Where the Wild Things Are

By Dylan Gregory, GEMM Lab summer 2018 intern, OSU undergraduate transfer

In ecology, biodiversity is a term often touted for its key importance in stable ecosystems. Every organism plays its role in the constant struggle of nature, competing and cooperating with each other for survival. The sun provides the initial energy to primary producers, herbivores eat those producers, and predators then eat the consumers. The food chain is a simplistic way to look at how ecosystems work, and of course, it is more like an intricate web of interactions. Fungus and plants work together to trade nutrients and create a vast network of fertile soils; kelp forests provide habitats and food for a variety of prey that marine predators feed on. There are checks and balances between all these organisms that give breath into the beauty and color we see in ecosystems around the world. And, here in Port Orford is no exception. Coming to the project I expected to see some whales, of course. However only three weeks in and I’ve been absolutely astounded with the amount of marine biodiversity we’ve experienced. These past three weeks have been nothing if, well, wild.

Eschrichtius robustus, The Gray Whale

There was no doubt we would see gray whales, that is what we are here for after all, and studying them in the field has been an incredibly enlightening experience. Watching an animal every day for weeks really gets you into their head. You start to connect with them and think about their behaviors in different ways. You begin to realize that the individuals have unique quirks, habits and tendencies. For example, one whale would feed quickly for a time, and then seem to run out of energy and “log” itself, floating on the surface, taking multiple breaths in succession to recover before diving back down. Many whales come from the south, to feed in Mill Rocks before moving to Tichenor Cove, and then leave our study region through “Hell’s Gate” to the North, often resting a moment, taking multiple breaths and then launching into the open sea. Still, when you think you know these whales, they surprise you with an alarming unpredictability, making tracking them a new experience every day.

Figure 1 A gray whale surprised us by surfacing right next to our kayak during a routine zooplankton sampling. The site has shown to have a significant amount of zooplankton and it must have been very interested in the prey available, completely ignoring our presence. Photo by Haley Kent.

The whale in Fig. 1 surprised us, and honestly, being so close to it was as humbling as it was awesome. I expected to see whales, but never expected such a close encounter. These gentle giants are one of our not so distant relatives in the ocean. Many of us do this kind of research for more than just the science and the data. Many of us do it for the connection we feel to our mammal family.

Phoca vitulina richardii, The Pacific Harbor Seal

I absolutely adore these harbor seals! They’re well known for their friendliness towards humans as their dopey little heads pop up out of the water to greet you with a curious look in their eyes. They like to bob in the surf and stare at us while we’re out sampling in the kayak. At first, we got quite excited seeing one, often startling them as we’d squeal “seal!” to each other and they’d dip back under and scurry away. Now though, they seem more comfortable being around our kayak (Fig. 2).

Figure 2 This harbor seal surfaced next to Haley and me shortly before the whale in Fig 1. We named him Courage, as he stuck around and kept us company during the whole encounter. Photo by Haley Kent.

One day a seal followed Lisa and Hayleigh around the jetty on their way back from sampling, swimming around the kayak and investigating them. Out in Mill Rocks, we often see them stretching on top of the rocks, seemingly doing a little yoga session while basking in the morning sun. Despite their cute and cuddly appearance, they are still predators. With plenty of fish to eat and make them happy, these harbor seals are quite plentiful themselves, and I’d like to think we’ve become quite good friends with the little guys.

Tursiops truncatus, The Bottlenose Dolphin

Figure 3 A shot of the dorsal fin seen on August 9th in Mill Rocks. Photo by Dylan Gregory.

One morning we were in Mill Rocks and a large cloud of fog moved in, so we decided to wait it out before making our passage to Tichenor Cove. While sitting there, enjoying a snack, we noticed some dorsal fins popping up about 100 meters from us. Caught by surprise, Haley and I scrambled for our cameras and lo and behold, we noticed they were a small pod of dolphins! Two adults and a calf. Unfortunately, as you can see from our pictures, it is difficult to identify what species they were exactly.

Figure 4 The head and rostrum of the dolphin seen in Mill Rocks on August 9th. Photo by Dylan Gregory.

After communicating with Lisa and Leigh, we have decided that their dorsal fins were far too big and curved to be harbor porpoises (Fig. 3), and the intersection of the head and rostrum seem to have the classic look of a bottlenose dolphin (Fig. 4).

If these were in fact bottlenose dolphins, why are they here in Port Orford, Oregon? It’s uncommon for them to be so far north in our colder waters. Were they foraging for food? Finding refuge from predators? Is it because our waters are becoming warmer? A sighting like this gives more weight to how climate change is affecting our oceans and how marine animals are responding by adapting their migratory and feeding behaviors.

Pisaster and Pycnopodia, The Common Sea Star and the Sunflower Star

Figure 5 Pisaster sea stars and anemones on a rock in Mill Rocks. No Pycnopodia (often called sunflower stars for their many legs) have been spotted in our study zone. Photo by Haley Kent.

One of the coolest aspects of living at the Port Orford Field Station is the fact that we have access to a lot of engagement with other scientists. For instance, we were able to attend a webinar about Sea Star Wasting Disease (SSWD) research currently happening at OSU by Post Doc Sarah Gravem. In a nutshell, a bacterial disease has been infecting sea stars along the west coast, causing a rapid plummet in their populations. Pisaster and Pycnopodia (Fig. 5) have been particularly affected. They are keystone predators, and as such, hold an important role in intertidal ecosystems. Feeding on snails, urchins, other sea stars and various mollusks, these sea stars maintain species populations and allow for a diverse and stable intertidal zone, which then supports many other near shore marine species. While SSWD’s cause is relatively unknown, Pisaster seems to be recovering while Pycnopodia is still struggling. I’ve even heard some anecdotal reports that fishermen here in Port Orford have noticed the lack of Pycnopodia as well, but they are rather pleased that these “ragmops” have stopped mucking up their lines and crab pots.

Below the Surface

There is a charm to the deep, a mystery and wonder that has captured the imagination of humans ad nauseam. Stories, movies, music and masterpieces of art have been inspired by The Abyss. Below the surface lies a diverse world teeming with life, full of questions and answers to be found. While marine mammals are why we’re here, there’s an entirely different environment under the water that is unseen from the safety of our dry, oxygen rich air. Our research doesn’t involve any diving, and so our eyes under the water are a GoPro camera attached to a downrigger on our kayak. Although designed to measure zooplankton community density, we’ve seen quite a bit more than itty bitty sea bugs in the depths of our little harbor here in Port Orford.

Strongylocentrotus purpuratus, The Purple Sea Urchin

Urchins are known for their bright colors and spiny ball like exterior. Close relatives to the sea stars, urchins inhabit the intertidal zones and also take residence within kelp beds. During our kayak training, we passed by some rocks near the cliffs and it was an awesome sight seeing the diversity of intertidal critters such as anemones, sea stars and sea urchins. However, a week into data collection, we have noticed something startling: a large quantity of the urchins cover the seafloor and the kelp, or at least what was left of the kelp (Fig. 6).

Figure 6 Sea Urchins decimating a kelp bed in Tichenor Cove. Photo captured from GoPro footage.

