What REALLY is a Wildlife Biologist?

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

The first lecture slide. Source: Lecture1_Population Dynamics_Lou Botsford

This was the very first lecture slide in my population dynamics course at UC Davis. Population dynamics was infamous in our department for being an ultimate rite of passage due to its notoriously challenging curriculum. So, when Professor Lou Botsford pointed to his slide, all 120 of us Wildlife, Fish, and Conservation Biology majors, didn’t know how to react. Finally, he announced, “This [pointing to the slide] is all of you”. The class laughed. Lou smirked. Lou knew.

Lou knew that there is more truth to this meme than words could express. I can’t tell you how many times friends and acquaintances have asked me if I was going to be a park ranger. Incredibly, not all—or even most—wildlife biologists are park rangers. I’m sure that at one point, my parents had hoped I’d be holding a tiger cub as part of a conservation project—that has never happened. Society may think that all wildlife biologists want to walk in the footsteps of the famous Steven Irwin and say thinks like “Crikey!”—but I can’t remember the last time I uttered that exclamation with the exception of doing a Steve Irwin impression. Hollywood may think we hug trees—and, don’t get me wrong, I love a good tie-dyed shirt—but most of us believe in the principles of conservation and wise-use A.K.A. we know that some trees must be cut down to support our needs. Helicoptering into a remote location to dart and take samples from wild bear populations…HA. Good one. I tell myself this is what I do sometimes, and then the chopper crashes and I wake up from my dream. But, actually, a scientist staring at a computer with stacks of papers spread across every surface, is me and almost every wildlife biologist that I know.

The “dry lab” on the R/V Nathaniel B. Palmer en route to Antarctica. This room full of technology is where the majority of the science takes place. Drake Passage, International Waters in August 2015. Source: Alexa Kownacki

There is an illusion that wildlife biologists are constantly in the field doing all the cool, science-y, outdoors-y things while being followed by a National Geographic photojournalist. Well, let me break it to you, we’re not. Yes, we do have some incredible opportunities. For example, I happen to know that one lab member (eh-hem, Todd), has gotten up close and personal with wild polar bear cubs in the Arctic, and that all of us have taken part in some work that is worthy of a cover image on NatGeo. We love that stuff. For many of us, it’s those few, memorable moments when we are out in the field, wearing pants that we haven’t washed in days, and we finally see our study species AND gather the necessary data, that the stars align. Those are the shining lights in a dark sea of papers, grant-writing, teaching, data management, data analysis, and coding. I’m not saying that we don’t find our desk work enjoyable; we jump for joy when our R script finally runs and we do a little dance when our paper is accepted and we definitely shed a tear of relief when funding comes through (or maybe that’s just me).

A picturesque moment of being a wildlife biologist: Alexa and her coworker, Jim, surveying migrating gray whales. Piedras Blancas Light Station, San Simeon, CA in May 2017. Source: Alexa Kownacki.

What I’m trying to get at is that we accepted our fates as the “scientists in front of computers surrounded by papers” long ago and we embrace it. It’s been almost five years since I was a senior in undergrad and saw this meme for the first time. Five years ago, I wanted to be that scientist surrounded by papers, because I knew that’s where the difference is made. Most people have heard the quote by Mahatma Gandhi, “Be the change that you wish to see in the world.” In my mind, it is that scientist combing through relevant, peer-reviewed scientific papers while writing a compelling and well-researched article, that has the potential to make positive changes. For me, that scientist at the desk is being the change that he/she wish to see in the world.

Scientists aboard the R/V Nathaniel B. Palmer using the time in between net tows to draft papers and analyze data…note the facial expressions. Antarctic Peninsula in August 2015. Source: Alexa Kownacki.

One of my favorite people to colloquially reference in the wildlife biology field is Milton Love, a research biologist at the University of California Santa Barbara, because he tells it how it is. In his oh-so-true-it-hurts website, he has a page titled, “So You Want To Be A Marine Biologist?” that highlights what he refers to as, “Three really, really bad reasons to want to be a marine biologist” and “Two really, really good reasons to want to be a marine biologist”. I HIGHLY suggest you read them verbatim on his site, whether you think you want to be a marine biologist or not because they’re downright hilarious. However, I will paraphrase if you just can’t be bothered to open up a new tab and go down a laugh-filled wormhole.

Really, Really Bad Reasons to Want to be a Marine Biologist:

  1. To talk to dolphins. Hint: They don’t want to talk to you…and you probably like your face.
  2. You like Jacques Cousteau. Hint: I like cheese…doesn’t mean I want to be cheese.
  3. Hint: Lack thereof.

Really, Really Good Reasons to Want to be a Marine Biologist:

  1. Work attire/attitude. Hint: Dress for the job you want finally translates to board shorts and tank tops.
  2. You like it. *BINGO*
Alexa with colleagues showing the “cool” part of the job is working the zooplankton net tows. This DOES have required attire: steel-toed boots, hard hat, and float coat. R/V Nathaniel B. Palmer, Antarctic Peninsula in August 2015. Source: Alexa Kownacki.

In summary, as wildlife or marine biologists we’ve taken a vow of poverty, and in doing so, we’ve committed ourselves to fulfilling lives with incredible experiences and being the change we wish to see in the world. To those of you who want to pursue a career in wildlife or marine biology—even after reading this—then do it. And to those who don’t, hopefully you have a better understanding of why wearing jeans is our version of “business formal”.

A fieldwork version of a lab meeting with Leigh Torres, Tom Calvanese (Field Station Manager), Florence Sullivan, and Leila Lemos. Port Orford, OR in August 2017. Source: Alexa Kownacki.

Who am I?

By Leila Lemos, PhD Student
(hopefully PhD candidate soon)

 

Here I am with the first GEMM Lab blog post of 2018.

Many people begin a New Year thinking about the future and planning goals to achieve in the following year, and that’s exactly how I am starting my year. After two and a half years of my PhD program, my classes and thesis project are nearing the end. However, a large hurdle stands between me and my finish line: my preliminary exams (as opposed to final exams that happen when I defend my thesis).

Oregon State University requires two sets of preliminary examinations (a.k.a. “prelims”) in order to become a PhD candidate. Thus, planning my next steps is essential in order to accomplish my main objective: a successful completion of these two exams.

The first set of exams comprises written comprehensive examinations to be taken over the course of a week (Monday to Friday), where each day belongs to a different member of my committee. The second type of exam is an oral preliminary examination, conducted by my doctoral committee. The written and oral prelims may cover any part of my proposed research topic as described in the proposal I submitted during my first PhD year.

In order to better understand this entire process, I met with Dr. Carl Schreck, a Fisheries and Wildlife Department professor and one of the members of my committee. He has been through this prelim process many times with other students and had good advice for me regarding preparation. He told me to meet with all of my committee members individually to discuss study material and topics. However, he said that I should first define and introduce myself with a title to each committee member, so they know how to base and frame exam questions. But, how do I define myself?

How do you define yourself?
Source: www.johngarvens.com/wpcontent/uploads/2013/02/how_do_you_ define_yourself.jpeg

 

As part of my PhD committee, Dr. Schreck is familiar with my project and what I am studying, so he suggested the title “Conservation Physiologist”. But, do I see myself as a Conservation Physiologist? Will this set-up have implications for my future, such as the type of job I am prepared for and able to get?

I can see it is important to get this title right, as it will influence my exam process as well as my scientific career. However, it can be hard and somewhat tricky when trying to determine what is comprised by your work and what are the directions you want to take in your future. I believe that defining the terms conservationist and physiologist, and what they encompass, is a good first step.

