Gray whale field work wrap-up; sea you later

Hello everyone,

Florence here with an update about the final numbers from this summer’s gray whale field season.

For folks just hearing about the project, my team of interns and I spent the summer alternating between study sites at Depoe Bay and Port Orford to conduct fine-scale focal follows of gray whales foraging in near-shore Oregon waters using a theodolite.  That is to say, we gathered 10,186 ‘marks’ or ‘locations’ where whales came to the surface, and by connecting the dots, we are able to create tracklines and analyze their movement patterns.  The idea is to document and describe gray whale foraging behavior in order to answer the questions: Are there patterns in how the whales use the space? Is there a relationship between foraging success and proximity to kelp beds? Do behaviors vary between individuals, location, or over time during the season?

All these tracklines are from one whale, Keyboard, visiting the same area multiple times over the course of a month. I'll break this figure down a little later in the post. Notice how the whale consistently returns to the bay just west of the port jetty
All these tracklines are from one whale, Keyboard, visiting the same area multiple times over the course of a month. I’ll break this figure down a little later in the post. Notice how the whale consistently returns to the bay just west of the port jetty

While at our study sites, we often received questions about vessel disturbance on the whale’s behavior. Over the course of the summer, we saw whales completely ignore boats, approach boats, and actively avoid boats. Therefore, we documented these vessel interactions in order to ask questions such as: Does vessel disturbance alter behavior? How close is too close? Does the potential for vessel disturbance vary depending on (1) size of motor, (2) speed of approach, (3) type of vessel, i.e. kayak, fishing boat, tour boat, (4) the number of vessels already in the area, (5) amount of time a vessel has been following a whale, (6) time of season, (7) the presence of a calf or other whales? The end goal, once the data have been analyzed, is to bring our results to local vessel operators (commercial and recreational) and work together to write reasonable, effective, and scientifically informed guidelines for vessel operations in the presence of gray whales.

And now, the numbers you’ve all been waiting for, here is the tally of our data collection this summer:

 

Boiler Bay Graveyard Point Humbug Mountain
Whales total 80 73 28
Boats total 307 105 7
Total survey time (HH:MM:SS) 122:22:41 72:49:17 50:22:35
Total survey time with whales (HH:MM:SS) 64:47:54 80:39:57 22:59:00
Total Marks 4744 4334 1108

Table 1. Summary of survey effort for gray whale foraging ecology field season summer 2015

Whale named "Keyboard" visits graveyard head multiple times. Green track: 7.21.15, Pink track: 7.21.15, Teal track: 7.30.15. The orange polygons are approximate locations of kelp patches.
Whale named “Keyboard” visits graveyard head multiple times. Green track: 7.21.15, Pink track: 7.21.15, Teal track: 7.30.15. The orange polygons are approximate locations of kelp patches.
"Keyboard" continues to visit. Red trackline: 8.27.15, white trackline: 8.28.15, purple trackline: 8.28.15
“Keyboard” continues to visit. Red trackline: 8.27.15, white trackline: 8.28.15, purple trackline: 8.28.15

 

Whale 130 foraged near Boiler Bay for 5.5 hours on Aug 12. Trying to look at the whole trackline in one go is a little complicated, so let’s break it down by hour.
Whale 130 foraged near Boiler Bay for 5.5 hours on Aug 12. Trying to look at the whole trackline in one go is a little complicated, so let’s break it down by hour.
This panel shows hours 4-6 of the track. Things get more complex as various vessels use the same area. Whale 130 is always in red.
This panel shows hours 4-6 of the track. Things get more complex as various vessels use the same area. Whale 130 is always in red.

So, what does this all mean?  Well, the unsatisfying answer is of course: we don’t know yet. However, it is my job to find out!  I will spend the fall and winter processing data, writing and running behavioral models, communicating my successes and frustrations, and finally presenting my results to the community.

The human eye is well adapted to pick out patterns. Test yourself – what trends can you see in these images?  Are there areas that the whales seem to prefer over other areas?  In the Port Orford images with Keyboard & our kelp patches, does our theory of a relationship between whale presence and kelp patches seem valid?

This field season would not have been possible without the help of some truly excellent people.  Thank you Cricket and Justin and Sarah for making up the core of Team Ro”buff”stus. It was a pleasure working with you this summer.  Thank you to guest observers and photographers Era, Steven, Diana, Cory, Kelly, Shea and Brittany for filling in when we needed extra help! Thank you to our support network down in Port Orford: Tom, Tyson and the team at the Port Orford Field Station – we appreciate the housing and warm welcome, and to Jim and Karen Auborn and the Port of Port Orford for allowing us access to such a fantastic viewing location. Thank you to Oregon State Parks for allowing us access to the field sites at Boiler Bay and Humbug. Finally, thank you to Depoe Bay Pirate Coffee Company for keeping us warm and caffeinated on many foggy, cold early mornings. This work was funded by the William and Francis McNeil Fellowship Award, the Wild Rivers Coast Alliance, and the American Cetacean Society: Oregon Chapter.