Sea urchins are important members in their communities. They graze on algae and control it from overwhelming the waters, but when left unchecked urchins can completely decimate kelp beds. This pattern is often referred to as “urchin barrens”. Sea otters and sea stars are the urchin’s main predator, and due to the absence of otters and the emergence of SSWD, the occurrence of urchin barrens has risen. An assessment of the reintroduction of the sea otters to Oregon by Dominique Kone, a GEMM Lab graduate student, is underway, and there is a lot of new research on SSWD, both of which could support the ‘ecosystem control’ of urchin populations. We’ve already spotted the urchins wreaking their havoc on the kelp in two separate sites in Tichenor Cove. Since gray whales primarily feed within these kelp beds, this increase in urchin populations is something that we are monitoring. An urchin barren can happen quickly and causes significant ecosystem damage, so this is not something to ignore. If we lose the kelp, it’s easy to imagine that we may lose the whales.

Alopias vulpinus, The Thresher Shark

Figure 7 A thresher shark spotted in Tichenor Cove in Port Orford, OR. Photo captured by GoPro footage.

By far, the most exciting thing I’ve seen so far has been this lovely creature (Fig. 7). The thresher shark usually inhabits the oceanic and coastal zones in tropical and temperate waters. They feed on pelagic schooling fish, squid and sometimes even shorebirds. They attack by whipping their tails (which grow to be the size of their body!) at their prey to stun them. Threshers are on the IUCN Red List of Threatened Species as “Vulnerable” due to their declining populations. They are often hunted for shark fin soup, or by trophy hunters due to their elegant and unique tails.

Haley, our resident shark enthusiast, was able to tell that this shark was a female by the lack of claspers (male appendages) on her pelvic fin. Why was she here though? During the summer, threshers will migrate to colder yet productive northern waters to feed, and on some rare occasions, such as this one, they will come closer to shore. Perhaps she was chasing prey into the harbor and found it to be full of yummy food, or she is a juvenile, which often stay near the continental shelf.

Either way, we were all surprised and excited to see such an exotic and beautiful species of shark caught on camera in our study zone. She even does a little strut in front of the GoPro camera, showing off her beautiful caudal fin!

Protecting our Wilds      

These are only a few examples of the many different animals at work in Port Orford’s ecosystem. Perhaps the biodiversity here is why this is such a hot spot for our whale friends. The productive and lively waters have shown us so many critters, and likely many more we have yet to see. But alas, we have three more weeks of data collection and new discoveries, and I couldn’t be more excited.

“It is a curious situation that the sea, from which life first arose should now be threatened by the activities of one form of that life. But the sea, though changed in a sinister way, will continue to exist; the threat is rather to life itself.”

– Rachel Carson, The Sea Around Us

This experience only drives me further into my pursuit of ecological research. I believe it’s incredibly important to understand the world and how it functions, and to do so before it’s too late. All too often we have breakthrough discoveries in science because something has already fallen apart. Ecosystems are fragile, and climate change, pollution, and other anthropogenic disturbances all have an impact which damage and alter ecosystems and the services they provide. However, it’s an impact we can control with a fundamental understanding of how nature works. With a little hope, some integrity, and a whole lot of passion, I believe we have the power to truly make a difference.

Cold Fingers and Carabiners

By Hayleigh Middleton, GEMM Lab summer 2018 intern, entering OSU undergrad 

Cold Fingers and Carabiners: that’s what most of the past three weeks have been about. We’ve progressively been getting up earlier—with many thanks to the coffee pot and multiple alarms— in order to be on the water collecting data before the wind and fog decide to kick in. Working on the ocean at 7 am with wet hands, metal equipment, a tight suit, and a “refreshing” breeze while trying to keep an eight-foot sit-on-top kayak from tipping over is challenging to say the least. Making sure the Theodolite is perfectly level on its tripod resting on sand-covered ground at the top of a cliff? Not much easier. The air is cold, the wind is cold, the equipment is cold, I’m cold, and now, everything is wet.

Rugged laptop on the cliff site. Photo by Hayleigh Middleton.

I absolutely love it.

Of all the ways I could have chosen to spend my summer before starting college at OSU, I’m so glad I took a chance and asked to spend it here. The official goals of our research project are to monitor and record the foraging habits of the Pacific Coast Feeding Group of gray whales, attempt to find out if specific individuals tend to have site fidelity and forage here year after year, and why or how they choose certain spots to feed over others. What does that mean for me? I get to kayak and take pictures of whales for six weeks! Of course, there’s a bunch of technical stuff and expensive equipment that took us two weeks to learn, but now we’re off to a great start and ready to learn more about these amazing creatures.

We have such a short amount of time to collect all this data to try and fill in the puzzle that is gray whale behavior, and we’re only a few weeks in, but I feel like I’ve already connected with this group of 60,000-pound mammals. That, in essence, is really what we’re doing here. We’re on top of a 33-meter-high cliff watching empty water for hours on the chance that we’ll be able to see a whale, identify it through photo-ID, track it with the theodolite to figure out its behavior, and use our kayak data to figure out its diet and feeding choices. Even though the whales forage up to two kilometers away from our tracking spot, it feels like they know we’re watching them. Sometimes it feels like they’re teasing us—we’ll see one, and once we get the sights fixed on it, it dives down and doesn’t come back up until we’ve turned our attention. One whale got into a very predictable pattern: three blows and then a deep dive, forage for five minutes, pop up half a viewfinder away, three more blows. We set our sights on the third blow and waited for her to resurface.

…and waited.

…and waited.

She swam away and didn’t show herself again.

Other times it’s like they conspire against us. Earlier this week, we spent most of the morning tracking the same whale. A couple hours into the track, another whale popped up right next to the first. Since we use a computerized tracking program, each whale is assigned a group number. That way, we can track each individual’s path and later match it to the photo identification database and sometimes a nickname. The two whales surfaced at just the right frequency and distance apart that deciding which number was currently up was guesswork for a good 15 minutes, but we gave them new track numbers and were able to sort it out later after reviewing our photos.

Searching for whales. Photo by Haley Kent.

On another day, we surveyed for whales until quitting time, which is 3:00 pm. About 2:30 pm, one was finally spotted. I named her Princess because she couldn’t be bothered to bring her body out of the water enough so we could mark her location or take a picture except for when her pectoral fin, the tip of which was “gloved” in white, came out and made a motion like a princess in a parade. When there are whales around, we can’t just say “oh look, 3:00 pm time to go” because this is important data to collect. So, we decided to wait until 3:30 pm to see if she surfaced again within visual range. 3:30 pm came and still no sign of her, so I packed up the theodolite and tripod. As soon as the box was closed, she blew, and another whale surfaced right in front of the cliff. We got some pictures of the closer one for a bit and decided that was enough. As the camera was being lowered into its case, another whale surfaced in the cove. It felt like the first went and told all the whales heading south “hey, these guys want to leave at 3, so show up right around then.” That day we got back to the lab around 5. Even though this meant being on the cliff for almost 10 hours that day, it was thrilling to have seen so many whales in one day.

