleen, which they use to sieve stuff out of the water.  So I don’t think you need to worry about getting bitten by a gray whale. That being said, it’s important not to get close to them, because they are so much bigger than us that they could hurt us on accident.

 

  • When you go out to see the whales, why don’t you use slightly bigger boats so you don’t flip over if the whale gets too close to you, or when you get to close to the whale?
    Our research kayak is a never-ending delight. It’s less expensive than a bigger boat, and doesn’t use fossil fuels. We want to be quiet in the water and not disturb the whale, and actively avoid getting within 100 yards so there shouldn’t be any danger. Sometimes the whales surprise us though, and we have to be careful. In this case, everyone has safety training and is able to rescue themselves if the boat should flip.

(This led to an entertaining discussion of field safety, and the appalling idea that I would make my interns jump out of the kayak into cold Pacific water on purpose during safety training)

There were many more questions, but why don’t you give the program a try, and see what kind of questions you get to answer?!

Safety First! 

We Are Family

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

The GEMM Lab celebrating Leigh’s birthday with homemade baked goods and discussions about science.

A lab is a family. I know there is the common saying about how you cannot choose your family and you can only choose your friends. But, I’d beg to differ. In the case of graduate school, especially in departments similar to OSU’s Fisheries and Wildlife, your lab is your chosen family. These are the people who encourage you when you’ve hit a roadblock, who push you when you need extra motivation, who will laugh with you when you’ve reached the point of hysteria after hours of data analysis, who will feed you when you’re too busy to buy groceries, and who will always be there for you. That sure sounds a lot like a family to me.

GEMM Lab members at the Society for Marine Mammalogy 2017 Conference in Halifax, Nova Scotia at the masquerade ball. Photo source: Florence Sullivan

Many of us spend weeks—if not months—conducting field research for our various projects. None of us do this work from the main campus…seeing as the main campus for Oregon State University is located Corvallis, Oregon which is approximately 50 miles inland from the Pacific Ocean. The GEMM Lab isn’t actually based on the main campus; instead, you’ll find the lab at the Hatfield Marine Science Center in Newport, Oregon, within a two-minute stroll of the picturesque Yaquina Bay. However, many of the core classes we need are only offered on main campus. This results in the GEMM Lab members being spread across Corvallis, Newport, and the dominant fieldwork site for their project (which could be locally in Oregon, or in the waters off of New Zealand). So rather than your typical, weekly, hour-long lab meetings, the GEMM Lab meetings are monthly and last on the order of 3-5 hours. Others hear this and think that must be overwhelming to have such a long lab meeting. On the contrary, these are scheduled to fit into all of our chaotic schedules. One day a month, all of us gather together as a family unit, share what’s new about our lives, be sounding boards for each other, solve problems, and do so in a supportive environment. Hopefully you’re getting the picture that just because we’re all part of the same lab, it doesn’t mean we’re geographically close. This is exactly why we cultivate meaningful relationships while we are together. The Harvard Business Review published an article 2015 based on multiple peer-reviewed journals, summarizing the six dominant characteristics necessary to foster a positive workplace:

  1. Caring for colleagues as friends
  2. Supporting each other
  3. Avoiding blame and forgiving mistakes
  4. Inspiring each other at work
  5. Emphasizing the meaningfulness of the work
  6. Treating each other with respect

And I can attest that every member within the GEMM Lab embraces all of these characteristics and I have a feeling that none of them have read that article prior to today. Family naturally follows those basic guidelines. And, our lab, is a family.

My very first GEMM Family Dinner.