Fair winds,

Florence

Not Everyday is Gray (just most of them)

As Amanda explains quite nicely in her previous blog post, research is not always glamorous, and we don’t always see the species we’ve come out to the field to study.  However, that doesn’t mean that there aren’t other cool species out there to spot!  Here are some common (and uncommon) visitors to some of our research sites this summer.

Also, if you continue to the bottom, we’ve included some cool videos of (1) gray whale sharking behaviour, (2) Gray whale swimming (top down full body view), and what it looks and sounds like when we’re doing one of our close-in focal follows. Enjoy!

A very unexpected, but very welcome visitor! Spotted off Boiler Bay August 10.
A very unexpected, but very welcome visitor! Blue Whale spotted off Boiler Bay August 10.
Often in pairs, we've started seeing more of these lately as they come back north from the breeding grounds further south.
Often in pairs, we’ve started seeing more of these California sea lions lately as they come back north from the breeding grounds further south.
fluffy crow
A young crow fluffs up in the breeze
Humpback Whale which has been hanging out around Depoe Bay for the past two weeks.  Its split dorsal fin makes it easy to recognize! Notice the darker color than the grays we usually see.
Humpback Whale which has been hanging out around Depoe Bay for the past two weeks. Its split dorsal fin makes it easy to recognize! Notice the darker color than the grays we usually see.
Spotted at Graveyard Point
A Great Egret spotted at Graveyard Point
Long Billed Curlew
A long billed curlew drops by for a visit
This chick waits patiently for parents to bring a meal
This chick waits patiently for parents to bring a meal
We see the Osprey mutliple times a day in Port Orford as there are a couple of nesting pairs with chicks to feed.
We see the Osprey multiple times a day in Port Orford as there are a couple of nesting pairs with chicks to feed.
Our Oystercatchers at Boiler Bay have also successfully fledged a pair of chicks while we've been watching!
Our Oystercatchers at Boiler Bay have also successfully fledged a pair of chicks while we’ve been watching!
Pelicans
Brown Pelicans
There are at least two pairs of Peregrines with chicks in Port Orford as well.  This one brings home a catch! (possibly murre or guillemot chick?)
There are at least two pairs of Peregrines with chicks in Port Orford as well. This one brings home a catch! (possibly murre or guillemot chick?)
Peregrine
Peregrine Falcon
Pigeon Guillemots
Pigeon Guillemots at Port Orford

 

If you remember a few weeks ago, we shared photos of gray whale “sharking” behaviour.  Well, now we have video!  Enjoy:

Here’s what it looks like from the top of Graveyard Bluff when a whale swims by below us!

We get really excited by this behavior because its positive proof that the whales are successfully foraging!

and here is a fluke!

We’ll be back soon with more updates from Port Orford.

Fair winds,

Florence & the rest of Team Ro”buff”stus

 

We need all the “Kelp” we can get!

Hello from Hatfield Marine Science Center! This is Justin bringing you the latest and greatest in Gray Whale news. But first, let me fill you folks in with some info about me.  I am an undergraduate student, transitioning into my senior year, with Oregon State University’s Fisheries and Wildlife Department. In addition to my major, I am also minoring in statistics; crazy right? I have hopes and dreams of working in Marine Ecology, and I believe working on this Gray Whale project is a fine start! Which means, this summer, I have had the fortunate opportunity to work alongside the lovely Florence van Tulder, the mastermind behind the project, as well as Cricket and Sarah, the other two charismatic interns.

Our team name is derived from the scientific name of the gray whale: E. robustus, and the colorful "buff" scarves you can see us wearing on most days.
Our team name is derived from the scientific name of the gray whale: E. robustus, and the colorful “buff” scarves you can see us wearing on most days. (Left to right: Sarah, Florence, Cricket, Justin)

As we were wrapping up our two week stint in Port Orford, We observed the Gray Whales exhibiting some interesting behavior; they seemed to move from kelp patch to kelp patch, almost as if they were searching for something. What could be hiding under the luscious stands of Nereocystis luetkeana, otherwise known as bull kelp? Well, with the presence of defecation ( whale droppings) left behind from diving whales near many of the floating kelp patches, one culprit came to mind- mysid shrimp. Mysid shrimp are believed to be a primary prey source of the Gray whales.

Calmly approaching the kelp, this whale takes his time to observe his surroundings
Calmly approaching the kelp, this whale takes his time to observe his surroundings

Naturally, my curiosity got the best me and I ended up spending hours on end conducting literature searches and looking for bathymetry maps, thanks to Florence. All joking aside, I asked Florence if we could use our fancy Theodolite to assess or roughly map the distribution of the kelp patches. We would create polygonal shapes of the kelp on a map and observe how the whales move with respect to the kelp. The idea being, to get a better of picture of the relationship between the whales and the kelp, if any relationship exists at all. It is still a work in progress, due to our survey sites getting all kinds of “fogged” up. When the kinks are worked out and we have some useful visual data, we will post an awesome photo.