Then there are times when the whales seem to beg for attention. On our third day on the cliff, we saw what we believe to be a juvenile come swimming into view. We assume that he was a juvenile because he was “small” and quite blank in terms of pigmentation and scarring. He was adorable. He stayed over at Mill Rocks for a while foraging, all of which we “fixed” into the tracking program via the Theodolite, and then he came toward us into the little kelp patch just in front of our cliff site. He would dive down, scoop up some zooplankton to eat, and resurface right in the middle of the kelp. The cutest part is that he would then proceed to roll around in the kelp and further drape himself in it.

Kelp whale. Photo by Lisa Hildebrand.

Having such a young whale come and forage made us wonder if mothers who have site fidelity then teach their young “hey, you don’t have to go all the way north, there’s a ton of good food here in Port Orford.”  Hopefully that’s one of the things we’ll be able to figure out with the data collected with this longterm study. But in the meantime, I still have three weeks of data to collect and a bunch more whales to meet. 

Big Data: Big possibilities with bigger challenges

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

Did you know that Excel has a maximum number of rows? I do. During Winter Term for my GIS project, I was using Excel to merge oceanographic data, from a publicly-available data source website, and Excel continuously quit. Naturally, I assumed I had caused some sort of computer error. [As an aside, I’ve concluded that most problems related to technology are human error-based.] Therefore, I tried reformatting the data, restarting my computer, the program, etc. Nothing. Then, thanks to the magic of Google, I discovered that Excel allows no more than 1,048,576 rows by 16,384 columns. ONLY 1.05 million rows?! The oceanography data was more than 3 million rows—and that’s with me eliminating data points. This is what happens when we’re dealing with big data.

According to Merriam-Webster dictionary, big data is an accumulation of data that is too large and complex for processing by traditional database management tools (www.merriam-webster.com). However, there are journal articles, like this one from Forbes, that discuss the ongoing debate of how to define “big data”. According to the article, there are 12 major definitions; so, I’ll let you decide what you qualify as “big data”. Either way, I think that when Excel reaches its maximum row capacity, I’m working with big data.

Collecting oceanography data aboard the R/V Shimada. Photo source: Alexa K.

Here’s the thing: the oceanography data that I referred to was just a snippet of my data. Technically, it’s not even MY data; it’s data I accessed from NOAA’s ERDDAP website that had been consistently observed for the time frame of my dolphin data points. You may recall my blog about maps and geospatial analysis that highlights some of the reasons these variables, such as temperature and salinity, are important. However, what I didn’t previously mention was that I spent weeks working on editing this NOAA data. My project on common bottlenose dolphins overlays environmental variables to better understand dolphin population health off of California. These variables should have similar spatiotemporal attributes as the dolphin data I’m working with, which has a time series beginning in the 1980s. Without taking out a calculator, I still know that equates to a lot of data. Great data: data that will let me answer interesting, pertinent questions. But, big data nonetheless.

This is a screenshot of what the oceanography data looked like when I downloaded it to Excel. This format repeats for nearly 3 million rows.

Excel Screen Shot. Image source: Alexa K.

I showed this Excel spreadsheet to my GIS professor, and his response was something akin to “holy smokes”, with a few more expletives and a look of horror. It was not the sheer number of rows that shocked him; it was the data format. Nowadays, nearly everyone works with big data. It’s par for the course. However, the way data are formatted is the major split between what I’ll call “easy” data and “hard” data. The oceanography data could have been “easy” data. It could have had many variables listed in columns. Instead, this data  alternated between rows with variable headings and columns with variable headings, for millions of cells. And, as described earlier, this is only one example of big data and its challenges.

Data does not always come in a form with text and numbers; sometimes it appears as media such as photographs, videos, and audio files. Big data just got a whole lot bigger. While working as a scientist at NOAA’s Southwest Fisheries Science Center, one project brought in over 80 terabytes of raw data per year. The project centered on the eastern north pacific gray whale population, and, more specifically, its migration. Scientists have observed the gray whale migration annually since 1994 from Piedras Blancas Light Station for the Northbound migration, and 2 out of every 5 years from Granite Canyon Field Station (GCFS) for the Southbound migration. One of my roles was to ground-truth software that would help transition from humans as observers to computer as observers. One avenue we assessed was to compare how well a computer “counted” whales compared to people. For this question, three infrared cameras at the GCFS recorded during the same time span that human observers were counting the migratory whales. Next, scientists, such as myself, would transfer those video files, upwards of 80 TB, from the hard drives to Synology boxes and to a different facility–miles away. Synology boxes store arrays of hard drives and that can be accessed remotely. To review, three locations with 80 TB of the same raw data. Once the data is saved in triplet, then I could run a computer program, to detect whale. In summary, three months of recorded infrared video files requires upwards of 240 TB before processing. This is big data.

Scientists on an observation shift at Granite Canyon Field Station in Northern California. Photo source: Alexa K.
Alexa and another NOAA scientist watching for gray whales at Piedras Blancas Light Station. Photo source: Alexa K.

In the GEMM Laboratory, we have so many sources of data that I did not bother trying to count. I’m entering my second year of the Ph.D. program and I already have a hard drive of data that I’ve backed up three different locations. It’s no longer a matter of “if” you work with big data, it’s “how”. How will you format the data? How will you store the data? How will you maintain back-ups of the data? How will you share this data with collaborators/funders/the public?

The wonderful aspect to big data is in the name: big and data. The scientific community can answer more, in-depth, challenging questions because of access to data and more of it. Data is often the limiting factor in what researchers can do because increased sample size allows more questions to be asked and greater confidence in results. That, and funding of course. It’s the reason why when you see GEMM Lab members in the field, we’re not only using drones to capture aerial images of whales, we’re taking fecal, biopsy, and phytoplankton samples. We’re recording the location, temperature, water conditions, wind conditions, cloud cover, date/time, water depth, and so much more. Because all of this data will help us and help other scientists answer critical questions. Thus, to my fellow scientists, I feel your pain and I applaud you, because I too know that the challenges that come with big data are worth it. And, to the non-scientists out there, hopefully this gives you some insight as to why we scientists ask for external hard drives as gifts.

Leila launching the drone to collect aerial images of gray whales to measure body condition. Photo source: Alexa K.
Using the theodolite to collect tracking data on the Pacific Coast Feeding Group in Port Orford, OR. Photo source: Alexa K.

References:

https://support.office.com/en-us/article/excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3

https://www.merriam-webster.com/dictionary/big%20data

Collaboration – it’s where it’s at.

By Dominique Kone, Masters Student in Marine Resource Management

As I finish my first year of graduate school, I’ve been reflecting on what has helped me develop as a young scientist over the past year. Some of these lessons are somewhat expected: making time for myself outside of academia, reading the literature, and effectively managing my time. Yet, I’ve also learned that working with my peers, other scientists, and experts outside my scientific field can be extremely rewarding.

For my thesis, I will be looking at the potential to reintroduce sea otters to the Oregon coast by identifying suitable habitat and investigating their potential ecological impacts. During this first year, I’ve spent much time getting to know various stakeholder groups, their experiences with this issue, and any advice they may have to inform my work. Through these interactions, I’ve benefitted in ways that would not have been possible if I tried tackling this project on my own.

Source: Seapoint Center for Collaborative Leadership.