To me, a conservation specialist works for the protection of the species, their habitats, and its natural resources from extinction and biodiversity loss, by identifying and mitigating the possible threats. A conservation specialist’s work can help in establishing new regulations, conservation actions, and management interventions. As for an animal physiology specialist, their research may focus on how animals respond to internal and external elements. This specialist often studies an animal’s vital functions like reproduction, movement, growth, metabolism and nutrition.

According to Cooke et al. (2013), conservation specialists focus on population characteristics (e.g., abundance and structure) and indicators of responses to environmental perturbations and human activities. Thus, merging conservation and physiology disciplines enables fundamental understanding of the animal response mechanisms to such threats. Using animal physiology as a tool is valuable for developing cause-and-effect relationships, identifying stressor thresholds, and improving ecological model predictions of animal responses. Thus, conservation physiology is an inter-disciplinary field that provides physiological evidence to promote advances in conservation and resource management.

My PhD project is multidisciplinary, where the overall aim is to understand how gray whales are physiologically responding to variability in ambient noise, and how their hormone levels vary across individual, time, body condition, location, and noise levels. I enjoy many aspects of the project, but what I find myself most excited about is linking information about sex, age, body condition, and cortisol levels to specific individuals we observe multiple times in the field. As we monitor their change in body condition and hormones, I am highly motivated to build these whale ‘life-history stories’ in order to better understand patterns and drivers of variability. Although we have not yet tied the noise data into our analyses of whale health, I am very interested to see how this piece of the puzzle fits into these whale ‘life-history stories’.

In this study, animal physiology facilitates our stories. Scientific understanding is the root of all good conservation, so I believe that this project is an important step toward improved conservation of baleen whales. Once we are able to understand how gray whales respond physiologically to impacts of ocean noise, we can promote management actions that will enhance species conservation.

Thus, I can confidently say, I am a Conservation Physiologist.

Me, in Newport, OR, during fieldwork in 2017.
Source: Sharon Nieukirk, 2017.

 

Over the next three months I will be meeting with my committee members and studying for my prelims. I hope that this process will prepare me to become a PhD candidate by the time my exams come around in March. Then, I will have accomplished my first goal of 2018, so I can go on to plan for the next ones!

 

References:

Cooke SJ, Sack L, Franklin CE, Farrell AP, Beardall J, Wikelski M, and Chown SL. What is conservation physiology? Perspectives on an increasingly integrated and essential science. Conserv Physiol. 2013; 1(1): cot001. Published online 2013 Mar 13. doi:  10.1093/conphys/cot001.

 

GEMM Lab 2017: A Year in the Life

By Dawn Barlow, MSc Student, Department of Fisheries and Wildlife

The days are growing shorter, and 2017 is drawing to a close. What a full year it has been for the GEMM Lab! Here is a recap, filled with photos, links to previous blogs, and personal highlights, best enjoyed over a cup of hot cocoa. Happy Holidays from all of us!

The New Zealand blue whale team in action aboard the R/V Star Keys. Photo by L. Torres.

Things started off with a bang in January as the New Zealand blue whale team headed to the other side of the world for another field season. Leigh, Todd and I joined forces with collaborators from Cornell University and the New Zealand Department of Conservation aboard the R/V Star Keys for the duration of the survey. What a fruitful season it was! We recorded sightings of 68 blue whales, collected biopsy and fecal samples, as well as prey and oceanographic data. The highlight came on our very last day when we were able to capture a blue whale surface lunge feeding on krill from an aerial perspective via the drone. This footage received considerable attention around the world, and now has over 3 million views!

A blue whale surfaces just off the bow of R/V Star Keys. Photo by D. Barlow.

In the spring Rachael made her way to the remote Pribilof Islands of Alaska to study the foraging ecology of red-legged kittiwakes. Her objectives included comparing the birds that reproduce successfully and those that don’t, however she was thrown a major curveball: none of the birds in the colony were able to successfully reproduce. In fact, they didn’t even build nests. Further analyses may elucidate some of the reasons for the reproductive failure of this sentinel species of the Bering Sea… stay tuned.

red-legged kittiwakes
Rachael releases a kittiwake on St. George Island. Photo by A. Fleishman.

 

The 2017 Port Orford field team. Photo by A. Kownacki.

Florence is a newly-minted MSc! In June, Florence successfully defended her Masters research on gray whale foraging and the impacts of vessel disturbance. She gracefully answered questions from the room packed with people, and we all couldn’t have been prouder to say “that’s my labmate!” during the post-defense celebrations. But she couldn’t leave us just yet! Florence stayed on for another season of field work on the gray whale foraging ecology project in Port Orford, this time mentoring local high school students as part of the projectFlorence’s M.Sc. defense!

Upon the gray whales’ return to the Oregon Coast for the summer, Leila, Leigh, and Todd launched right back into the stress physiology and noise project. This year, the work included prey sampling and fixed hydrophones that recorded the soundscape throughout the season. The use of drones continues to offer a unique perspective and insight into whale behavior.

Video captured under NOAA/NMFS permit #16111.

 

Solene with a humpback whale biopsy sample. Photo by N. Job.

Solene spent the austral winter looking for humpback whales in the Coral Sea, as she participated in several research cruises to remote seamounts and reefs around New Caledonia. This field season was full of new experiences (using moored hydrophones on Antigonia seamount, recording dive depths with SPLASH10 satellite tags) and surprises. For the first time, whales were tracked all the way from New Caledonia to the east coast of Australian. As her PhD draws to a close in the coming year, she will seek to understand the movement patterns and habitat preferences of humpback whales in the region.

A humpback whale observed during the 2017 coral sea research cruise. Photo by S. Derville.

This summer we were joined by two new lab members! Dom Kone will be studying the potential reintroduction of sea otters to the Oregon Coast as a MSc student in the Marine Resource Management program, and Alexa Kownacki will be studying population health of bottlenose dolphins in California as a PhD student in the Department of Fisheries and Wildlife. We are thrilled to have them on the GEMM Lab team, and look forward to seeing their projects develop. Speaking of new projects from this year, Leigh and Rachael have launched into some exciting research on interactions between albatrosses and fishing vessels in the North Pacific, funded by the NOAA Bycatch Reduction Engineering Program.

During the austral wintertime when most of us were all in Oregon, the New Zealand blue whale project received more and more political and media attention. Leigh was called to testify in court as part of a contentious permit application case for a seabed mine in the South Taranaki Bight. As austral winter turned to austral spring, a shift in the New Zealand government led to an initiative to designate a marine mammal sanctuary in the South Taranaki Bight, and awareness has risen about the potential impacts of seismic exploration for oil and gas reserves. These tangible applications of our research to management decisions is very gratifying and empowers us to continue our efforts.

In the fall, many of us traveled to Halifax, Nova Scotia to present our latest and greatest findings at the 22nd Biennial Conference on the Biology of Marine Mammals. The strength of the lab shone through at the meeting during each presentation, and we all beamed with pride when we said our affiliation was with the GEMM Lab at OSU. In other conference news, Rachael was awarded the runner-up for her presentation at the World Seabird Twitter Conference!

GEMM Lab members present their research. From left to right, top to bottom: Amanda Holdman, Leila Lemos, Solène Derville, Dawn Barlow, Sharon Nieukirk, and Florence Sullivan.

Leigh had a big year in many ways. Along with numerous scientific accomplishments—new publications, new students, successful fieldwork, successful defenses—she had a tremendous personal accomplishment as well. In the spring she was diagnosed with breast cancer, and after a hard fight she was pronounced cancer-free this November. We are all astounded with how gracefully and fearlessly she navigated these times. Look out world, this lab’s Principle Investigator can accomplish anything!