Case and Point: when I was applying for graduate programs, I made a point of traveling to meet the GEMM Lab members at the monthly lab meeting. Sure, I also wanted to make sure that both Newport and Corvallis would be good fits in terms of locations. But, mostly, I needed to see if this Lab would be a strong family unit for my graduate school career and beyond. The moment I arrived at Hatfield Marine Science Center in Newport, it was clear, this was a family that I could see myself being a part of. Not only had all the members brought some kind of food item to share at the lab meeting (this was important to me), but Florence had baked homemade bread, Dawn had offered to show me around Hatfield, and Leila had set up a time to take me around main campus with other grad students. During the lab meeting discussions, I was welcomed to contribute and I felt comfortable doing so. That was another big moment where something “clicked” and I knew I had found a great group of amazing scientists who were also amazing human beings.

GEMM Lab members at the Port Orford Field Station in August 2017.

Flash forward a few months, and now I am one of those lab members who is bringing food to lab meetings. More than that, we have GEMM Lab dinners and game nights. I may be based in Corvallis, but I commute out to Newport just for these fun activities because this is my family. I want to be with them—not only when we’re talking about our research—but when we’re laughing about the silly things that happen in our daily lives, comically screaming at each other in an effort to win whatever game is on the table, and enjoying home-cooked meals. This is my family.

GEMM Lab members helping some friends at South Coast Tours build a dirt-bag house in August 2017.

I guess I’d like to plug this message to any potential graduate student regardless of discipline(s): find a lab with people that you truly want to surround yourselves with—day and night—in good times and in bad times—because undoubtedly, you’ll need those kinds of people. And, to current lab constituents in any lab: it’s up to us to create a supportive family which will make everyone successful.

Sister Sledge knew just this when the group sang this verse of their hit, “We Are Family”:

Living life is fun and we’ve just begun
To get our share of this world’s delights
High, high hopes we have for the future
And our goal’s in sight
We, no we don’t get depressed
Here’s what we call our golden rule
Have faith in you and the things you do
You won’t go wrong, oh-no
This is our family Jewel

I’m grateful to have found a lab that embodies the lyrics of one of my favorite childhood karaoke songs. The GEMM Lab is not only a lab that produces cutting-edge science; it is a family that encourages one another in all facets of life—creating an environment where people can have high-quality lives and generate high-quality science.

GEMM Lab Family Dinner complete with the board game, Evolution, and homemade pizza. October 2017.

Exploring the Coral Sea in Search of Humpbacks

By: Solène Derville, Entropie Lab, Institute of Research for Development, Nouméa, New Caledonia (Ph.D. student under the co-supervision of Dr. Leigh Torres)

Once again the austral winter is ending, and with it ends the field season for the scientific team studying humpback whales in New Caledonia. Through my PhD, I have become as migratory as my study species so this is also the time for me to fly back to Oregon for an intense 3 months of data analysis at the GEMM Lab. But before packing, it is time for a sum-up!

In 2014, the government of New Caledonia has declared all waters of the Economic Exclusive Zone to be part of a giant marine protected area: the Natural Park of the Coral Sea. These waters are seasonally visited by a small and endangered population of humpback whales whose habitat use patterns are poorly known. Indeed, the park spans more than 1.3 million km2 and its most remote and pristine areas therefore remained pretty much unexplored in terms of cetacean presence… until recently.

In 2016, the project WHERE “Humpback Whale Habitat Exploration to improve spatial management in the natural park of the CoRal Sea” was launch by my PhD supervisor, Dr. Garrigue, and I, to conduct surveys in remote reefs, seamounts and shallow banks surrounding New Caledonia mainland. The aim of the project is to increase our understanding of habitat use and movements of humpback whales in breeding grounds over a large spatial scale and predict priority conservation areas for the park.

Fig. 1. A humpback whale with our research vessel, the oceanographic vessel Alis, in the background.

This season, three specific areas were targeted for survey during the MARACAS expeditions (Marine Mammals of the Coral Sea):

– Chesterfield and Bellona reefs that surround two huge 30- to 60m-deep plateaus and are located halfway between New Caledonia and Australia (Fig. 4). Considered as part of the most pristine reefs in the Coral Sea, these areas were actually identified as one of the main hotspots targeted by the 19th century commercial whaling of humpback whales in the South Pacific (Oremus and Garrigue 2014). Last year’s surveys revealed that humpback whales still visit the area, but the abundance of the population and its connection to the neighboring breeding grounds of New Caledonia and Australia is yet to establish.