When I first started my graduate studies, I was eager to jump head first into my research. However, as someone who had never lived in Oregon before, I didn’t yet have a full grasp of the complexities and context behind my project and was completely unfamiliar with the history of sea otters in Oregon. By engaging with managers, scientists, and advocates, I quickly realized that there was a wealth of knowledge that wasn’t covered in the literature. Information from people who were involved in the initial reintroduction; theories behind the cause of the first failed reintroduction; and most importantly, the various political, social, and culture implications of a potential reintroduction. This information was crucial in developing and honing my research questions, which I would have missed if I had solely relied on the literature.

As my first year in graduate school progressed, I also quickly realized that most people familiar with this issue also had strong opinions and views about how I should conduct my study, whether and how managers should bring sea otters back, and if such an effort will succeed. This input was incredibly helpful in getting to know the issue, and also fostered my development as a scientist as I had to quickly improve my listening and critically-thinking skills to consider my research from different perspectives. One of the benefits of collaboration – particularly with experts outside the marine ecology or sea otter community – is that everyone looks at an issue in a different way. Through my graduate program, I’ve worked with students and faculty in the earth, oceanic, and atmospheric sciences, whom have challenged me to consider other sources of data, other analyses, or different ways of placing my research within various contexts.

Most graduate students when they first start graduate school. Source: Know Your Meme.

One of the major advantages of being a graduate student is that most researchers – including professors, faculty, managers, and fellow graduate students – are more than happy to analyze and discuss my research approach. I’ve obtained advice on statistical analyses, availability and access to data, as well as contacts to other experts. As a graduate student, it’s important for me to consult with more-experienced researchers who can not only explain complex theories or concepts, but who can also validate the appropriateness of my research design and methods. Collaborating with senior researchers is a great way to become established and recognized within the scientific community. Because of this project, I’ve started to become adopted into the marine mammal and sea otter research communities, which is obviously beneficial for my thesis work, but also allows me to start building strong relationships for a career in marine conservation.

Source: Oregon State University.

Looking ahead to my second year of graduate school, I’m eager to make a big push toward completing my thesis, writing manuscripts for journal submission, and communicating my research to various audiences. Throughout this process, it’s still important for me to continue to reach out and collaborate with others within and outside my field as they may help me reach my personal goals. In my opinion, this is exactly what graduate students should be doing. While graduate students may have the ability and some experience to work independently, we are still students, and we are here to learn from and make lasting connections with other researchers and fellow graduate students through these collaborations.

If there’s any advice I would give to an incoming graduate student, it’s this: Collaborate, and collaborate often. Don’t be afraid to work with others because you never know whether you’ll come away with a new perspective, learn something new, come across new research or professional opportunities, or even help others with their research.

The Recipe for a “Perfect” Marine Mammal and Seabird Cruise

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

Science—and fieldwork in particular—is known for its failures. There are websites, blogs, and Twitter pages dedicated to them. This is why, when things go according to plan, I rejoice. When they go even better than expected, I practically tear up from amazement. There is no perfect recipe for a great marine mammal and seabird research cruise, but I would suggest that one would look like this:

 A Great Marine Mammal and Seabird Research Cruise Recipe:

  • A heavy pour of fantastic weather
    • Light on the wind and seas
    • Light on the glare
  • Equal parts amazing crew and good communication
  • A splash of positivity
  • A dash of luck
  • A pinch of delicious food
  • Heaps of marine mammal and seabird sightings
  • Heat to approximately 55-80 degrees F and transit for 10 days along transects at 10-12 knots
The end of another beautiful day at sea on the R/V Shimada. Image source: Alexa K.

The Northern California Current Ecosystem (NCCE) is a highly productive area that is home to a wide variety of cetacean species. Many cetaceans are indicator species of ecosystem health as they consume large quantities of prey from different levels in trophic webs and inhabit diverse areas—from deep-diving beaked whales to gray whales traveling thousands of miles along the eastern north Pacific Ocean. Because cetacean surveys are a predominant survey method in large bodies of water, they can be extremely costly. One alternative to dedicated cetacean surveys is using other research vessels as research platforms and effort becomes transect-based and opportunistic—with less flexibility to deviate from predetermined transects. This decreases expenses, creates collaborative research opportunities, and reduces interference in animal behavior as they are never pursued. Observing animals from large, motorized, research vessels (>100ft) at a steady, significant speed (>10kts/hour), provides a baseline for future, joint research efforts. The NCCE is regularly surveyed by government agencies and institutions on transects that have been repeated nearly every season for decades. This historical data provides critical context for environmental and oceanographic dynamics that impact large ecosystems with commercial and recreational implications.

My research cruise took place aboard the 208.5-foot R/V Bell M. Shimada in the first two weeks of May. The cruise was designated for monitoring the NCCE with the additional position of a marine mammal observer. The established guidelines did not allow for deviation from the predetermined transects. Therefore, mammals were surveyed along preset transects. The ship left port in San Francisco, CA and traveled as far north as Cape Meares, OR. The transects ranged from one nautical mile from shore and two hundred miles offshore. Observations occurred during “on effort” which was defined as when the ship was in transit and moving at a speed above 8 knots per hour dependent upon sea state and visibility. All observations took place on the flybridge during conducive weather conditions and in the bridge (one deck below the flybridge) when excessive precipitation was present. The starboard forward quarter: zero to ninety degrees was surveyed—based on the ship’s direction (with the bow at zero degrees). Both naked eye and 7×50 binoculars were used with at least 30 percent of time binoculars in use. To decrease observer fatigue, which could result in fewer detected sightings, the observer (me) rotated on a 40 minutes “on effort”, 20 minutes “off effort” cycle during long transits (>90 minutes).

Alexa on-effort using binoculars to estimate the distance and bearing of a marine mammal sighted off the starboard bow. Image source: Alexa K.

Data was collected using modifications to the SEEbird Wincruz computer program on a ruggedized laptop and a GPS unit was attached. At the beginning of each day and upon changes in conditions, the ship’s heading, weather conditions, visibility, cloud cover, swell height, swell direction, and Beaufort sea state (BSS) were recorded. Once the BSS or visibility was worse than a “5” (1 is “perfect” and 5 is “very poor”) observations ceased until there was improvement in weather. When a marine mammal was sighted the latitude and longitude were recorded with the exact time stamp. Then, I noted how the animal was sighted—either with binoculars or naked eye—and what action was originally noticed—blow, splash, bird, etc. The bearing and distance were noted using binoculars. The animal was given three generalized behavior categories: traveling, feeding, or milling. A sighting was defined as any marine mammal or group of animals. Therefore, a single sighting would have the species and the best, high, and low estimates for group size.

By my definitions, I had the research cruise of my dreams. There were moments when I imagined people joining this trip as a vacation. I *almost* felt guilty. Then, I remember that after watching water for almost 14 hours (thanks to the amazing weather conditions), I worked on data and reports and class work until midnight. That’s the part that no one talks about: the data. Fieldwork is about collecting data. It’s both what I live for and what makes me nervous. The amount of time, effort, and money that is poured into fieldwork is enormous. The acquisition of the data is not as simple as it seems. When I briefly described my position on this research cruise to friends, they interpret it to be something akin to whale-watching. To some extent, this is true. But largely, it’s grueling hours that leave you fatigued. The differences between fieldwork and what I’ll refer to as “everything else” AKA data analysis, proposal writing, manuscript writing, literature reviewing, lab work, and classwork, are the unbroken smile, the vaguely tanned skin, the hours of laughter, the sea spray, and the magical moments that reassure me that I’ve chosen the correct career path.