A quick breather before heading down into the depths near the kelp. (it's even heart shaped!)
A quick breather before heading down into the depths near the kelp. (it’s even heart shaped!)
This large  white tailed beauty bounced between kelp patches  like a pinball!
This large white tailed beauty bounced between kelp patches like a pinball!

Port Orford didn’t just bring us sweet whales, it brought the heat! Temperatures were up to almost the nineties the last week in July! We beat the heat with plenty of hydration and sun block and the predicable wind patterns became a savior on those sweltering days giving us temporary relief.  The heat seemed to tease out other critters as well. We saw a variety of birds, from turkey vultures, Peregrine Falcons, Ospreys, Bald Eagles, and even Egrets!  In the water we saw baby Harbor seals, and some bonus River Otters.

This is our "tripod" of river otters!
This is our “tripod” of river otters!

In more recent news, August 8th marked our first full month of surveying between our two whale hotspots. However, the term “hotspot” doesn’t always seem to be fitting. This past week has been a tough one for the team and I up in Boiler Bay due to less than optimal weather conditions and our survey site has been exposed to an abnormal cycle of fog. Our friendly “neighborhood” grays have been a bit sparse, and yet, we have had Humpback Whales grace us with their presence and these whales have been spotted during several survey days this week! ( In the tradition of opportunistic data, we even tracked one of them.)

The track-line for whale 118 - a humpback who has been hanging out near Boiler Bay all week.
The track-line for whale 118 – a humpback who has been hanging out near Boiler Bay all week.

This summer has been very fun because not only do we get to watch whales every day, but when we are in Boiler Bay, we have the opportunity to meet fascinating people from all over the world! The positive support for the project coming from the community is quite a nice touch to our days in the field. If you are ever in the neighborhood, stop by and say hello, maybe share a whale’s tale or two!

 

Gray whales do not "fluke" very often, so its always a treat when we get a picture of one!
Gray whales do not “fluke” very often, so its always a treat when we get a picture of one!

Gray Whale Goofs

Hello there!  Florence here, signing in from Newport.  We had a fantastic trip south to Port Orford, and tracked another 53 whales bringing our season total up to 117 so far! This morning, we were back out at Boiler Bay and spent 5 hours staring at empty water – in keeping with the theme of this post, field work does not always go as planned.

Our two study areas couldn’t be more different.  At the Boiler Bay State Wayside, we are approximately 18 meters off the water.  In Port Orford, we are perched on the side of a 63 meter tall cliff. This extra height greatly increases our range and accuracy as well as changing the angle of our photography and the type of photo analysis we can do.  We’re quite excited to have a top down view of our whales, because the photos we are capturing will allow us to use certain photogrammetry techniques to measure the length and girth of the individuals.  With luck, when we compare the photos from the beginning of the season (now) to the end of our study (September) we may be able to see a change in the height of the post-cranial fat deposit, which would indicate a successful foraging season.  Gray whales do not eat from the beginning of their southward migration, through the breeding and calving season, until they reach productive foraging grounds at the end of their northward migration.  This means that all their sustenance for 6+ months is derived from their summer foraging success.  Did you know that they even generate their own water through an oxidation reaction which creates ‘metabolic water’ from their blubber stores?  So it will be rather fantastic if we manage to measure the change in whale body condition over the course of the summer – particularly if we are able to spot any mother-calf pairs who will have had an especially grueling journey north.

A foraging behavior where the whale turns on its side in shallow water. The triangle of the fluke resembles a shark fin
Sharking: A foraging behavior where the whale turns on its side in shallow water. The triangle of the fluke resembles a shark fin

So, while our photo database is advancing nicely, technical difficulties are to be expected when you’re in the field, and sometimes, troubleshooting takes longer than you would like it to.  This evening, let me introduce you to the elusive species known as ‘the Chinese land whale.’  It is a very rare breed which spontaneously generates itself from misaligned computer files.

When the theodolite beeps as we ‘mark’ a whale, a pair of horizontal and vertical angles are getting sent from the machine to a program called ‘Pythagoras’ on the laptop. Given our starting coordinates and a few other variables, the program auto-calculates for us the latitude and longitude of that whale.  While we hoped it would be a simple matter to upload these coordinates to Google Earth to visualize the tracklines, it turns out that Pythagoras stores the East/West hemisphere information in a separate column, so if we just plot the raw numbers, our whale tracks end up in the middle of a field in rural China! Hence, the rare ‘Chinese land whale’.  Now that we know the trick, it is not so difficult to fix, but we were quite surprised the first time it happened!