Fig. 2. The tiny islands along the Chesterfield and Bellona reefs also happen to host nesting sites for several species of boobies and terns. Here, a red-footed booby (Sula sula).

– Walpole Island and Orne bank are part of the shallow areas East of the mainland of New Caledonia (Fig. 4), where several previously tagged whales were found to spend a significant amount of time. This area was explored by our survey team for the first time last year, revealing an unexpected density of humpback whales displaying signs of breeding (male songs, competitive groups) and nursing activity (females with their newborn calf).

Fig. 3. The beautiful cliffs of Walpole Island rising from the Pacific Ocean.

Antigonia seamount, an offshore breeding site located South of the mainland (Fig. 4) and known for its amazingly dense congregations of humpback whales.  The seamount rises from the abyssal seabed to a depth of 60 m, with no surfacing island or reef to shelter either the whales or the scientists from rough seas.

Fig. 4. Map of the New Caledonia Economic Exclusive Zone (EEZ) and the project WHERE study areas (MARACAS expeditions).

During our three cruises, we spent 37 days at-sea while a second team continued monitoring the South Lagoon breeding ground. Working with two teams at the same time, one covering the offshore breeding areas and the other monitoring the coastal long-term study site of the South Lagoon, allowed us to assess large scale movements of humpback whales within the breeding season using photo-ID matches. This piece of information is particularly important to managers, in order to efficiently protect whales both within their breeding spots, and the potential corridors between them.

So how would you study whales over such a large scale?

Well first, find a ship. A LARGE ship. It takes more than 48 hours to reach the Chesterfield reefs. The vessel needs to carry enough gas necessary to survey such an extensive region, plus the space for a dinghy big enough to conduct satellite tagging of whales. All of this could not have been possible without the Amborella, the New Caledonian governement’s vessel, and the Alis, a French oceanographic research vessel.

Second, a team needs to be multidisciplinary. Surveying remote waters is logistically challenging and financially costly, so we had to make it worth our time. This season, we combined 1) photo-identification and biopsy samplings to estimate population connectivity, 2) acoustic monitoring using moored hydrophone (one of which recorded in Antigonia for more than two months, Fig. 5), 3) transect lines to record encounter rates of humpback whales, 4) in situ oceanographic measurements, and finally 5) satellite tracking of whales using the recent SPLASH10 tags (Wildlife Computers) capable of recording dive depths in addition to geographic positions (Fig. 6).

Fig. 5. Claire, Romain and Christophe standing next to our moored hydrophone, ready for immersion.

Satellite tracks and photo-identification have already revealed some interesting results in terms of connectivity within the park and with neighboring wintering grounds.

Preliminary matching of the caudal fluke pictures captured this season and in 2016 with existing catalogues showed that the same individuals may be resighted in different regions of the Park. For instance, some of the individuals photographed in Chesterfield – Bellona, had been observed around New Caledonia mainland in previous years! This match strengthens our hypothesis of a connection between Chesterfield reef complex and New Caledonia.

Yet, because the study of whale behavior is never straightforward, one tagged whale also indicated a potential connection between Chesterfield-Bellona and Australia East coast (Fig. 6). This is the first time a humpback whale is tracked moving between New Caledonia and East Australia within a breeding season. Previous matches of fluke catalogues had shown a few exchanges between these two areas but these comparisons did not include Chesterfield. Is it possible that the Chesterfield-Bellona coral reef complex form a connecting platform between Australia and New Caledonia? The matching of our photos with those captured by our Australian colleagues who collected data at the Great Barrier Reef  in 2016 and 2017 should help answer this question…

Fig. 6. “Splash” was tagged in Chesterfield in August and after spending some time in Bellona it initiated a migration south. Seamounts seem to play an important role for humpback whales in the region, as “Splash” stopped on Kelso and Capel seamount during its trip. It reached the Australian coast a couple of days ago and we are looking forward to discover the rest of its route!