Alexa photographing a gray whale at sunset near Newport, OR. Image source: Alexa K.

This cruise was the second leg of the Northern California Current Ecosystem (NCCE) survey, I was the sole Marine Mammal and Seabird Observer—a coveted position. Every morning, I would wake up at 0530hrs, grab some breakfast, and climb to the highest deck: the fly-bridge. Akin to being on the top of the world, the fly-bridge has the best views for the widest span. From 0600hrs to 2000hrs I sat, stood, or danced in a one-meter by one-meter corner of the fly-bridge and surveyed. This visual is why people think I’m whale watching. In reality, I am constantly busy. Nonetheless, I had weather and seas that scientists dream about—and for 10 days! To contrast my luck, you can read Florence’s blog about her cruise. On these same transects, in February, Florence experienced 20-foot seas with heavy rain with very few marine mammal sightings—and of those, the only cetaceans she observed were gray whales close to shore. That starkly contrasts my 10 cetacean species with upwards of 45 sightings and my 20-minute hammock power naps on the fly-bridge under the warm sun.

Pacific white-sided dolphins traveling nearby. Image source: Alexa K.

Marine mammal sightings from this cruise included 10 cetacean species: Pacific white-sided dolphin, Dall’s porpoise, unidentified beaked whale, Cuvier’s beaked whale, gray whale, Minke whale, fin whale, Northern right whale dolphin, blue whale, humpback whale, and transient killer whale and one pinniped species: northern fur seal. What better way to illustrate these sightings than with a map? We are a geospatial lab after all.

Cetacean Sightings on the NCCE Cruise in May 2018. Image source: Alexa K.

This map is the result of data collection. However, it does not capture everything that was observed: sea state, weather, ocean conditions, bathymetry, nutrient levels, etc. There are many variables that can be added to maps–like this one (thanks to my GIS classes I can start adding layers!)–that can provide a better understanding of the ecosystem, predator-prey dynamics, animal behavior, and population health.

The catch from a bottom trawl at a station with some fish and a lot of pyrosomes (pink tube-like creatures). Image source: Alexa K.

Being a Ph.D. student can be physically and mentally demanding. So, when I was offered the opportunity to hone my data collection skills, I leapt for it. I’m happiest in the field: the wind in my face, the sunshine on my back, surrounded by cetaceans, and filled with the knowledge that I’m following my passion—and that this data is contributing to the greater scientific community.

Humpback whale photographed traveling southbound. Image source: Alexa K.

The Land of Maps and Charts: Geospatial Ecology

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

I love maps. I love charts. As a random bit of trivia, there is a difference between a map and a chart. A map is a visual representation of land that may include details like topology, whereas a chart refers to nautical information such as water depth, shoreline, tides, and obstructions.

Map of San Diego, CA, USA. (Source: San Diego Metropolitan Transit System)
Chart of San Diego, CA, USA. (Source: NOAA)

I have an intense affinity for visually displaying information. As a child, my dad traveled constantly, from Barrow, Alaska to Istanbul, Turkey. Immediately upon his return, I would grab our standing globe from the dining room and our stack of atlases from the coffee table. I would sit at the kitchen table, enthralled at the stories of his travels. Yet, a story was only great when I could picture it for myself. (I should remind you, this was the early 1990s, GoogleMaps wasn’t a thing.) Our kitchen table transformed into a scene from Master and Commander—except, instead of nautical charts and compasses, we had an atlas the size of an overgrown toddler and salt and pepper shakers to pinpoint locations. I now had the world at my fingertips. My dad would show me the paths he took from our home to his various destinations and tell me about the topography, the demographics, the population, the terrain type—all attribute features that could be included in common-day geographic information systems (GIS).

Uncle Brian showing Alexa where they were on a map of Maui, Hawaii, USA. (Photo: Susan K. circa 1995)

As I got older, the kitchen table slowly began to resemble what I imagine the set from Master and Commander actually looked like; nautical charts, tide tables, and wind predictions were piled high and the salt and pepper shakers were replaced with pencil marks indicating potential routes for us to travel via sailboat. The two of us were in our element. Surrounded by visual and graphical representations of geographic and spatial information: maps. To put my map-attraction this in even more context, this is a scientist who grew up playing “Take-Off”, a board game that was “designed to teach geography” and involved flying your fleet of planes across a Mercator projection-style mapboard. Now, it’s no wonder that I’m a graduate student in a lab that focuses on the geospatial aspects of ecology.

A precocious 3-year-old Alexa, sitting with the airplane pilot asking him a long list of travel-related questions (and taking his captain’s hat). Photo: Susan K.

So why and how did geospatial ecology became a field—and a predominant one at that? It wasn’t that one day a lightbulb went off and a statistician decided to draw out the results. It was a progression, built upon for thousands of years. There are maps dating back to 2300 B.C. on Babylonian clay tablets (The British Museum), and yet, some of the maps we make today require highly sophisticated technology. Geospatial analysis is dynamic. It’s evolving. Today I’m using ArcGIS software to interpolate mass amounts of publicly-available sea surface temperature satellite data from 1981-2015, which I will overlay with a layer of bottlenose dolphin sightings during the same time period for comparison. Tomorrow, there might be a new version of software that allows me to animate these data. Heck, it might already exist and I’m not aware of it. This growth is the beauty of this field. Geospatial ecology is made for us cartophiles (map-lovers) who study the interdependency of biological systems where location and distance between things matters.

Alexa’s grandmother showing Alexa (a very young cartographer) how to color in the lines. Source: Susan K. circa 1994

In a broader context, geospatial ecology communicates our science to all of you. If I posted a bunch of statistical outputs in text or even table form, your eyes might glaze over…and so might mine. But, if I displayed that same underlying data and results on a beautiful map with color-coded symbology, a legend, a compass rose, and a scale bar, you might have this great “ah-ha!” moment. That is my goal. That is what geospatial ecology is to me. It’s a way to SHOW my science, rather than TELL it.

Would you like to see this over and over again…?

A VERY small glimpse into the enormous amount of data that went into this map. This screenshot gave me one point of temperature data for a single location for a single day…Source: Alexa K.

Or see this once…?

Map made in ArcGIS of Coastal common bottlenose dolphin sightings between 1981-1989 with a layer of average sea surface temperatures interpolated across those same years. A picture really is worth a thousand words…or at least a thousand data points…Source: Alexa K.

For many, maps are visually easy to interpret, allowing quick message communication. Yet, there are many different learning styles. From my personal story, I think it’s relatively obvious that I’m, at least partially, a visual learner. When I was in primary school, I would read the directions thoroughly, but only truly absorb the material once the teacher showed me an example. Set up an experiment? Sure, I’ll read the lab report, but I’m going to refer to the diagrams of the set-up constantly. To this day, I always ask for an example. Teach me a new game? Let’s play the first round and then I’ll pick it up. It’s how I learned to sail. My dad described every part of the sailboat in detail and all I heard was words. Then, my dad showed me how to sail, and it came naturally. It’s only as an adult that I know what “that blue line thingy” is called. Geospatial ecology is how I SEE my research. It makes sense to me. And, hopefully, it makes sense to some of you!