If you dont have your hemisphere correctly labeled, you end up in China instead of Oregon.
If you don’t have your hemisphere correctly labeled, you end up in China instead of Oregon.

Of course, that is not the only thing that has gone wrong with visualizing the tracklines.  When we first got to Graveyard Point survey site, it turns out that we had set our azimuth (our reference angle) the wrong direction from true north, so all our whales seemed to be foraging near the fish and chips restaurant in the middle of town.

If the azimuth is incorrectly referenced, you might end up on land instead of in the water.
If the azimuth is incorrectly referenced, you might end up on land instead of in the water.

After discovering that in order to rotate something 180degrees, you simply need to alter the azimuth angle by 90degrees, (we’re still not sure why this is working), the whales left the fish and chips to us and returned to the harbor.  Anyways, now that we’ve figured out these glitches, we can focus on identifying individual whales, and figuring out which track-lines might be repeat visitors.

Once all the kinks got worked out - the real trackline!  Dont worry, whale 60 did not go through the jetty, thats an artifact of the program wanting to draw straight lines from point a to b.  more likely we simply missed a surface as it transited around the point of the jetty.
Once all the kinks got worked out – the real trackline! Dont worry, whale 60 did not go through the jetty, thats an artifact of the program wanting to draw straight lines from point a to b. more likely we simply missed a surface as it transited around the point of the jetty.

In other outreach news, the OSU media department came out to the field and interviewed us a few weeks ago (on a day that the theodolite and computer were refusing to talk to each other due to a faulty connector cable – which is always delightful when one is trying to showcase research in progress). The resulting article has been posted should you wish to take a look:

http://oregonstate.edu/ua/ncs/archives/2015/aug/researchers-studying-oregon%E2%80%99s-%E2%80%9Cresident-population%E2%80%9D-gray-whales

More shallow sharking behavior
More shallow sharking behavior
Well known for having the shortest, toughest baleen of any of the great whales, here you can see the plates in its mouth!
Well known for having the shortest, toughest baleen of any of the great whales, here you can see the plates in its mouth!

Until next time,

Team Ro”buff”stus

Following Tracks: A Summer of Research in Quantitative Ecology

**GUEST POST** written by Irina Tolkova from the University of Washington.

R, a programming language and software for statistical analysis, gives me an error message.

I mull it over. Revise my code. Run it again.

Hey, look! Two error messages.

I’m Irina, and I’m working on summer research in quantitative ecology with Dr. Leigh Torres in the GEMM Lab. Ironically, as much as I’m interested in the environment and the life inhabiting it, my background is actually in applied math, and a bit in computer science.

vl-dsc04212

(Also, my background is the sand dunes of Florence, OR, which are downright amazing.)

When I mention this in the context of marine research, I usually get a surprised look. But from firsthand experience, the mindsets and skills developed in those areas can actually be very useful for ecology. This is partly because both math and computer science develop a problem-solving approach that can apply to many interdisciplinary contexts, and partly because ecology itself is becoming increasingly influenced by technology.

Personally, I’m fascinated by the advancement in environmentally-oriented sensors and trackers, and admire the inventors’ cleverness in the way they extract useful information. I’ve heard about projects with unmanned ocean gliders that fly through the water, taking conductivity, temperature, depth measurements (Seaglider project by APL at the University of Washington), which can be used for oceanographic mapping. Arrays of hydrophones along the coast detect and recognize marine mammals through bioacoustics (OSU Animal Bioacoustics Lab), allowing for analysis of their population distributions and potentially movement. In the GEMM lab, I learned about light and small GPS loggers, which can be put on wildlife to learn about their movement, and even smaller lighter ones that determine the animal’s general position using the time of sunset and sunrise. Finally, scientists even made artificial nest mounds which hid a scale for recording the weight of breeding birds — looking at the data, I could see a distinctive sawtooth pattern, since the birds lost weight as they incubated the egg, and gained weight after coming home from a foraging trip…

On the whole, I’m really hopeful for the ecological opportunities opened up by technology. But the information coming in from sensors can be both a blessing and a curse, because — unlike manually collected data — the sample sizes tend to be massive. For statistical analysis, this is great! For actually working with the data… more difficult. For my project, this trade-off shows as R and Excel crash over the hundreds of thousands of points in my dataset… what dataset, you might ask? Albatross GPS tracking data.

In 2011, 2012, and 2013, a group of scientists (including Dr. Leigh!) tagged grey-headed albatrosses at Campbell Island, New Zealand, with small GPS loggers. This was done in the summer months, when the birds were breeding, so the GPS tracks represent the birds’ flights as they incubated and raised their chicks. A cool fact about albatrosses: they only raise one chick at a time! As a result, the survival of the population is very dependent on chick survival, which means that the health of the albatrosses during the breeding season, and in part their ability to find food, is critical for the population’s sustainability. So, my research question is: what environmental variables determine where these albatrosses choose to forage?