This austral summer we will not be making our way south to join the blue whales. However, we are keenly watching from afar as a seismic survey utilizing the largest seismic survey vessel in the world has launched in the South Taranaki Bight. This survey has been met with considerable resistance, culminating in a rally led by Greenpeace that featured a giant inflatable blue whale in front of Parliament in Wellington. We are eagerly planning our return to continue this study, but that will hopefully be the subject of a future blog.

New publications for the GEMM Lab in 2017 include six for Leigh, three for Rachael, and two for Alexa. Highlights include Classification of Animal Movement Behavior through Residence in Space and Time and A sense of scale: Foraging cetaceans’ use of scale-dependent multimodal sensory systems. Next year is bound to be a big one for GEMM Lab publications, as Amanda, Florence, Solene, Leila, Leigh, and I all have multiple papers currently in review or revision, and more in the works from all of us. How exciting!

In our final lab meeting of the year, we went around the table to share what we’ve learned this year. The responses ranged from really grasping the mechanisms of upwelling in the California Current to gaining proficiency in coding and computing, to the importance of having a supportive community in graduate school to trust that the right thing will happen. If you are reading this, thank you for your interest in our work. We are looking forward to a successful 2018. Happy holidays from the GEMM Lab!

GEMM Lab members, friends, and families gather for a holiday celebration.

Skype a Scientist – Are you smarter than a middle schooler?

By Florence Sullivan, MSc

What do baby whales eat?

Does the mom whale take care of the baby whale alone?

How do whales communicate?

What are their behaviors?

These are the questions 4th grade students half a world away asked me.  They are studying biodiversity and were very curious to meet a real life scientist.  It was 2:00pm on a Tuesday here in Newport, OR, while in Australia, this classroom full of students was sitting in their 9:00am Wednesday science class.  We had an hour-long conversation about gray whale behaviors, habitat, life cycle, and general biology – all thanks to the wonders of science, technology and the computer program, Skype. The next day, I did it all again, and Skyped in to a classroom in British Columbia, to field questions about gray whales, right whales and science careers from a group of enthusiastic 5th and 6th grade students.

 

A class of Australian 4th graders had many imaginative questions for me through the Skype a Scientist Program.

But how in the world did I end up answering questions over Skype for a classroom full of kids in the first place? Like many good things, it began with a conversation.  During the 2016 USA election cycle, it became apparent that many people in this country distrust scientists. Sarah McAnulty, a PhD student at the University of Connecticut who studies the immune system of bob tail squid, had already been engaging in informal science communication through a profile on tumblr.  But posting things on tumblr is like preaching to the choir – your audience tends to be people who are already interested in your subject. If the problem is trying to change the public perception of scientists from aloof and insular to trustworthy and approachable, you need to start by finding people who have a lot of questions, and few pre-existing prejudices.  Who fits the bill perfectly? Kids!

After conversations with colleagues, she came up with the idea of using Skype to reach classrooms of students outside of the range where scientists usually congregate (large cities and universities).  Sarah started by connecting a handful of UConn colleagues with K-12 teachers through Facebook, but the idea quickly gained steam through mentions at a scientific conference, posts on the ‘March for Science’ Facebook group, media coverage, and word-of-mouth sharing between colleagues on both the teaching and the research side of the story.  Now, there is a full-fledged website (https://www.skypeascientist.com/) where teachers and scientists can sign up to be matched based on availability, topic, and sometimes, demographic.  When pairing classrooms and scientists, Sarah makes an effort for minority students (whether this means race, gender, disability, language, or other) to see themselves represented in the scientists they get to talk to, if possible.  Representation matters –we are beyond the age of old white men in lab coats being the only ‘real scientists’ represented in media, but unfortunately, the stereotype is not dead yet! In less than a year, the program has grown to over 1900 scientists, with new fields of expertise being added frequently as people spread the word and get interested.  The program has been, and promises to continue being, an excellent resource for teachers who want to show the relevance of the subjects being discussed in their classrooms. As evidenced by the fact that I spoke with a classroom in Australia, this is a global program – check out the maps below to see where students and scientists are coming from!

This map shows the locations of all participating classrooms, current on Oct 12, 2017.
This map shows the locations of all participating scientists, current on October 22, 2017.

As for myself, I got involved because my lab mate, Alexa, mentioned how much fun she had Skyping with students.  The sign-up process was incredibly easy, and when I got matched with two classrooms, the organizers even provided a nice mad-libs style ‘fill in the blank’ introduction letter so that I didn’t waste time agonizing over how to introduce myself.

Introductory Mad-libs for scientists. Courtesy of the Skype a Scientist program.

I sent the classrooms the youtube video of my field work, and a couple of these blog posts, and waited to hear back.  I was very impressed with the 5th/6th grade class from British Columbia because the teacher actually let the students take the lead from the get-go.  One of the students replied to my email, told me what they were studying, and started the process of scheduling a meeting time that would work for both of us. When I called in, two other students took the reins, and acted as spokespeople for the rest of their classmates by repeating questions from the back of the room so that I could hear everything clearly. It was so fun to see and hear the enthusiasm of the students as they asked their questions.  Their deep curiosity and obvious excitement about the subject matter was contagious, and I found my own tone, body language, and attitude shifting to match theirs as I helped them discover the building blocks of marine ecology that I have long accepted as normal. This two way street of learning is a good reminder that we all start somewhere.

If you are interested in the program at all, I encourage you to sign up at this link: (https://www.skypeascientist.com/). Who knows, engaging with kids like this just might remind you of the innocent curiosity of childhood that brought you to your scientific career in the first place.

 

Here are some of my favorite question that I was asked, and the responses I gave:

  • How do gray whales communicate?

With songs and underwater sounds! Check out this great website for some great examples, and prepare to be amazed! (I played the Conga and the belch-like call during the skype session, much to the amusement of the students)  https://www.sanignaciograywhales.org/project/acoustics/

  • What do baby whales eat?

Whales are mammals just like us, so believe it or not, baby whales drink their mother’s milk!

  • How long have you been a marine special ecologist for?

My favorite bit here was the mis-spelling, which made me a ‘special’ ecologist instead of a ‘spatial’ ecologist.  So I talked about how spatial ecology is a special type of ecology where we look at how big things move in the ocean!

  • My question is, can a grey whale bite people if people come close to them?
    This was a chance to show off our lab baleen samples!  I also took the time to look this up, and it turns out that bite is defined as “using teeth to cut into something” and a gray whale doesn’t have teeth!  Instead, they have baleen, which they use to sieve stuff out of the water.  So I don’t think you need to worry about getting bitten by a gray whale. That being said, it’s important not to get close to them, because they are so much bigger than us that they could hurt us on accident.

 

  • When you go out to see the whales, why don’t you use slightly bigger boats so you don’t flip over if the whale gets too close to you, or when you get to close to the whale?
    Our research kayak is a never-ending delight. It’s less expensive than a bigger boat, and doesn’t use fossil fuels. We want to be quiet in the water and not disturb the whale, and actively avoid getting within 100 yards so there shouldn’t be any danger. Sometimes the whales surprise us though, and we have to be careful. In this case, everyone has safety training and is able to rescue themselves if the boat should flip.

(This led to an entertaining discussion of field safety, and the appalling idea that I would make my interns jump out of the kayak into cold Pacific water on purpose during safety training)

There were many more questions, but why don’t you give the program a try, and see what kind of questions you get to answer?!