While humpback whales often appear like one of the most well documented cetacean species, it seems that there is yet a lot to discover about them!

Acknowledgements:

These expeditions would not have been possible without the financial and technical support of the French Institute of Research for Development, the New Caledonian government, the French  Ministère de la Transition Ecologique et Solidaire, and the World Wide Fund for Nature. And of course, many thanks to the Alis and Amborella crews, and to our great fieldwork teammates: Jennifer Allen, Claire Bonneville, Hugo Bourgogne, Guillaume Chero, Rémi Dodémont, Claire Garrigue, Nicolas Job, Romain Le Gendre, Marc Oremus, Véronique Pérard, Leena Riekkola, and Mike Williamson.

Fig. 7A. The teams of the three 2017 MARACAS expeditions (Marine Mammals of the Coral Sea).
Fig. 7B. The teams of the three 2017 MARACAS expeditions (Marine Mammals of the Coral Sea).
Fig. 7C. The teams of the three 2017 MARACAS expeditions (Marine Mammals of the Coral Sea).

New steps towards community engagement: introducing high schoolers to the field

By Florence Sullivan, MSc, GEMM Lab Research Assistant

This summer, I had the pleasure of returning to Port Orford to lead another field season of the GEMM Lab’s gray whale foraging ecology research project.  While our goal this summer was to continue gathering data on gray whale habitat use and zooplankton community structure in the Port Orford region, we added in a new and exciting community engagement component: We integrated local high school students into our research efforts in order to engage with the local community to promote interest in the OSU field station and the research taking place in their community. Frequent blog readers will have seen the posts written by this year’s interns (Maggie O’Rourke Liggett, Nathan Malamud, and Quince Nye) as they described how they became interns, their experience doing fieldwork, and some lessons they’ve learned from the project. I am very impressed with the hard work and effort that all three of them put into making this field season a success.  (Getting out of a warm bed, and showing up at the field station at 6am sharp for five weeks straight is no easy feat for high-schoolers or an undergrad student during summer break!)

Quince hard at work scanning the horizon for whale spouts. photo credit: Alexa Kownacki

During the month of August, our team collected the following data on whale distribution and behavior:

  •  Spent 108 hours on the cliff looking for whales
  • Spent 11 hours actively tracking whales with the theodolite
  • Collected 19 whale tracklines
  • Identified 15 individual whales using photo-ID – Two of those whales came back 3 times each, and one of them was a whale nick-named “Buttons” who we had tracked in 2016 as well.

We also collected data on zooplankton – gray whale prey – in the area:

  • Collected 134 GoPro videos of the water column at the 12 kayak sample sites
  • Did approximately 147 zooplankton net tows
  • Collected 64 samples for community analysis to see what species of zooplankton were present
  • Collected 115 samples for energetic analysis to determine how many calories can be derived from each zooplankton
The 2017 field team. From left to right: Tom Calvanese (Field Station Manager), Florence Sullivan (Project Lead), Quince Nye, Maggie O’Rourke-Liggett, and Nathan Malamud. Photo credit: Alexa Kownacki

Since I began this project in 2015, I have been privileged to work with some truly fantastic interns.  Each year, I learned new lessons about how to be an effective mentor, and how to communicate our research goals and project needs more clearly. This year was no exception, and I worked hard to bring some of the things I’ve learned into my project planning.  As the team can tell you, science communication, and the benefits of building good will and strong community relationships were heavily emphasized over the course of the internship.  Everyone was encouraged to use every opportunity to engage with the public, explain our work, and pass on new things they had learned.  Whenever the team encountered other kayakers out on the water, we took the time to share any cool zooplankton samples we gathered that day, and explain the goals of our research.  Maggie and I also took the opportunity to give a pair of evening lectures at Humbug Mountain State Park, which were both well attended by curious campers.