Alexa’s dad teaching her how to sail. (Source: Susan K. circa 2000)
Alexa’s first solo sailboat race in Coronado, San Diego, CA. Notice: Alexa’s dad pushing the bow off the dock and the look on Alexa’s face. (Source: Susan K. circa 2000)
Alexa mapping data using ArcGIS in the Oregon State University Library. (Source: Alexa K circa a few minutes prior to posting).

I strongly believe a meaningful career allows you to highlight your passions and personal strengths. For me, that means photography, all things nautical, the great outdoors, wildlife conservation, and maps/charts.  If I converted that into an equation, I think this is a likely result:

Photography + Nautical + Outdoors + Wildlife Conservation + Maps/Charts = Geospatial Ecology of Marine Megafauna

Or, better yet:

? + ⚓ + ? + ? + ? =  GEMM Lab

This lab was my solution all along. As part of my research on common bottlenose dolphins, I work on a small inflatable boat off the coast of California (nautical ✅, outdoors ✅), photograph their dorsal fin (photography ✅), and communicate my data using informative maps that will hopefully bring positive change to the marine environment (maps/charts ✅, wildlife conservation✅). Geospatial ecology allows me to participate in research that I deeply enjoy and hopefully, will make the world a little bit of a better place. Oh, and make maps.

Alexa in the field, putting all those years of sailing and chart-reading to use! (Source: Leila L.)

 

What REALLY is a Wildlife Biologist?

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

The first lecture slide. Source: Lecture1_Population Dynamics_Lou Botsford

This was the very first lecture slide in my population dynamics course at UC Davis. Population dynamics was infamous in our department for being an ultimate rite of passage due to its notoriously challenging curriculum. So, when Professor Lou Botsford pointed to his slide, all 120 of us Wildlife, Fish, and Conservation Biology majors, didn’t know how to react. Finally, he announced, “This [pointing to the slide] is all of you”. The class laughed. Lou smirked. Lou knew.

Lou knew that there is more truth to this meme than words could express. I can’t tell you how many times friends and acquaintances have asked me if I was going to be a park ranger. Incredibly, not all—or even most—wildlife biologists are park rangers. I’m sure that at one point, my parents had hoped I’d be holding a tiger cub as part of a conservation project—that has never happened. Society may think that all wildlife biologists want to walk in the footsteps of the famous Steven Irwin and say thinks like “Crikey!”—but I can’t remember the last time I uttered that exclamation with the exception of doing a Steve Irwin impression. Hollywood may think we hug trees—and, don’t get me wrong, I love a good tie-dyed shirt—but most of us believe in the principles of conservation and wise-use A.K.A. we know that some trees must be cut down to support our needs. Helicoptering into a remote location to dart and take samples from wild bear populations…HA. Good one. I tell myself this is what I do sometimes, and then the chopper crashes and I wake up from my dream. But, actually, a scientist staring at a computer with stacks of papers spread across every surface, is me and almost every wildlife biologist that I know.

The “dry lab” on the R/V Nathaniel B. Palmer en route to Antarctica. This room full of technology is where the majority of the science takes place. Drake Passage, International Waters in August 2015. Source: Alexa Kownacki

There is an illusion that wildlife biologists are constantly in the field doing all the cool, science-y, outdoors-y things while being followed by a National Geographic photojournalist. Well, let me break it to you, we’re not. Yes, we do have some incredible opportunities. For example, I happen to know that one lab member (eh-hem, Todd), has gotten up close and personal with wild polar bear cubs in the Arctic, and that all of us have taken part in some work that is worthy of a cover image on NatGeo. We love that stuff. For many of us, it’s those few, memorable moments when we are out in the field, wearing pants that we haven’t washed in days, and we finally see our study species AND gather the necessary data, that the stars align. Those are the shining lights in a dark sea of papers, grant-writing, teaching, data management, data analysis, and coding. I’m not saying that we don’t find our desk work enjoyable; we jump for joy when our R script finally runs and we do a little dance when our paper is accepted and we definitely shed a tear of relief when funding comes through (or maybe that’s just me).

A picturesque moment of being a wildlife biologist: Alexa and her coworker, Jim, surveying migrating gray whales. Piedras Blancas Light Station, San Simeon, CA in May 2017. Source: Alexa Kownacki.

What I’m trying to get at is that we accepted our fates as the “scientists in front of computers surrounded by papers” long ago and we embrace it. It’s been almost five years since I was a senior in undergrad and saw this meme for the first time. Five years ago, I wanted to be that scientist surrounded by papers, because I knew that’s where the difference is made. Most people have heard the quote by Mahatma Gandhi, “Be the change that you wish to see in the world.” In my mind, it is that scientist combing through relevant, peer-reviewed scientific papers while writing a compelling and well-researched article, that has the potential to make positive changes. For me, that scientist at the desk is being the change that he/she wish to see in the world.

Scientists aboard the R/V Nathaniel B. Palmer using the time in between net tows to draft papers and analyze data…note the facial expressions. Antarctic Peninsula in August 2015. Source: Alexa Kownacki.

One of my favorite people to colloquially reference in the wildlife biology field is Milton Love, a research biologist at the University of California Santa Barbara, because he tells it how it is. In his oh-so-true-it-hurts website, he has a page titled, “So You Want To Be A Marine Biologist?” that highlights what he refers to as, “Three really, really bad reasons to want to be a marine biologist” and “Two really, really good reasons to want to be a marine biologist”. I HIGHLY suggest you read them verbatim on his site, whether you think you want to be a marine biologist or not because they’re downright hilarious. However, I will paraphrase if you just can’t be bothered to open up a new tab and go down a laugh-filled wormhole.

Really, Really Bad Reasons to Want to be a Marine Biologist:

  1. To talk to dolphins. Hint: They don’t want to talk to you…and you probably like your face.
  2. You like Jacques Cousteau. Hint: I like cheese…doesn’t mean I want to be cheese.
  3. Hint: Lack thereof.

Really, Really Good Reasons to Want to be a Marine Biologist:

  1. Work attire/attitude. Hint: Dress for the job you want finally translates to board shorts and tank tops.
  2. You like it. *BINGO*
Alexa with colleagues showing the “cool” part of the job is working the zooplankton net tows. This DOES have required attire: steel-toed boots, hard hat, and float coat. R/V Nathaniel B. Palmer, Antarctic Peninsula in August 2015. Source: Alexa Kownacki.

In summary, as wildlife or marine biologists we’ve taken a vow of poverty, and in doing so, we’ve committed ourselves to fulfilling lives with incredible experiences and being the change we wish to see in the world. To those of you who want to pursue a career in wildlife or marine biology—even after reading this—then do it. And to those who don’t, hopefully you have a better understanding of why wearing jeans is our version of “business formal”.

A fieldwork version of a lab meeting with Leigh Torres, Tom Calvanese (Field Station Manager), Florence Sullivan, and Leila Lemos. Port Orford, OR in August 2017. Source: Alexa Kownacki.