Safety First! 

Observing humpback whales through the clear New Caledonian waters

Solène Derville, Entropie Lab, French National Institute for Sustainable Development (IRD – UMR Entropie), Nouméa, New Caledonia

Ph.D. student under the co-supervision of Dr. Leigh Torres

Drone technology has illustrated itself as particularly useful to the study of cetacean in the GEMM Lab (see previous post by Dawn and Leila) and in the marine mammal research community in general. The last Conference on the Biology of Marine Mammals in Halifax staged several talks and posters describing the great potential of drones for observing animal behaviors, collecting blow samples, estimating the size and health of animals, or estimating densities. The GEMM Lab has been conducting leading research in this field, from capturing exceptional footages of lunge feeding blue whales in New Zealand, to measuring gray whale health on the Oregon coast.

Using drones in New Caledonia

In September 2017 I participated in a scientific cruise undertaken by Opération Cétacés /IRD to study New Caledonian humpback whales, and we were lucky to be joined by Nicolas Job, a professional diver, photographer and drone pilot. It was one of those last minute decisions: one of our crewmates canceled the week before the survey and we thought “who could we bring on instead?”. We barely knew the man but figured it would be good to get a few humpback whale drone images… We invited him to join us on the research expedition only a few days before the trip but this is not the kind of opportunity that a photographer would pass on!

Far from trying to acquire scientific data in the way the GEMM Lab does with blue whales and gray whales, we were only hoping to take “pretty pictures”… we were not disappointed.

Once we got past a few unexpected issues (YES you need to wear gloves to protect your fingers when trying to catch a flying drone (Fig 1), and NO frigate birds will not attack drones as long as they don’t smell like fish), Nicolas managed to fly the drone above our small research boat and capture footage of several humpback whale groups, including mothers with calf and competitive groups.

Figure 1: Frigate birds are known to attack birds in flight to steal their meal straight from their beak…luckily they did not attack our drone! On the contrary, it seems like they could help scientists one day as it has been suggested that UAV builders could learn from their exceptional soaring behavior that allows months-long transoceanic flights (photo credit: Henri Zemerskirch CEBC CNRS) .

As I said, no groundbreaking science here, but this experience convinced me that drones can bring a new perspective to the way we observe and interpret animal behavior. As a known statistics/R-lover in the lab, I often get so excited by the intricacies of data analysis that I forget I am studying these giant, elegant, agile, and intelligent sea creatures (Fig 2). And the video clips that Nicolas put together just reminded me of that.

The clear waters of the Natural Park of the Coral Sea allowed us to see whales as far as 30 meters deep in some areas! This perspective turned our usual surface observations into 3D. We could see escorts guarding maternal females and preventing other males from approaching by producing bubble trails. Escorts also extended their pectoral fins on either side of their body, a behavior supposed to make them look more imposing in the presence of a challenger. Competitive groups were also very impressive from above. During the breeding season, competitive groups form when several males aggregate around a female and compete for it. These groups typically travel at high speed and are characterized by active surface behaviors such as tail slaps, head lunges, and bubble trails.

Figure 2: This female humpback whale was encountered in 2016 and 2017. Her white flanks make her particularly easy to recognize. On both occasions it put on a show and kept circling the Amborella oceanographic vessel for more than an hour. To provide a sense of scale, the vessel on this drone footage is 24 m long (photo credit: Nicolas Job).

Drones and seamounts

Since the discovery of humpback whale offshore breeding areas in Antigonia seamount in 2007 and Orne bank in 2016, a lot of research has been conducted to better understand habitat preferences, distributions and connectivity in oceanic waters of New Caledonia (see previous post). Surveys have always been strongly multidisciplinary, including boat-based observation, biopsy sampling, and photo-identification, satellite tracking, in situ oceanographic measurements and acoustics. Will drones soon become an essential component of this toolbox?

One potential application I could imagine for my personal research questions would be to use aerial photogrammetry to measure the size of newborn calves. Indeed, we have found that offshore seamounts are used by a relatively great number of mothers with calf (Derville, Torres & Garrigue, In Press JMAMM). This finding is counter intuitive to the paradigm that maternal females prefer sheltered, shallow and coastal waters as shown in many breeding grounds around the world. Yet, we believe unsheltered oceanic areas might become more attractive to maternal females as the calf grows bigger and more robust to harsh sea states and encounters with competitive adult males. Drone photogrammetry of calves could likely help us confirm this hypothesis.

But for now, I will leave the science behind for a bit and let you enjoy the sheer beauty of this footage!

Film directed by Nicolas Job (Heos Marine) with images collected during the MARACAS3 survey (Marine Mammals of the Coral Sea: IRD/ UMR Entropie/Opération Cétacés/ Gouv.nc/ WWF/ Ministère de la Transition écologique et solidaire).

Meeting to disentangle factors influencing albatross bycatch in the deep-set Hawaii Longline Fishery

By Rachael Orben PhD., Research Associate in the Seabird Oceanography Lab and GEMM Lab

Seabird bycatch is a global problem (e.g. Anderson et al 2011). Humans like eating fish and seabirds do too. Fishing vessels provide a food source for seabirds through discards, bait, and target fish. Different types of fishing gear pose different risks for seabirds. The good news is there are things that we can do to decrease these risks.

Albatrosses and petrels are particularly vulnerable to being hooked by longlines as the baited hooks are set overboard. Albatrosses and petrels are long lived (e.g., Wisdom the 65-year-old Laysan Albatross) and have a limited number of off-spring. Therefore fishery mortalities can have devastating impacts on populations if left unchecked. Currently all 22 species of albatrosses have IUCN statuses ranging from Near Threatened to Critically Endangered.

North Pacific Albatrosses

Longlines are used to catch a number of target species including tuna, swordfish, halibut, black cod, and toothfish. Just like the diversity of species this type of fishing gear is used to catch, there are a number of ways to set long-lines and ways to mitigate seabird bycatch and a method that works well in one instance may not work so well in other places. Tori Lines (a.k.a. streamer lines), side setting, night setting, faster sinking lines, and discard regulations are a few of the methods used.

Tori lines work by scaring birds away from baited longline hooks while they sink. Once the hooks sink past a few meters albatrosses are not able to reach them. Photo by Ed Melvin/Washington Sea Grant

In early November, I had the opportunity to attend a workshop in Honolulu, Hawaii hosted by the Western Pacific Regional Fishery Management Council. The workshop was held due to a dramatic increase in black-footed albatross bycatch by the Hawaii deep-set longline fishery in 2015 and 2016 (see the figure below). It was our job to figure out why, or more realistically pave the path for future analysis and data collection to answer this question.

Recently Leigh Torres and I were funded by the NOAA Bycatch Reduction Engineering Program to characterize fine-scale fishery-albatross interactions using previously collected albatross tracking data and tracks of fishing boats processed in real time by Global Fishing Watch. The workshop provided the perfect opportunity for me to learn more about the Hawaii longline fisheries.

Reasons for Albatross Bycatch

Rates of bycatch can change due to many factors, including where or when the fish are being caught, subtle choices made by fishermen, changes in seabird distributions, changes in prey of fish or seabirds, and so on. So, it can be very challenging to pin-point the exact reasons for an increase in bycatch. But, across the North Pacific, 2015 and 2016, were very strange years oceanographically. There was the warm water phenomena known as ‘the Blob’ along with a strong El Niño, and a positive Pacific Decadal Oscillation (PDO). So perhaps, bycatch levels will drop off again as we move into a La Niña, but perhaps not. It is good to know that fishery managers and scientists are paying attention.