Florence and Maggie give evening lectures at Humbug Mountain State Park

In addition, the team held a successful final community presentation on September 1 at the Port Orford Field Station that 45 people attended!  In the week leading up to the presentation, Quince and Nathan spent many long hours working diligently on the powerpoint presentation, while Maggie put together a video presentation of “the intern experience” (Click here for the video showcased on last week’s blog).  I am incredibly proud of Nathan and Quince, and the clear and confident manner in which they presented their experience to the audience who showed up to support them.  They easily fielded the following questions:

Q: “How do you tell the difference between a whale that is searching or foraging?”

A: When we look at the boundaries of our study site, a foraging whale consistently comes up to breathe in the same spot, while a searching whale covers a lot of distance going back and forth without leaving the general area.

Q: “How do we make sure that this program continues?”

A: Stay curious and support your students as they take on internships, support the field station as it seeks to provide resources, and if possible, donate to funds that raise money for research efforts.

Nathan talks about the plankton results during the final community presentation. photo credit: Alexa Kownacki
The audience during the final community presntation. photo credit: Alexa Kownacki
Quince and Nathan answer questions at the end of the community presentation. photo credit: Alexa Kownacki

When communicating science, it is important to results into context.  In addition to showcasing the possibilities of excellent research with positive community support, and just how much a trio of young people can grow over the course of 6 weeks, this summer has highlighted the value of long term monitoring studies, particularly when studying long-lived animals such as whales. We saw far fewer whales this summer than compared to the two previous years, and the whales spent much less time in the Port Orford area (Table 1). As a scientist, knowing where whales are not (absence data) is just as important as knowing where whales are (presence data), and these marked differences drive our hypotheses! What has changed in the system? What can explain the differences in whale behavior between years?  Does it have to do with food quality or availability?  (This is why we have been gathering all those zooplankton samples.) Does it have to do with other oceanographic factors or human activities?

Table 1. Summary of whale tracking efforts for the three seasons of field work in Port Orford.   Notice how in 2017 we only collected 194 whale location points (theodolite marks). This is about 92% less than in the previous years.

2015 2016 2017
Hours spent watching 72:49 148:30 108
Hours spent tracking 80:39* 82:30 11
Number of individuals 43 50 15
Number of theodolite marks 2483 2414 194

*we often tracked more than one individual simultaneously in 2015

Long term monitoring projects give us a chance to notice differences between years, and ask questions about what are normal fluctuations in the system, and what are abnormal. On top of that, projects like this create the opportunity for additional internships, and to mentor more students in the scientific method of investigation.  There is so much still to be explored in the Port Orford ecosystem, and I truly hope this program is able to continue.  If you are interested in making a monetary contribution to sustain this research and internship program, donations can be accepted here (gemm lab fund) and here (field station fund).

Quince records zooplankon sample weights in the wet lab.
Quince sorts through a zooplankton sample in the wet lab.
Nathan stores zooplankton community analysis samples
Maggie and Nathan out in the kayak
Quince and Maggie in the kayak
Maggie, Florence and Quince enjoy the eclipse!
Quince and Maggie bundle up on the cliff as they watch for whales.
Nathan and Quince organize data on the computer at the end of the day.
Quince and Nathan build sand castles as we wait for the fog to clear before launching the research kayak

This research and  student internships would not have been possible without the generous support from Oregon Sea Grant, the Oregon Coast STEM hub, the Port Orford Field Station, South Coast Tours, partnerships with the Bernard and Chapman labs, the OSU Marine Mammal Institute, and the Geospatial Ecology of Marine Megafauna Lab.

Through the intern’s eyes; a video log of the 2017 gray whale foraging ecology project.