The project naturally breaks up into two main parts.

  • How can we quantify this “foraging effort” over a trajectory?
  • What is the statistical relationship between this “foraging effort metric” and environmental variables?

Luckily, R is pretty good for both data manipulation and statistical analysis, and that’s what I’m working on now. I’ve just about finished part (1), and will be moving on to part (2) in the coming week. For a start, here are some color-coded plots showing two different ways of measuring the “foraging value” over one GPS track:

track89518

Most of my time goes into writing code, and, of course, debugging. This might sound a bit dull, but the anticipation of new results, graphs, and questions is definitely worth it. Occasionally, that anticipation is met with a result or plot that I wasn’t quite expecting. For example, I was recently attempting to draw the predicted spatial distribution of an albatross population. I fixed some bugs. The code ran. A plot window opened up. And showed this:

pretty_circles

I stared at my laptop for a moment, closed it, and got some hot tea from the lab’s electronic kettle, all the while wondering how R came up with this abstract art.

All in all, while I spend most of my time programming, my motivation comes from the wildlife I hope to work for. And as any other ecologist, I love being out there on the Oregon coast, with the sun, the rain, sand, waves, valleys and mountains, cliff swallows and grey whales, and the rest of our fantastic wild outdoors.

SONY DSC

Irina5

Familiar Flukes and Faces

Greetings fellow marine enthusiasts! My name is Cricket, and I am one of the interns working on Florence’s Gray Whale project! I’m preparing to graduate from Oregon State University in a couple of months with a Bachelors of Science in Biology with the marine option. Before I graduate, I wanted to get some extra experience in the field this summer, which is how I ended up here with Florence, Justin, and Sarah, having surprisingly crazy whale adventures along the Oregon coast!

Panorama of Graveyard Point
Panorama of Graveyard Point

Today marks the end of our first week in Port Orford. We weren’t sure what we were going to get when we switched sites, though of course we had a few fears: No whales, low visibility, bad weather, etc. Depoe Bay had been good to us so far, and we were slightly worried about the transition. In actuality, Port Orford has been amazing!

Our sampling set-up on Graveyard point - above the port of Port Orford
Our sampling set-up on Graveyard point – above the port of Port Orford

Day one was foggy, and we only visited the site briefly to figure out a good location for the theodolite. One of our sites is located on a terrifyingly high cliff, but the view is stellar. We were only there for about an hour and we saw two whales, one of which came up into the cove just beneath us. In fact, one of our concerns with this site is that the whales actually get too close to view through the theodolite. What an unexpected problem to have!

Titchener Cove, Port Orford. Credit: Cricket Carine
Whale 63 Titchener Cove, Port Orford. Credit: Cricket Carine

From our vantage point, we can get some incredible photos of these whales. Photo identification is a breeze if the whale decides to come into the cove closest to us. We can watch them under the water, as opposed to in Depoe Bay where we could only really observe them when they surface.

Whale 59 Surfaces in Titchener Cove, Port Orford credit: Cricket Carine
Whale 59 Surfaces in Titchener Cove, Port Orford credit: Cricket Carine

We all get particularly excited when we see the same whale more than once. In Depoe Bay, we had at least four different whales appear on multiple days. We can verify this using the photos we manage to get of the whales, and comparing them between days.

For example, in Port Orford, we spotted a whale on the 20th with a particularly large white spot on the fluke. This spot made the whale easily identifiable, so we were able to get a good focal follow (because we could track this whale amongst other whales with confidence that we were tracking the same one the entire time), which in turn allowed us to create a track line of this whale’s dive patterns. This whale happened to be whale sixty (the 60th whale we’ve seen since the start of our data collection).

While this is a trackline of whale 82, photo ID confirms that 82,60, and 78 are all the same whale!
While this is a track-line of whale 82, photo ID confirms that 82, 60, and 78 are all the same whale! (The beginning of the track is labeled with the whale ID)

Then, days later, we spotted another whale. This was whale 78, and after a few surfaces, we realized this whale had the same white spot! We hesitantly referred to this whale as “sixty” but couldn’t be sure until we compared photos from the days before. And sure enough, it was!

Seen on July 24
Whale 82, Seen on July 24
Seen on July 20.
Whale 60, Seen on July 20.

I am particularly enthusiastic about our whale resights, and actively enjoy going through the photos and comparing each one to previous whales to try and identify individuals. It’s tedious, but rewarding when we can begin to learn individuals and identify them in the field. As a sort of rough guide to help us when scrounging through photo ID, I’ve put some of our good comparative photos into a google doc to use as reference. Here’s an example of some of the repeat whales we’ve seen:

https://docs.google.com/document/d/1KSB67m1julnk2KmH70b9u91OqDqCT4zicuqPHI7ojms/edit

Tomorrow will be day two at our second Port Orford site. Today was day one, and we managed to spot two whales, which is definitely promising. We hope we have as much luck finding and tracking whales there as we did on our cliffside!