Implications

From the perspective of the fisherman in the Hawaiian longline fleet, albatrosses are hardly ever caught; they are pulled in at a barely perceptible level of less than one bird per set and only from about December to July. Although one occasional dead bird among the menagerie of fish doesn’t seem like much, it can add up: there are ~140 boats in the deep-set longline fleet, that set 40-52 million hooks a year, plus the multiple other fisheries and fleets encountered by albatrosses across the North Pacific, and enough albatrosses could be killed to make a difference in their population numbers. And, we need to also consider the cumulative impacts since fisheries aren’t the only threat  (e.g., sea level rise, storm surges, introduced predators; see Bakker et al 2018).

Inspecting the Catch

On the morning of the last day of the workshop we took a field trip to the Honolulu Fish Market at Pier 38 in Honolulu where the Hawaiian long-line fishing vessels dock to offload and sell their catch. We checked out some of the boats, watched fish being craned off a vessel into a large cart and went inside the cooler room to see where the fish are auctioned.

In the cooler room, the catch from one vessel was laid out on brilliant blue pallets. The tails of each tuna were sliced so the deep pink color of the meat could be assessed. A core sample of each fish was laid out on an identification tag. Then the auctioneer and the buyers visited each fish, rapidly bidding on a price per pound. Their quick words were basically incomprehensible to my untrained ear.

The prize-catch of the fishery, and the fish that gets the highest price per pound, is the big eye tuna. A number of other large and beautiful pelagic species are also caught and sold including: long and narrow marlins, with their bills cut off for packing, side table size pomfrets, speckled white with red accents; and the distinctive blunt headed mahimahi, with yellow bellies. Once the fish are sold, they are moved out of the auction room, packed and loaded into the trucks that whisk them away toward markets and restaurants in Hawaii, the U.S. Mainland, and beyond.

Sustainable management of these commercially valuable fish is dependent on a better understanding of their pelagic ecosystem, including when, where, and why albatrosses interact with fishing vessels. Hopefully, our current research project will help to answer some of these questions.

A Marine Mammal Odyssey, Eh!

By Leila Lemos, PhD student

Dawn Barlow, MS student

Florence Sullivan, MS

The Society for Marine Mammalogy’s Biennial Conference on the Biology of Marine Mammals happens every two years and this year the conference took place in Halifax, Nova Scotia, Canada.

Logo of the Society for Marine Mammalogy’s 22nd Biennial Conference on the Biology of Marine Mammals, 2017: A Marine Mammal Odyssey, eh!

The conference started with a welcome reception on Sunday, October 22nd, followed by a week of plenaries, oral presentations, speed talks and posters, and two more days with different workshops to attend.

This conference is an important event for us, as marine mammalogists. This is the moment where we get to share our projects (how exciting!), get important feedback, and hear about different studies that are being conducted around the world. It is also an opportunity to network and find opportunities for collaboration with other researchers, and of course to learn from our colleagues who are presenting their work.

The GEMM Lab attending the opening plenaries of the conference!

The first day of conference started with an excellent talk from Asha de Vos, from Sri Lanka, where she discussed the need for increased diversity (in all aspects including race, gender, nationality, etc.) in our field, and advocated for the end of “parachute scientists” who come into a foreign (to them) location, complete their research, and then leave without communicating results, or empowering the local community to care or act in response to local conservation issues.  She also talked about the difficulty that researchers in developing countries face accessing research that is hidden behind journal pay walls, and encouraged everyone to get creative with communication! This means using blogs and social media, talking to science communicators and others in order to get our stories out, and no longer hiding our results behind the ivory tower of academia.  Overall, it was an inspirational way to begin the week.

On Thursday morning we heard Julie van der Hoop, who was this year’s recipient of the F.G. Wood Memorial Scholarship Award, present her work on “Drag from fishing gear entangling right whales: a major extinction risk factor”. Julie observed a decrease in lipid reserves in entangled whales and questioned if entanglements are as costly as events such as migration, pregnancy or lactation. Tags were also deployed on whales that had been disentangled from fishing gear, and researchers were able to see an increase in whale speed and dive depth.

Julie van der Hoop talks about different drag forces of fishing gears
on North Atlantic Right Whales.

There were many other interesting talks over the course of the week. Some of the talks that inspired us were:

— Stephen Trumble’s talk “Earplugs reveal a century of stress in baleen whales and the impact of industrial whaling” presented a time-series of cortisol profiles of different species of baleen whales using earplugs. The temporal data was compared to whaling data information and they were able to see a high correlation between datasets. However, during a low whaling season concurrent to the World War II in the 40’s, high cortisol levels were potentially associated to an increase in noise from ship traffic.

— Jane Khudyakov (“Elephant seal blubber transcriptome and proteome responses to single and repeated stress”) and Cory Champagne (“Metabolomic response to acute and repeated stress in the northern elephant seal”) presented different aspects of the same project. Jane looked at down/upregulation of genes (downregulation is when a cell decreases the quantity of a cellular component, such as RNA or protein, in response to an external stimulus; upregulation is the opposite: when the cell increases the quantity of cellular components) to check for stress. She was able to confirm an upregulation of genes after repeated stressor exposure. Cory checked for influences on the metabolism after administering ACTH (adrenocorticotropic hormone: a stimulating hormone that causes the release of glucocorticoid hormones by the adrenal cortex. i.e., cortisol, a stress related hormone) to elephant seals. By looking only at the stress-related hormone, he was not able to differentiate acute from chronic stress responses. However, he showed that many other metabolic processes varied according to the stress-exposure time. This included a decrease in amino acids, mobilization of lipids and upregulation of carbohydrates.

— Jouni Koskela (“Fishing restrictions is an essential protection method of the Saimaa ringed seal”) talked about the various conservation efforts being undertaken for the endangered Lake Saimaa ringed seal. Gill nets account for 90% of seal pup mortality, but if new pups can reach 20kg, only 14% of them will drown in these fishing net entanglements. Working with local industry and recreational interests, increased fishing restrictions have been enacted during the weaning season. In addition to other year-round restrictions, this has led to a small, but noticeable upward trend in pup production and population growth! A conservation success story is always gratifying to hear, and we wish these collaborative efforts continued future success.

— Charmain Hamilton (“Impacts of sea-ice declines on a pinnacle Arctic predator-prey relationship: Habitat, behaviour, and spatial overlap between coastal polar bears and ringed seals”) gave a fascinating presentation looking at how changing ice regimes in the arctic are affecting spatial habitat use patterns of polar bears. As ice decreases in the summer months, the polar bears move more, resulting in less spatial overlap with ringed seal habitat, and so the bears have turned to targeting ground nesting seabirds.  This spatio-temporal mismatch of traditional predator/prey has drastic implications for arctic food web dynamics.

— Nicholas Farmer’s presentation on a Population Consequences of Disturbance (PCoD) model for assessing theoretical impacts of seismic survey on sperm whale population health had some interesting parallels with new questions in our New Zealand blue whale project. By simulating whale movement through modeled three-dimensional sound fields, he found that the frequency of the disturbance (i.e., how many days in a row the seismic survey activity persisted) was very important in determining effects on the whales. If the seismic noise persists for many days in a row, the sperm whales may not be able to replenish their caloric reserves because of ongoing disturbance. As you can imagine, this pattern gets worse with more sequential days of disturbance.