By: Maggie O’Rourke-Liggett, GEMM lab summer intern, Oregon State University

Enjoy this short video showcasing the intern experience from the gray whale foraging ecology project this summer. Check back next week for a recap of our preliminary results.

The passion of a researcher

By Quince Nye, GEMM Lab Summer Intern, Pacific High School Junior

I have spent a lot of my life surrounded by nature. I like to backpack, bike, dive, and kayak in these natural environments. I also have the luck of having parents who are always planning to take me on another adventure where I get to see nature and its inhabitants in ways most people don’t get to enjoy.

Through my backyard explorations, I have begun to realize that Port Orford has an amazing ecosystem in the coves and rivers that are very tied into our community. I’ve fished and swam in these rivers, gone on kayaking tours in these coves (with a great kayak company called South Coast Tours that we partner with), and I’ve seen the life that dwells in them.

Nathan and Maggie paddle out to Mill Rocks for early morning sample collection

Growing up in a school of less than 100 kids I have learned to never reject an opportunity to be a part of something bigger and learn from that experience. So when one of my close friends told me about an OSU project (a college I’m interested in attending) that needed interns to help collect data on gray whales, and kayak almost every day, I signed up without a doubt in my mind.

The team gets some good practice tracking Buttons (Whale #3).  Left to right; Quince, Nathan, Maggie, Florence.

Fast forward a month, and I wake up at 5:20 am. I eat breakfast and get to the Port Orford Field Station. We make a plan for the operations of both the kayak team and cliff team. Today, I’m part of the cliff team, so I head up above the station to Fort Point. Florence and I set up the theodolite and computer at the lookout point and start taking half hour watch shifts searching the horizon for the spout of a gray whale.  Sometimes you see one right away, but other times it feels like the whales are actively hiding from you. These are the times I wish Maggie was here with her endless supply of Disney soundtracks to help pass the hours.

Imitating a ship’s captain, Quince points toward our whale while shouting “Mark”.

A whale spouts out at Mill Rocks and starts heading across to the jetty. Hurray, its data collection time! I try to quickly move the cross-hairs of the theodolite onto the position of the whale using a set of knobs like those on an etch-a-sketch. As you may understand, it’s not an easy task at first but I manage to do it because I’ve been practicing for three weeks. I say “Mark!” cueing Florence to click a button in the program Pythagoras on the computer to record the whale’s position.

The left hand side of Buttons – notice the scatter of white markings on the upper back.

Meanwhile, Florence sees that the whale has two white spots where the fluke meets the knuckles. Those are identifying marks of the beloved whale, Buttons. This whale has been seen here since 2016 and is a fan favorite for our on-going research program. Florence gets just as excited every time and texts her eagerly awaiting interns of previous years all about the sighting. Of course Buttons is not the only whale to have identifying marks such as scars and pigmentation marks. This is why we make sure to get photos of the whales we spot, allowing us to do photo-ID analysis on them through comparison to our database of pictures from previous years.

Quince practices CPR protocol on a training mannequin on his first day.

So far I have gained skill after skill in this internship. I got CPR certified, took a kayak training class, learned how to use a theodolite, and have spent many educational (and frustrating) hours entering data in Excel. I joined the program because I was interested in all of these things. It surprised me that I was developing a relationship with the whales I’m researching. By the end of August I’m now sure that I will also know many of the whales by name. I will probably be much better at using an etch-a-sketch, and I will have had my first taste at what being a scientist is like. What I strive for, however, is to have the same look in my eyes that appears in Florence’s whenever a familiar whale decides to browse our kelp beds.

Curiosity and Community, new ways of exploring our environment.