Panorama from Humbug State Park survey site
Panorama from Humbug State Park survey site
Surveying our new Humbug site this morning
Surveying our new Humbug site this morning

 

Have a nice Gray!
Cricket

A Week-Full of Whales

Hello and greetings from the sort of sunny Oregon Coast! Sarah reporting in to offer an update on Florence’s Gray Whale study now that we’re about ten days into sampling. If you’re new to our blog you can read up on the preliminary field season right here.

This little gray was incredibly frustrating to follow due to its irregular surfacing and tiny spouts that were hard to see. We affectionately named it Ninja.
This little savior came through on the day all our technology failed and cheered us up with his rainbow spouts.  Thankfully, he’s a repeat visitor and though we may have missed him on the 14th, we were able to get a good focal follow on him today.

Before I get to the project though, let me introduce myself a bit further. As I said, my name’s Sarah – one of the three interns on our whale surveying team. I got my Bachelor of Science in Oceanography at the University of Washington a few years back and have since worked as a lab tech at UW’s Friday Harbor Labs and as an Americorps volunteer serving as a teacher’s aide. Eventually I plan to become a science teacher, but thought a little more field work this summer would be a nice break after two years of service.

Cricket and Justin pondering the challenges of whale watching.
Cricket and Justin pondering the challenges of whale watching.

Thus, I moved to Newport last week just in time to catch the first day of our main surveying season. And what a season it’s been. We’ve tracked 48 whales since I’ve arrived, averaging about six a day. Of course, those aren’t all 48 different whales. If we lose sight of a whale for longer than 20 minutes, we assume it has left our study area and pronounce it lost, and unless we can identify the next sighting as the same whale based on markings (which we’re getting pretty good at), we give it a new number to keep track. We also give whales we’ve already seen new numbers when we see them on a different day.

Table for two: these whales caused some confusion among the team as they began to forage together before we could tell the difference between the two.
Table for two: these whales caused some confusion among the team as they began to forage together before we could tell the difference between the two.

You might be wondering how we can tell gray whales apart when they’re mostly, well, gray and underwater. And the short answer is we have a pretty difficult time doing so at first sight. Gray whales aren’t like orcas, whose saddle patch just behind the dorsal fin serves as a fingerprint, nor are they humpbacks, whose patterned flukes are cataloged for easy matching. Gray whales have more of a dorsal hump than a fin, followed by five or six ridges we call knuckles. They aren’t famous for showing their flukes above water either, so unless you get several views of a particular whale’s sides, dorsal, and, if you’re lucky, fluke, it’s hard to have a positive ID for the whale. The good news is, that part of our sampling equipment is a camera with a massive zoom lens, so we can take photos of most of the whales we track with the theodolite (see the previous post to learn about theodolites). From those photos (at least 400 a day) we can look at scars from barnacles and killer whales, pigmentation spots that are part of the whales’ coloring, and parasites like barnacles and amphipods to recognize whales we’ve seen before. Eventually we’ll send all the photos we take to the Cascadia Research Group in Olympia, Washington, that keeps a database of all identified gray whales.

Sitting on a clifftop photographing whales might sound more like a vacation than science, so here's some (very peliminary) data of one whale. This is Mitosis on three different days. The first day is red, second is yellow, and the third is green.
Sitting on a clifftop photographing whales might sound more like a vacation than science, so here’s some (very peliminary) data of one whale. This is Mitosis on three different days. The first day is red, second is yellow, and the third is green.

Anyways, thanks for keeping with me to the bottom of the page. It’s been a fun first week-or-so and I’m excited to be heading to our second study site in Port Orford tomorrow after surveying. We’ll be there for 15 days, so next time you hear from us, we’ll be a bit further down the coast.

Yes, we named a whale after cell replication, because look at those overlapping spots!
Yes, we named a whale after cell replication, because look at those overlapping spots!

Best Fishes!

 

Sarah

Seabirds eat weird things

Chicken wings, toy dinosaurs, Easter eggs, driver’s licenses, ham, broccoli, and toy cars, to name a few things. I’ve even seen a gull try to eat a live, 2 ton elephant seal (and have got the pictures to prove it!).

Recently researchers from the GEMM lab, and the Seabird Oceanography lab (SOL) at Hatfield Marine Science Center, have been collaborating with Dr. Scott Shaffer’s Avian Physiology and Ecology laboratory at San Jose State University to investigate the causes and implications of these strange eating habits.