— Jeremy Goldbogen used suction cup tags equipped with video cameras to peer into an unusual ecological niche: the boundary layer of large whales, where drag is minimized and remoras and small invertebrates compete and thrive. Who would have thought that at a marine mammal conference, a room full of people would be smiling and laughing at remoras sliding around the back of a blue whale, or barnacles filter feeding as they go for a ride with a humpback whale? Insights from animals that occupy this rare niche can inform improvements to current tag technologies.

The GEMM Lab was well represented this year with six different talks: four oral presentations and two speed talks! It is evident that all of our hard work and preparation, such as practicing our talks in front of our lab mates two weeks in advance, paid off.  All of the talks were extremely well received by the audience, and a few generated intelligent questions and discussion afterwards – exactly as we hoped.  It was certainly gratifying to see how packed the room was for Sharon’s announcement of our new method of standardizing photogrammetry from drones, and how long the people stayed to talk to Dawn after her presentation about an unique population of New Zealand blue whales – it took us over an hour to be able to take her away for food and the celebratory drinks she deserved!

GEMM Lab members on their talks. From left to right, top to bottom: Amanda Holdman, Leila Lemos, Solène Derville, Dawn Barlow, Sharon Nieukirk, and Florence Sullivan.

 

GEMM Lab members at the closing celebration. From left to right: Florence Sullivan, Leila Lemos, Amanda Holdman, Solène Derville, and Dawn Barlow.
We are not always serious, we can get silly sometimes!

The weekend after the conference many courageous researchers who wanted to stuff their brains with even more specialized knowledge participated in different targeted workshops. From 32 different workshops that were offered, Leila chose to participate in “Measuring hormones in marine mammals: Current methods, alternative sample matrices, and future directions” in order to learn more about the new methods, hormones and matrices that are being used by different research groups and also to make connections with other endocrinologist researchers. Solène participated in the workshop “Reproducible Research with R, Git, and GitHub” led by Robert Shick.  She learned how to better organize her research workflow and looks forward to teaching us all how to be better collaborative coders, and ensure our analysis is reproducible by others and by our future selves!

On Sunday none of us from the GEMM Lab participated in workshops and we were able to explore a little bit of the Bay of Fundy, an important area for many marine mammal species. Even though we didn’t spot any marine mammals, we enjoyed witnessing the enormous tidal exchange of the bay (the largest tides in the world), and the fall colors of the Annaoplis valley were stunning as well. Our little trip was fun and relaxing after a whole week of learning.

The beauty of the Bay of Fundy.
GEMM Lab at the Bay of Fundy; from left to right: Kelly Sullivan (Florence’s husband and a GEMM Lab fan), Florence Sullivan, Dawn Barlow, Solène Derville, and Leila Lemos.
We do love being part of the GEMM Lab!

It is amazing how refreshing it is to participate in a conference. So many ideas popping up in our heads and an increasing desire to continue doing research and work for conservation of marine mammals. Now it’s time to put all of our ideas and energy into practice back home! See you all in two years at the next conference in Barcelona!

Flying out of Halifax!

Conservation at the Science-to-Policy Interface

By Dominique Kone, Masters Student in Marine Resource Management

How can I practice conservation? As an early-career professional and graduate student, this is the very question I ask myself, constantly. In such an interdisciplinary field, there are several ways someone can address issues and affect change in conservation, even if they don’t call themselves a conservationist. However, there’s no one-size-fits-all method. A marine ecologist will likely try to solve a problem differently than a lawyer, advocate, journalist and so forth. Therefore, I want to explain how I practice conservation, how I develop solutions, and how this has factored into my decision to come to grad school and apply my trade to our sea otter project.

Jane Lubchenco – marine ecologist and environmental scientists – replanting coral. Photo Credit: Oregon State University.

Like many others in conservation, I have a deep appreciation for the field of ecology. Yet, I also really enjoy being involved in policy and management issues. Not just how they’re decided upon, but what factors and variables go into those decisions, and ultimately how those choices impact the marine environment. But most importantly, I’m curious about how these two arenas – science and policy – intersect and complement each other. Yet again, there are an endless number of ways one can practice conservation at the science-policy interface.

Think of this science-policy space as a spectrum or a continuum, if you will. For those who fall on one end of the spectrum, their work may be heavily dominated by pure science or research. While those who fall on the other end, conduct more policy-oriented work. And those in the middle do some combination of the two. Yet, what connects us all is the recognition of the value in science-based decision-making. Because a positive conservation result relies on both elements.

Infographic demonstrating the interface between conservation science and policy. Photo Credit: ZSL Institute of Zoology.

I’m fascinated by this science- policy space and the role that science can play in informing the management and protection of at-risk marine species and ecosystems. From my perspective, scientific evidence and the scientific community are essential resources to help society make better-informed decisions. However, we don’t always take advantage of those resources. On the policy end of the spectrum, there may be a lack of understanding of complex scientific concepts. Yet, on the other end, scientists may be inadvertently making their research inaccessible or they may not fully understand the data or knowledge needs of the decision-makers. Therefore, research that was meant to be useful, sometimes completely misses the mark, and therefore has minimal conservation impact.

Recognizing this persistent problem, I practice conservation as a facilitator, where I identify gaps in knowledge and strategically develop science-based solutions aimed at filling those gaps and addressing specific policy or management issues. In my line of work, I’m dedicated to working within the scientific community to develop targeted research projects that are well placed and thought-out to enable a greater impact. While I associate myself with the science end of the spectrum, I also interact with decision-makers on the other end to better understand the various factors and variables considered in decisions. This requires me to have a deeper understanding of the process by which decision-makers formulate policies and management strategies, how science fits within those decision-making process, and any potential gaps in knowledge or data that need to be filled to facilitate responsible decisions.

A commercial fishing vessel. Photo Credit: NOAA Fisheries.

A simple example of this is the use of stock assessments in the management of commercially important fisheries. Catch limits may seem like simple policies, but we often do not think about the “science behind the scenes” and the multitude of data needed by managers to set those limits. Managers must consider many variables to determine catch limits that will not result in depleted stocks. Without robust scientific data, many of these fisheries catch limits would be too high or too low.

Science protest in Washington, DC. Photo Credit: AP Photo/Marcio Jose Sanchez.

This may all sound like theoretical mumbo jumbo, but it is real, and I will apply this crossover between science and policy in my thesis. The potential reintroduction of sea otters to Oregon presents a multitude of challenges, but the challenge is exactly why I came to grad school in the first place! This project will allow me to take what I’ve learned and develop research questions specifically aimed at providing data and information that managers must consider in their deliberations of sea otter reintroduction. In this project I will be pushed to objectively assess and analyze – as a scientist – a pressing conservation topic from a variety of angles, gain advice from other experts, and develop and execute research that will influence policy decisions. This project provides the perfect opportunity for me to exercise my creativity, allow my curiosity to run rampant, and practice conservation in my own unique way.

 

Photo Credit: Smithsonian.

Everyone processes and solves problems differently. For those of us practicing conservation, we each tackle issues in our own way depending on where we fall within the science-to-policy spectrum. For me, I address issues as a scientist, with my techniques and strategies derived from a foundation in the political and management context.

[contact-form][contact-field label=”Name” type=”name” required=”true” /][contact-field label=”Email” type=”email” required=”true” /][contact-field label=”Website” type=”url” /][contact-field label=”Message” type=”textarea” /][/contact-form]

Additional Resources:

Bednarek et al. 2015. Science-policy intermediaries from a practitioner’s perspective: The Lenfest Ocean Program experience. Science and Public Policy. 43(2). p. 291-300. (Link here)

Lackey, R. T. 2007. Science, Scientists, and Policy Advocacy. Conservation Biology. 21(1). p. 12-17. (Link here)

Cortner, H. J. 2000. Making science relevant to environmental policy. Environmental Science & Policy. 3(1). p. 21-30. (Link here)

We Are Family

By Alexa Kownacki, Ph.D. Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

The GEMM Lab celebrating Leigh’s birthday with homemade baked goods and discussions about science.