By Nathan Malamud, GEMM Lab summer intern, Pacific High School senior

I am someone who has lived in a small town for all his life. Pretty much everyone knows each other by their first name and my graduating class only has around 20 people. Everywhere you look you will find a farm, ranch, or cranberry bog (even our school has two bogs of their own!). Because of my small town life, I have a strong sense of community. However, I have also developed a curiosity about natural and global phenomena. I try to connect these two virtues by participating in scientific efforts that help my community. When I heard that the OSU Port Orford Field Station was offering internships, I knew right away that it would definitely be a great experience for me.

The view from our field site at Fort Point in Port Orford

Port Orford, on Oregon’s southern coast, is a town that is closely tied to the ocean. So naturally, it’s important to understand and monitor our surroundings so that our town can thrive. Last year, my Marine Science class helped me further understand the complexity of the ocean. Our first semester taught us all about marine biology, zoology, and ecology. Our second semester immersed us into oceanography, ocean geology, and ocean chemistry. During the second semester, we also took trips to our town’s marine science center and to the marine reserve near Rocky Point. I loved this course and decided to try to expand my knowledge about the subject by going to the OSU Field Station.

Our safety instructor teaches takes us through basic paddling techniques

As an intern, I am currently working with three teammates to understand the feeding behavior of gray whales – what places they like to eat zooplankton the most and why they like to eat there. This whale project helps our community by Port Orford enabling high school students to perform college-level scientific research and inquiry, as well as allowing us to learn valuable skills such as CPR, surveying using a theodolite, working with chemicals in a lab, and data processing.

We had to learn how to rescue ourselves just in case we have an accident in the boat.
We all made it back in the boat!

This internship with OSU’s GEMM Lab has taught me many new skills and given me new experiences that I have never had before. Before this internship, I had never been in a kayak. Now, I go out on the water nearly every other day! When on the water, I always try to sharpen my navigating skills. I use a GPS to pinpoint the locations of our sampling stations, and I communicate to my partner where we need to go and how we will get there.

Its very important to stretch before kayaking every morning.

Once we are there, it is my job to keep the boat close to the station location so that my partner can get accurate samples. This part is a very tricky task, because not only do I have to pay attention to the GPS to make sure we are within 10 meters of the spot, but I also have to pay attention to my surroundings. I have to look at the ocean, and figure out what direction the waves are coming from. I have to watch how external forces, like wind and currents, can cause the boat to drift far from station, and I have to correct drifting with gentle paddle strokes. This is hard, especially since the kayak is so light and easy to get pushed around by the wind. However, despite the difficulty, I have learned that it is crucial not to panic. Frustration only makes things worse. The key is to maintain a harmonic balance of concentration and zen.

I have also learned that when collecting data in the field, it’s important to observe and document as much as possible. When we are in the kayak, we have 12 stations that we try to visit every day (as long as the weather cooperates). At each station, we first use a secchi disk to test the water clarity, then lower the GoPro to film the water column and see where the zooplankton are. Sometimes we catch other interesting things on the video too, such as siphonophores (my personal favorites are jellies and salps) and rockfish.

A siphonophore
A rockfish captured with our GoPro.

Next we tow a zooplankton net through the water, and let it collect zooplankton of all shapes and sizes, from tiny mysids to skeleton shrimp. Then we proceed to the next station and repeat the process. We have to remember to label everything, and tell the GoPro camera what station we’re at so we can sort all the information correctly when we get back to the field station. At the end of the day, we log our data into a computer, and preserve half our plankton samples with ethanol, so that we can identify the species present.  The other half gets frozen for caloric content analysis by our collaborator Dr. Kim Bernard to help us understand how much zooplankton a whale needs to eat to meet its energy needs each day.

By repeating this entire process every day, we are able to look at daily changes, which also helps us to better understand why whales spend time in certain areas and not others. Be sure to check out my teammate Maggie’s blog post about some of the tools and technologies we use to track the whales!

This whale project has been, and definitely still is, a great experience for me! I have learned a lot and have worked with some amazing people. I believe that I am learning many valuable skills, and that the skills I learn will allow me to help my community.