When they aren’t scavenging off of your plate of French fries, Western gulls (Larus occidentalis) are either foraging for fish and invertebrates out at sea, or visiting the local dump to pick up dinner for the little ones. Unfortunately, during the breeding season dinner at the dump comes with the risk of bringing harmful contaminants and pathogenic microbes back to the colony. In addition to littering colonies with refuse, gulls can serve as potential vectors of disease that may affect other nearby wildlife. Seabird ecologists at OSU and SJSU are using GPS tags in order to better understand how different colonies of Western gulls along the West coast are affected by access to landfills. Over the past month, a handful of gulls at colonies in California and Oregon have been outfitted with these light weight tracking devices. The data gained from these tags will allow researchers to study the foraging ecology and habitat use patterns of these individuals. When the tags are recovered, biological samples such as blood and feathers will be collected to determine how these habitat-use patterns (and potentially, trips to the local landfill) are affecting these birds in terms of microflora and contaminant loads.

Last week I (Erin Pickett) assisted the GEMM and SOL labs in capturing a few of these birds in order to outfit them with tags. The local field site is just south of Yachats on a guano-covered rock that a small colony of Western gulls call home. Like all great fieldwork and adventures, our day began at 4:00 am (and it was raining!). About an hour later we arrived at our field site, where we assessed the ocean conditions and determined that the treacherous crossing from the mainland to the colony was passable (it was low tide). There is some great GoPro footage of a crossing the week before that consisted mostly of a current rushing over rocks and the occasional flash of a wetsuit or a yellow dry bag while two hands reached out for something stable to hold onto. When I heard about this I became even more excited about the opportunity to join in on the fun.

We spent our morning focused on two tasks. The first was to recapture the two birds who we had put tags on the previous week. Since the tags have to be small and light-weight, they can only collect data for as long as their battery lasts. However, this is long enough to log a few foraging trips and get a good idea of where the gulls are concentrating their foraging effort. Our second goal was to put tags on eight more birds. We used a combination of capture techniques, including a very long pole with a small noose on the end of it, to recapture one of our birds from last week, along with seven new birds who we deployed new tags on. By the end of the second morning the weather was nice enough to enjoy changing into a wetsuit and jumping into the water for the crossing back to shore. Now we just need to get the rest of our tags back. Wish us luck!

P.S. It’s not often that you purposely put photos of gulls in photo galleries, so I’ve taken this opportunity to find my best shots. These are a couple more of the field sites where our collaborators are working- on Southeast Farallon Island, and Ano Nuevo Island, California

North to the land of liquid sunshine and red-legged kittiwakes – Linking individual foraging behaviour and physiology to survival and reproductive output

My name is Rachael Orben and I am a postdoctoral scholar affiliated with both the Seabird Oceanography Lab and the GEMM Lab here at Hatfield Marine Science Center. I am writing this from Anchorage, Alaska where Abram (a Master’s student at San Jose State University) and I are just finishing gear gathering and shopping before flying on to St George Island to spend the end of May and June observing, tracking, and sampling red-legged kittiwakes.

This video is taken looking down to the beach from the top of High Bluffs, St George Island.  Turn up the volume!

Just a little bit of background

Red-legged kittiwakes are endemic to the Bering Sea and most of their population nests on the cliffs on St George Island. St George is one of the Pribilof Islands located in the southeastern Bering Sea and is home to over a million nesting seabirds including auklets, cormorants, kittiwakes, murres, and puffins.  The Pribilofs are also known for the large rookeries of Northern Fur Seals (http://www.afsc.noaa.gov/nmml/education/pinnipeds/northfs.php).  St. George has a small Aleut community (http://www.apiai.org/tribes/st-george/) so we will be living in town and commuting by ATV and foot to the bird cliffs.

 

Click on the link below – Can you spot the red-legged kittiwake?

SeabirdsofPribilofs

Photo credits: Caitlin Kroeger

 

We would like to know how individual foraging behaviour and physiology influence reproductive success and then how these might carry over to wintering behaviour.

 

Tracking: We will be using GPS dataloggers (10g) and geolocation/wet-dry dataloggers (1g) to track movements and foraging behaviour of red-legged kittiwakes during incubation and overwinter.

GPS
GPS Logger from Rachel’s Kittiwake study

 

 

Physiology: When we catch birds we will take physiological samples to measure individual stress levels, mercury loads, and body condition that we can link to foraging behaviour.

 

Observations: We will observe the birds that we track so that we know when eggs are laid, chicks hatch and fledge so that foraging and physiology can be connected to these measures of breeding success.  And next year we will return and resight these birds to measure survival.

 

This study is funded by the North Pacific Research Board (http://www.nprb.org/) with additional support from OceanClassrooms (http://oceanclassrooms.com/) for pre-breeding tracking.  I also have been writing short blogs about project with the Seabird Youth Network aimed for middle schoolers that you can check out here:  (http://seabirdyouth.org/category/kittiwake-behavior/)

 

Internet access will be intermittent on St George, but I hope to periodically post updates via Twitter @RachaelOrben (#OCGrants), Instagram @raorben, and the Seabird Youth Network Blog.