A lab is a family. I know there is the common saying about how you cannot choose your family and you can only choose your friends. But, I’d beg to differ. In the case of graduate school, especially in departments similar to OSU’s Fisheries and Wildlife, your lab is your chosen family. These are the people who encourage you when you’ve hit a roadblock, who push you when you need extra motivation, who will laugh with you when you’ve reached the point of hysteria after hours of data analysis, who will feed you when you’re too busy to buy groceries, and who will always be there for you. That sure sounds a lot like a family to me.

GEMM Lab members at the Society for Marine Mammalogy 2017 Conference in Halifax, Nova Scotia at the masquerade ball. Photo source: Florence Sullivan

Many of us spend weeks—if not months—conducting field research for our various projects. None of us do this work from the main campus…seeing as the main campus for Oregon State University is located Corvallis, Oregon which is approximately 50 miles inland from the Pacific Ocean. The GEMM Lab isn’t actually based on the main campus; instead, you’ll find the lab at the Hatfield Marine Science Center in Newport, Oregon, within a two-minute stroll of the picturesque Yaquina Bay. However, many of the core classes we need are only offered on main campus. This results in the GEMM Lab members being spread across Corvallis, Newport, and the dominant fieldwork site for their project (which could be locally in Oregon, or in the waters off of New Zealand). So rather than your typical, weekly, hour-long lab meetings, the GEMM Lab meetings are monthly and last on the order of 3-5 hours. Others hear this and think that must be overwhelming to have such a long lab meeting. On the contrary, these are scheduled to fit into all of our chaotic schedules. One day a month, all of us gather together as a family unit, share what’s new about our lives, be sounding boards for each other, solve problems, and do so in a supportive environment. Hopefully you’re getting the picture that just because we’re all part of the same lab, it doesn’t mean we’re geographically close. This is exactly why we cultivate meaningful relationships while we are together. The Harvard Business Review published an article 2015 based on multiple peer-reviewed journals, summarizing the six dominant characteristics necessary to foster a positive workplace:

  1. Caring for colleagues as friends
  2. Supporting each other
  3. Avoiding blame and forgiving mistakes
  4. Inspiring each other at work
  5. Emphasizing the meaningfulness of the work
  6. Treating each other with respect

And I can attest that every member within the GEMM Lab embraces all of these characteristics and I have a feeling that none of them have read that article prior to today. Family naturally follows those basic guidelines. And, our lab, is a family.

My very first GEMM Family Dinner.

Case and Point: when I was applying for graduate programs, I made a point of traveling to meet the GEMM Lab members at the monthly lab meeting. Sure, I also wanted to make sure that both Newport and Corvallis would be good fits in terms of locations. But, mostly, I needed to see if this Lab would be a strong family unit for my graduate school career and beyond. The moment I arrived at Hatfield Marine Science Center in Newport, it was clear, this was a family that I could see myself being a part of. Not only had all the members brought some kind of food item to share at the lab meeting (this was important to me), but Florence had baked homemade bread, Dawn had offered to show me around Hatfield, and Leila had set up a time to take me around main campus with other grad students. During the lab meeting discussions, I was welcomed to contribute and I felt comfortable doing so. That was another big moment where something “clicked” and I knew I had found a great group of amazing scientists who were also amazing human beings.

GEMM Lab members at the Port Orford Field Station in August 2017.

Flash forward a few months, and now I am one of those lab members who is bringing food to lab meetings. More than that, we have GEMM Lab dinners and game nights. I may be based in Corvallis, but I commute out to Newport just for these fun activities because this is my family. I want to be with them—not only when we’re talking about our research—but when we’re laughing about the silly things that happen in our daily lives, comically screaming at each other in an effort to win whatever game is on the table, and enjoying home-cooked meals. This is my family.

GEMM Lab members helping some friends at South Coast Tours build a dirt-bag house in August 2017.

I guess I’d like to plug this message to any potential graduate student regardless of discipline(s): find a lab with people that you truly want to surround yourselves with—day and night—in good times and in bad times—because undoubtedly, you’ll need those kinds of people. And, to current lab constituents in any lab: it’s up to us to create a supportive family which will make everyone successful.

Sister Sledge knew just this when the group sang this verse of their hit, “We Are Family”:

Living life is fun and we’ve just begun
To get our share of this world’s delights
High, high hopes we have for the future
And our goal’s in sight
We, no we don’t get depressed
Here’s what we call our golden rule
Have faith in you and the things you do
You won’t go wrong, oh-no
This is our family Jewel

I’m grateful to have found a lab that embodies the lyrics of one of my favorite childhood karaoke songs. The GEMM Lab is not only a lab that produces cutting-edge science; it is a family that encourages one another in all facets of life—creating an environment where people can have high-quality lives and generate high-quality science.

GEMM Lab Family Dinner complete with the board game, Evolution, and homemade pizza. October 2017.

Hearing is believing

Dr. Leigh Torres, Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Oregon State University

Dr. Holger Klinck, Bioacoustics Research Program, Cornell Lab of Ornithology, Cornell University

For too long the oil and gas industry has polluted the ocean with seismic airgun noise with little consequence. The industry uses seismic airguns in order to find their next lucrative reserve under the seafloor, and because their operations are out of sight and the noise is underwater many have not noticed this deafening (literally1) noise. As terrestrial and vision-dependent animals, we humans have a hard time appreciating the importance of sound in the marine environment. Most of the ocean is a dark place, where vision does not work well, so many animals are dependent on sound to survive. Especially marine mammals like whales and dolphins.

But, hearing is believing, so let’s have a listen to a recording of seismic airguns firing in the South Taranaki Bight (STB) of New Zealand, a known blue whale feeding area. This is a short audio clip of a seismic airgun firing every ~8 seconds (a typical pattern). Before you hit play, close your eyes and imagine you are a blue whale living in this environment.

Now, put that clip on loop and play it for three months straight. Yes, three months. This consistent, repetitive boom is what whales living in a region of oil and gas exploration hear, as seismic surveys often last 1-4 months.

So, how loud is that, really? Your computer or phone speaker is probably not good enough to convey the power of that sound (unless you have a good bass or sub-woofer hooked up). Industrial seismic airgun arrays are among the loudest man-made sources2 and the noise emitted by these arrays can travel thousands of kilometers3. Noise from a single seismic airgun survey can blanket an area of over 300,000 km2, raising local background noise levels 100-fold4.

Now, oil and gas representatives frequently defend their seismic airgun activities with two arguments, both of which are false. You can hear both these arguments made recently in this interview by a representative of the oil and gas industry in New Zealand defending a proposal to conduct a 3 month-long seismic survey in the STB while blue whales will be feeding there.

First, the oil and gas industry claim that whales and dolphins can just leave the area if they choose. But this is their home, where they live, where they feed and breed. These habitats are not just anywhere. Blue whales come to the STB to feed, to sustain their bodies and reproductive capacity. This habitat is special and is not available anywhere else nearby, so if a whale leaves the STB because of noise disturbance it may starve. Similarly, oil and gas representatives have falsely claimed that because whales stay in the area during seismic airgun activity this indicates they are not being disturbed. If you had the choice of starving or listening to seismic booming you might also choose the latter, but this does not mean you are not disturbed (or annoyed and stressed). Let’s think about this another way: imagine someone operating a nail gun for three months in your kitchen and you have nowhere else to eat. You would stay to feed yourself, but your stress level would elevate, health deteriorate, and potentially have hearing damage. During your next home renovation project you should be happy you have restaurants as alternative eateries. Whales don’t.