We Are Family

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

The GEMM Lab celebrating Leigh’s birthday with homemade baked goods and discussions about science.

A lab is a family. I know there is the common saying about how you cannot choose your family and you can only choose your friends. But, I’d beg to differ. In the case of graduate school, especially in departments similar to OSU’s Fisheries and Wildlife, your lab is your chosen family. These are the people who encourage you when you’ve hit a roadblock, who push you when you need extra motivation, who will laugh with you when you’ve reached the point of hysteria after hours of data analysis, who will feed you when you’re too busy to buy groceries, and who will always be there for you. That sure sounds a lot like a family to me.

GEMM Lab members at the Society for Marine Mammalogy 2017 Conference in Halifax, Nova Scotia at the masquerade ball. Photo source: Florence Sullivan

Many of us spend weeks—if not months—conducting field research for our various projects. None of us do this work from the main campus…seeing as the main campus for Oregon State University is located Corvallis, Oregon which is approximately 50 miles inland from the Pacific Ocean. The GEMM Lab isn’t actually based on the main campus; instead, you’ll find the lab at the Hatfield Marine Science Center in Newport, Oregon, within a two-minute stroll of the picturesque Yaquina Bay. However, many of the core classes we need are only offered on main campus. This results in the GEMM Lab members being spread across Corvallis, Newport, and the dominant fieldwork site for their project (which could be locally in Oregon, or in the waters off of New Zealand). So rather than your typical, weekly, hour-long lab meetings, the GEMM Lab meetings are monthly and last on the order of 3-5 hours. Others hear this and think that must be overwhelming to have such a long lab meeting. On the contrary, these are scheduled to fit into all of our chaotic schedules. One day a month, all of us gather together as a family unit, share what’s new about our lives, be sounding boards for each other, solve problems, and do so in a supportive environment. Hopefully you’re getting the picture that just because we’re all part of the same lab, it doesn’t mean we’re geographically close. This is exactly why we cultivate meaningful relationships while we are together. The Harvard Business Review published an article 2015 based on multiple peer-reviewed journals, summarizing the six dominant characteristics necessary to foster a positive workplace:

  1. Caring for colleagues as friends
  2. Supporting each other
  3. Avoiding blame and forgiving mistakes
  4. Inspiring each other at work
  5. Emphasizing the meaningfulness of the work
  6. Treating each other with respect

And I can attest that every member within the GEMM Lab embraces all of these characteristics and I have a feeling that none of them have read that article prior to today. Family naturally follows those basic guidelines. And, our lab, is a family.

My very first GEMM Family Dinner.

Case and Point: when I was applying for graduate programs, I made a point of traveling to meet the GEMM Lab members at the monthly lab meeting. Sure, I also wanted to make sure that both Newport and Corvallis would be good fits in terms of locations. But, mostly, I needed to see if this Lab would be a strong family unit for my graduate school career and beyond. The moment I arrived at Hatfield Marine Science Center in Newport, it was clear, this was a family that I could see myself being a part of. Not only had all the members brought some kind of food item to share at the lab meeting (this was important to me), but Florence had baked homemade bread, Dawn had offered to show me around Hatfield, and Leila had set up a time to take me around main campus with other grad students. During the lab meeting discussions, I was welcomed to contribute and I felt comfortable doing so. That was another big moment where something “clicked” and I knew I had found a great group of amazing scientists who were also amazing human beings.

GEMM Lab members at the Port Orford Field Station in August 2017.

Flash forward a few months, and now I am one of those lab members who is bringing food to lab meetings. More than that, we have GEMM Lab dinners and game nights. I may be based in Corvallis, but I commute out to Newport just for these fun activities because this is my family. I want to be with them—not only when we’re talking about our research—but when we’re laughing about the silly things that happen in our daily lives, comically screaming at each other in an effort to win whatever game is on the table, and enjoying home-cooked meals. This is my family.

GEMM Lab members helping some friends at South Coast Tours build a dirt-bag house in August 2017.

I guess I’d like to plug this message to any potential graduate student regardless of discipline(s): find a lab with people that you truly want to surround yourselves with—day and night—in good times and in bad times—because undoubtedly, you’ll need those kinds of people. And, to current lab constituents in any lab: it’s up to us to create a supportive family which will make everyone successful.

Sister Sledge knew just this when the group sang this verse of their hit, “We Are Family”:

Living life is fun and we’ve just begun
To get our share of this world’s delights
High, high hopes we have for the future
And our goal’s in sight
We, no we don’t get depressed
Here’s what we call our golden rule
Have faith in you and the things you do
You won’t go wrong, oh-no
This is our family Jewel

I’m grateful to have found a lab that embodies the lyrics of one of my favorite childhood karaoke songs. The GEMM Lab is not only a lab that produces cutting-edge science; it is a family that encourages one another in all facets of life—creating an environment where people can have high-quality lives and generate high-quality science.

GEMM Lab Family Dinner complete with the board game, Evolution, and homemade pizza. October 2017.

Twitterific: The Importance of Social Media in Science

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

How do you create the perfect chemical formula for social media in science? (Photo Source: The Royal Society of Victoria)

There’s a never-ending debate about how active we, as scientists, should be on social media. Which social media platforms are best for communicating our science? When it comes to posting, how much is too much? Should we post a few, critical items that are highly pertinent, or push out everything that’s even closely related to our focus? Personally, my deep-rooted question revolves around privacy. What aspects of my life (and thereby my science), do I keep to myself and what do I share? I asked that exact question at a workshop last year, and I have some main takeaways.

At last year’s Southern California Marine Mammal Workshop, there was a very informative session about the role of media in science. More specifically, there was a talk on “Social Media and Communications Hot Topics” by Susan Poulton, the Chief Digital Officer of the Franklin Institute science museum in Philadelphia.  She emphasized how trust factors into our media connections and networks. What was once communicated in person or on paper, has given way to this idea of virtual connections. We all have our own “bubbles”. Susan defined “bubbles” as the people who we trust. We have different classifications of bubbles: the immediate bubble that consists of our friends, family, and close colleagues, the more distant bubble that has your friends of friends and distant colleagues, and the enigma bubble that has people you find based on computer algorithms that the computer thinks you’ll find relative. Susan brought up the point that many of us stay within our immediate bubble; even though we may discuss all of the groundbreaking science with our friends and coworkers, we never burst that bubble and expand the reaches of our science into the enigma bubble. I frequently fall into this category both intentionally and unintentionally.

Coworkers from NOAA’s Southwest Fisheries Science Center attending the Southern California Marine Mammal Workshop 2017. Pictured from left to right: Alexa, Michelle, Holly, and Keiko. (Photo source: Michelle Robbins.)