CliffsofStGeorge
Cliffs of St. George

 

Seabird Research on the Western Antarctic Peninsula

I’d venture to say that I’m not the first field biologist to stare into the distance past my computer for a long while before deciding that trying to describe the smell of a seabird colony in a blog was futile.

My name is Erin Pickett and I am a graduate student at OSU’s Marine Mammal Institute. I am affiliated with the Biotelemetry and Behavioral Ecology Laboratory, a sister-lab of GEMM, and am here to share my recent experience conducting field research in Antarctica.

I’ve recently returned from a field season at Palmer station on Anvers Island, along the Western Antarctic Peninsula. Throughout the month of January I was collecting data for my masters’ project, while partaking in an on-going study conducted by the Palmer Long Term Ecological Research (LTER) program. I was fortunate enough to join the seabird research team at Palmer, a group that has been monitoring the area’s breeding seabirds for over two decades. January is the team’s busiest Antarctic summer month as the seabirds are in the midst of their annual breeding season. Our primary focus was studying the foraging ecology and demography of Adelie penguins; however, we also monitored Chinstrap and Gentoo penguins, southern giant-petrels, brown and south polar skuas, and blue-eyed shags. Before I delve into a description of this research, I’ll tell you a bit more about what it’s like to work in Antarctica.

It became quickly apparent to me that working with a team of experienced field biologists who have spent a collective thirty or so seasons in Antarctica meant that I would be the only one distracted by the scenery. This situation was exacerbated by the fact that I had never witnessed snow falling before I had arrived in Antarctica. I tried to play it cool, but inevitably rolled down every snow-covered hill I came across, and I couldn’t help but stop and stare into the sky every time it snowed.

There might have been some misunderstanding when in an email to a friend I referred to the weather as balmy. By Antarctic standards this was true, the average daily temperature hovered around 35°F. By my Hawaii-born standards, it was only balmy once I donned three or four layers, slipped toe warmers in my boots, and sipped on hot coffee while I hiked up a hill. Still, I considered myself lucky to have escaped my first Oregon winter by travelling south.

At Palmer I quickly learned that birders don’t come in for lunch. I adjusted my rations accordingly, although I have to admit that my “emergency food” in my “emergency boat bag” got eaten despite the fact that no real (non-hunger related) emergencies occurred. Every day after packing lunch and suiting up, we would load a small zodiac with our gear and set off to work on the numerous islands surrounding the station where seabirds were nesting.

One of the main objectives of the Palmer LTER program is to research the effects of climate variability and change on the marine ecosystem surrounding Palmer station. As an apex predator, the Adelie penguin plays a focal role in this project by providing insight into ecosystem-wide changes in the marine environment and the surrounding coastal habitat. Over the last four decades, Adelie penguins on the Western Antarctic Peninsula have experienced a decline of over 85% of their population. During this same time period Gentoo and Chinstrap penguins, who were previously unknown in this area, established founder colonies and they have been increasing in number ever since.

These recent population trends have been alarming and have driven Palmer LTER research objectives aimed at understand the mechanisms behind these changes. The proximal cause behind these demographic shifts is a warming-induced loss of sea ice along the peninsula. Over the last 50 years, the average mid-winter temperature in this region has risen by 6°C (five times higher than rise of the average global temperature). By decreasing the extent, duration and concentration of winter sea-ice, this warming has altered marine primary productivity and transformed coastal habitat along the peninsula.

These transformations have caused the climate along the WAP to more closely resemble the warmer and moister sub-Antarctic, rather than the traditionally cold and arid Antarctic it once was. This has resulted in a southward expansion of the ranges of sub-polar, ice-avoiding species (e.g. the Gentoo penguin) and a contraction of the ranges of ice-obligate species (e.g. the Adelie penguin). The strong influence of sea ice on the ranges of these two species makes it difficult to determine whether sea ice driven marine variability has also influenced these trends. The life history of Antarctic krill, a primary prey item of both Adelie and Gentoo penguins, is intricately tied to the seasonality of sea ice. In regions north of Palmer, decreasing sea ice has resulted in declining krill stocks. In the future, trends at Palmer are predicted to mirror those seen in the northern WAP.

For my master’s research, I am working with the seabird biologists at Palmer station to gain a better understanding of how prey variability affects the foraging strategies of Gentoo and Adelie penguins in this area. Specifically, I will be investigating how the foraging behaviors of Adelie and Gentoo penguins change in relation to inter-annual krill recruitment variability. I will be utilizing a long time series of data collected at Palmer by outfitting Adelie and Gentoo penguins with satellite transmitters and time depth recorders. This data will allow me to describe the foraging behavior and effort expended by these penguins on the daily foraging trips they make to feed their chicks. Determining how each of these species responds to prey variability will help us better understand the current community structure of penguins at Palmer. This is important because it will leave us better informed to predict the effects of future ecosystem shifts on the reproductive success and geographic distributions of these two species.

I’m looking forward to sharing more of this research as time goes on. Until then, enjoy the photos!