Second, the oil and gas industry have claimed that the frequency of seismic airguns is out of the hearing range of most whales and dolphins. This statement is just wrong. Let’s look at the spectrogram of the above played seismic airgun audio clip recorded in the STB. A spectrogram is a visual representation of sound (to help us vision-dependent animals interpret sound). Time is on the horizontal axis, frequency (pitch) is on the vertical axis, and the different colors on the image indicate the intensity of sound (loudness) with bright colors illustrating areas of higher noise. Easily seen is that as the seismic airgun blasts every ~8 seconds, there is elevated noise intensity across all frequencies (bright yellow, orange and green bands). This noise intensity is especially high in the 10 – 80 Hz frequency range, which is exactly where many large baleen whales – like the blue whale – hear and communicate.

A spectrogram of the above played seismic airgun audio clip recorded in the South Taranaki Bight, New Zealand. Airgun pulses every ~8 seconds are evident by elevated noise intensity across all frequencies (bright yellow, orange and green bands), which are especially intense in the 10 – 80 Hz frequency range.

In the big, dark ocean, whales use sound to communicate, find food, and navigate. So, let’s try to imagine what it’s like for a whale trying to communicate in an environment with seismic airgun activity. First, let’s listen to a New Zealand blue whale call (vocalization) recorded in the STB. [This audio clip is played at 10X the original speed so that it is more audible to the human hearing frequency range. You can see the real time scale in the top plot.]

Now, let’s look at a spectrogram of seismic airgun pulses and a blue whale call happening at the same time. The seismic airgun blasts are still evident every ~8 seconds, and the blue whale call is also evident at about the 25 Hz frequency (within the pink box). Because blue whales call at such a low frequency humans cannot hear their call when played at normal speed, so you will only hear the airgun pulses if you hit play. But you can see in the spectrogram that five airgun blasts overlapped with the blue whale call.

No doubt this blue whale heard the repetitive seismic airgun blasts, and vocalized in the same frequency range at the same time. Yet, the blue whale’s call was partially drowned out by the intense seismic airgun blasts. Did any other whale hear it? Could this whale hear other whales? Did it get the message across? Maybe, but probably not very well.

Some oil and gas representatives point toward their adherence to seismic survey guidelines and use of marine mammal observers to reduce their impacts on marine life. In New Zealand these guidelines only stop airgun blasting when animals are within 1000 m of the vessel (1.5 km if a calf is present), yet seismic airgun blasts are so intense that the noise travels much farther. So, while these guidelines may be a start, they only prevent hearing damage to whales and dolphins by stopping airguns from blasting right on top of animals.

So, what does this mean for whales and other marine animals living in habitat where seismic airguns are operating? It means their lives are disturbed and dramatically altered. Multiple scientific studies have shown that whales change behavior5, distribution6, and vocalization patterns7 when seismic airguns are active. Other marine life like squid8, spiny lobster9, scallops10, and plankton11 also suffer when exposed to airgun noise. The evidence has mounted. There is no longer a scientific debate: seismic airguns are harmful to marine animals and ecosystems.

What we are just starting to study and understand is the long-term and population level effects of seismic airguns on whales and other marine life. How do short term behavioral changes, movement to different areas, and different calling patterns impact an individual’s ability to survive or a population’s ability to persist? These are the important questions that need to be addressed now.

Seismic airgun surveys to find new oil and gas reserves are so pervasive in our global oceans, that airgun blasts are now heard year round in the equatorial Atlantic3, 12. As reserves shrink on land, the industry expands their search in our oceans, causing severe and persistent consequences to whales, dolphins and other marine life. The oil and gas industry must take ownership of the impacts of their seismic airgun activities. It’s imperative that political, management, scientific, and public pressure force a more complete assessment of each proposed seismic airgun survey, with an honest evaluation of the tradeoff between economic benefits and costs to marine life.

Here are a few ways we can reduce the impact of seismic airguns on marine life and ecosystems:

  • Restrict seismic airgun operation in and near sensitive environmental areas, such as marine mammal feeding and breeding areas.
  • Prohibit redundant seismic surveys in the same area. If one group has already surveyed an area, that data should be shared with other groups, perhaps after an embargo period.
  • Cap the number and duration of seismic surveys allowed each year by region.
  • Promote the use of renewable energy sources.
  • Develop new and quieter survey methods.

Even though we cannot hear the relentless booming, this does not mean it’s not happening and harming animals. Please listen one more time to 1 minute of what whales hear for months during seismic airgun operations.

 

More information on seismic airgun surveys and their impact on marine life:

Boom, Baby, Boom: The Environmental Impacts of Seismic Surveys

A Review of the Impacts of Seismic Airgun Surveys on Marine Life

Sonic Sea: Emmy award winning film about ocean noise pollution and its impact on marine mammals.

Atlantic seismic will impact marine mammals and fisheries

 

References:

  1. Gordon, J., et al., A review of the effects of seismic surveys on marine mammals. Marine Technology Society Journal, 2003. 37(4): p. 16-34.
  2. National Research Council (NRC), Ocean Noise and Marine Mammals. 2003, National Academy Press: Washington. p. 204.
  3. Nieukirk, S.L., et al., Sounds from airguns and fin whales recorded in the mid-Atlantic Ocean, 1999–2009. The Journal of the Acoustical Society of America, 2012. 131(2): p. 1102-1112.
  4. Weilgart, L., A review of the impacts of seismic airgun surveys on marine life. 2013, Submitted to the CBD Expert Workshop on Underwater Noise and its Impacts on Marine and Coastal Biodiversity 25-27 February 2014: London, UK. .
  5. Miller, P.J., et al., Using at-sea experiments to study the effects of airguns on the foraging behavior of sperm whales in the Gulf of Mexico. Deep Sea Research Part I: Oceanographic Research Papers, 2009. 56(7): p. 1168-1181.
  6. Castellote, M., C.W. Clark, and M.O. Lammers, Acoustic and behavioural changes by fin whales (Balaenoptera physalus) in response to shipping and airgun noise. Biological Conservation, 2012. 147(1): p. 115-122.
  7. Di lorio, L. and C.W. Clark, Exposure to seismic survey alters blue whale acoustic communication. Biology Letters, 2010. 6(1): p. 51-54.
  8. Fewtrell, J. and R. McCauley, Impact of air gun noise on the behaviour of marine fish and squid. Marine pollution bulletin, 2012. 64(5): p. 984-993.
  9. Fitzgibbon, Q.P., et al., The impact of seismic air gun exposure on the haemolymph physiology and nutritional condition of spiny lobster, Jasus edwardsii. Marine Pollution Bulletin, 2017.
  10. Day, R.D., et al., Exposure to seismic air gun signals causes physiological harm and alters behavior in the scallop Pecten fumatus. Proceedings of the National Academy of Sciences, 2017. 114(40): p. E8537-E8546.
  11. McCauley, R.D., et al., Widely used marine seismic survey air gun operations negatively impact zooplankton. Nature Ecology & Evolution, 2017. 1(7): p. s41559-017-0195.
  12. Haver, S.M., et al., The not-so-silent world: Measuring Arctic, Equatorial, and Antarctic soundscapes in the Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 2017. 122: p. 95-104.