Many of us want to be advocates for our science. Education and outreach are crucial for communicating our message. We know this. But, can we keep what little personal life we have outside of science, private? The short of the long of it: No. Alisa Schulman-Janiger, another scientist and educator on the panel, reinforced this when she stated that she keeps a large majority of her social media posts as “public” to reach more people. Queue me being shocked. I have a decent social media presence. I have a private Facebook account, but public Twitter and LinkedIn accounts that I use only for science/academics/professional stuff, public Instagram, YouTube, and Flickr accounts that are travel and science-related, as well as a public blog that is a personal look at my life as a scientist who loves to travel. I tell you this because I am still incredibly skeptical about privacy; I keep my Facebook page about as private as possible without it being hidden. Giving up that last bit of my precious, immediate bubble and making it for the world to see feels invasive. But, I’m motivated to make sure my science reaches people who I don’t know. Giving science a personal story is what captures people; it’s why we read those articles in our Facebook feeds, and click on the interesting articles while scrolling through Twitter. Because of this, I’ve begun making more, not all, of my Facebook posts public. I’m more active on Twitter. I’m writing weekly blog posts again (we’ll see how long I can keep that up for). I’m trying to find the right balance that will keep my immediate bubble still private enough for my peace of mind and public enough that I am presenting my science to networks outside of my own—pushing through to the enigma bubble. Bubbles differ for each of us and we have to find our own balance. By playing to the flexibility of our bubbles, we can expand the horizons of our research.

Alexa at an Education/Outreach event, responding to a young student asking, “Why didn’t you bring this seal when it was alive?” (Photo source: Lori Lowder).

This topic was recently broached while attending my first official GEMM Lab meeting. Leigh brought up social media and how we, as a lab, and as individuals, should make an effort to shine light on all the amazing science that we’re a part of. We, as a lab, are trying to be more present. Therefore, in addition to these AMAZING weekly blog posts varying from highly technical to extremely colloquial, the lab will be posting more on Twitter. And that comes to the origin of this week’s blog post’s title. Leigh said that we should be “Twitterific” and I can’t help but feel that adjective perfectly suits our current pursuit. Here’s to being Twitterific!

With all that being said, be sure to follow us on: Twitter, YouTube, and here (don’t forget to follow us by entering your email address on the lefthand side of the page), of course.

Celebrating Hydrothermal Vents!

By Florence Sullivan, MSc Student OSU

40 years ago, in 1977 OSU researchers led an NSF funded expedition to the Galapagos on a hunt for suspected hydrothermal vents. From the 1960s to the mid-1970s, mounting evidence such as (1) temperature anomalies found deep in the water column, (2) conduction heat flow probes at mid ocean ridges recording temperatures much lower than expected, (3) unusual mounds found on benthic mapping surveys, and (4) frequent, small, localized earthquakes at mid oceanic ridges, had the oceanographic community suspecting the existence of deep sea hydrothermal vents. However, until the 1977 cruise, no one had conclusive evidence that they existed.  During the discovery cruise at the Galapagos rift, the PI (principle investigator), Dr. Jack Corliss from OSU, used tow-yos (a technique where you drag a CTD up and down through the water in a zig zag pattern – see gif) to pinpoint the location of the hydrothermal vent plume. The team then sent the Deep Submergence Vehicle (DSV) Alvin to investigate and returned with the first photographs and samples from a hydrothermal vent. While discovery of the vent systems helped answer many questions about chemical and heat fluxes in the deep sea, it generated so many new questions that novel fields of study were created in biology, microbiology, marine chemistry, marine geology, planetary science, astrobiology and the study of the origin of life.

 “Literally every organism that came up was something that was unknown to science up until that time. It made it terribly exciting. Anything that came [up] on that basket was a new discovery,” – Dr. Richard Lutz (Rutgers University)

In celebration of this great discovery, OSU’s College of Earth, Ocean and Atmospheric Sciences sponsored a seminar looking at the past, present, and future of hydrothermal vent sciences. Dr. Robert Collier began with a timeline of how the search for hydrothermal vents began, and a commemoration of all the excellent researchers and collaborations between institutions and agencies that made the discovery possible. He acknowledged that such collaborations are often somewhat tense in terms of who gets credit for which discovery, and that while Oregon State University was the lead of the project, it takes a team to get the work done.  Dr. Jack Corliss proudly followed up with a wonderful rambling explanation of how vent systems work, and a brief dip into his ground breaking paper, “An Hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth.” Published in 1981, with co-authors Dr. John Baross and Dr. Sarah Hoffman, they postulate that the temperature and chemical gradients seen at hydrothermal vents provide pathways for the synthesis of chemical compounds, formation and evolution of ‘precells’ and eventually, the evolution of free living organisms.

Dr. Corliss, Dr. Baross, and Dr. Hoffman were the first to suggest the now popular theory of the origin of life at hydrothermal vents. (click on image to read full paper)

Because of time constraints, the podium was swiftly handed over to Dr. Bill Chadwick (NOAA PMEL/ HMSC CIMRS) who brought us forward to the present day with an exciting overview of current vent research.  He began by saying “at the beginning, we thought, ‘No one has seen one of these systems before, they must be very rare…’ Now, we have found them [hydrothermal vents] in every ocean basin – including the arctic and southern oceans. We just needed to know how to look!”  Dr. Chadwick also reminded us that even 40 years later, new discoveries are still being made. For example, on his most recent cruise aboard the R/V Falkor in December 2016, they found a sulfur chimney that was alternately releasing bubbles of gas (sulfur, CO2 or other, hard to know without sampling) or bubbles of liquid sulfur! Check out the video below:

Some of the goals for this recent cruise included mapping new areas of the Mariana back-arc, and investigating differences in the biological communities between vents in the Mariana trench region (a subduction zone) and vents in the back arc (a spreading zone) to see if geology plays a role in biological community composition.  For some very cool video footage of the expedition and the various dives performed by the brand new ROV SUBastian (because all scientists love puns), check out the Schmidt Ocean Institute youtube channel.

Dr. Chadwick showed this video to highlight results from his last cruise.

Finally, Dr. Andrew Thurber wrapped up the session with some thoughts about hydrothermal vents from the perspective of an ecosystem services model. Even after 40 years of research, there are still many unknowns about these ecosystems.  Individual vent systems are inherently unique due to their deep sea isolation. However, most explored sites have revealed metals and mineral deposits that have generated a lot of interest from commercial sea floor mining companies. Exploitation of these deposits would be an example of ecosystem “provisioning services” (products that are obtained from the ecosystem). Other examples include the biology of the vents as a source of new genetic material, and the thermal and chemical gradients as natural laboratories that could lead to breakthroughs in pharmaceutical research. Cultural services are those non-material benefits that people obtain from an ecosystem. At hydrothermal vents these include new scientific discoveries, educational uses (British children’s television show “The Octonauts,” has several episodes featuring hydrothermal vent creatures), and creative inspiration for artists and others. Dr. Thurber cautions that there are ethical questions to be answered before considering exploitation of these resources, but there is a lot of potential for commercial and non-commercial use of vent ecosystems.

Vent inspired art by Lily Simonson

As an undergraduate at the University of Washington, I spent time as a research assistant in Dr. John Baross’ astrobiology lab. We studied evolutionary pathways of hydrothermal vent viruses and bacteria to inform the search for life on exoplanets such as Jupiter’s moon Europa.  It was very fun and exciting for me to attend this seminar, hear stories from pioneers in the field, and remember the systems I worked on in undergrad.  I may have moved up the food chain a little now, but as we all work on our pieces of the puzzle, it is important for scientists to remember the interdisciplinary nature of our work, and how there is always something more to learn.