Who am I?

By Leila Lemos, PhD Student
(hopefully PhD candidate soon)


Here I am with the first GEMM Lab blog post of 2018.

Many people begin a New Year thinking about the future and planning goals to achieve in the following year, and that’s exactly how I am starting my year. After two and a half years of my PhD program, my classes and thesis project are nearing the end. However, a large hurdle stands between me and my finish line: my preliminary exams (as opposed to final exams that happen when I defend my thesis).

Oregon State University requires two sets of preliminary examinations (a.k.a. “prelims”) in order to become a PhD candidate. Thus, planning my next steps is essential in order to accomplish my main objective: a successful completion of these two exams.

The first set of exams comprises written comprehensive examinations to be taken over the course of a week (Monday to Friday), where each day belongs to a different member of my committee. The second type of exam is an oral preliminary examination, conducted by my doctoral committee. The written and oral prelims may cover any part of my proposed research topic as described in the proposal I submitted during my first PhD year.

In order to better understand this entire process, I met with Dr. Carl Schreck, a Fisheries and Wildlife Department professor and one of the members of my committee. He has been through this prelim process many times with other students and had good advice for me regarding preparation. He told me to meet with all of my committee members individually to discuss study material and topics. However, he said that I should first define and introduce myself with a title to each committee member, so they know how to base and frame exam questions. But, how do I define myself?

How do you define yourself?
Source: www.johngarvens.com/wpcontent/uploads/2013/02/how_do_you_ define_yourself.jpeg


As part of my PhD committee, Dr. Schreck is familiar with my project and what I am studying, so he suggested the title “Conservation Physiologist”. But, do I see myself as a Conservation Physiologist? Will this set-up have implications for my future, such as the type of job I am prepared for and able to get?

I can see it is important to get this title right, as it will influence my exam process as well as my scientific career. However, it can be hard and somewhat tricky when trying to determine what is comprised by your work and what are the directions you want to take in your future. I believe that defining the terms conservationist and physiologist, and what they encompass, is a good first step.

To me, a conservation specialist works for the protection of the species, their habitats, and its natural resources from extinction and biodiversity loss, by identifying and mitigating the possible threats. A conservation specialist’s work can help in establishing new regulations, conservation actions, and management interventions. As for an animal physiology specialist, their research may focus on how animals respond to internal and external elements. This specialist often studies an animal’s vital functions like reproduction, movement, growth, metabolism and nutrition.

According to Cooke et al. (2013), conservation specialists focus on population characteristics (e.g., abundance and structure) and indicators of responses to environmental perturbations and human activities. Thus, merging conservation and physiology disciplines enables fundamental understanding of the animal response mechanisms to such threats. Using animal physiology as a tool is valuable for developing cause-and-effect relationships, identifying stressor thresholds, and improving ecological model predictions of animal responses. Thus, conservation physiology is an inter-disciplinary field that provides physiological evidence to promote advances in conservation and resource management.

My PhD project is multidisciplinary, where the overall aim is to understand how gray whales are physiologically responding to variability in ambient noise, and how their hormone levels vary across individual, time, body condition, location, and noise levels. I enjoy many aspects of the project, but what I find myself most excited about is linking information about sex, age, body condition, and cortisol levels to specific individuals we observe multiple times in the field. As we monitor their change in body condition and hormones, I am highly motivated to build these whale ‘life-history stories’ in order to better understand patterns and drivers of variability. Although we have not yet tied the noise data into our analyses of whale health, I am very interested to see how this piece of the puzzle fits into these whale ‘life-history stories’.

In this study, animal physiology facilitates our stories. Scientific understanding is the root of all good conservation, so I believe that this project is an important step toward improved conservation of baleen whales. Once we are able to understand how gray whales respond physiologically to impacts of ocean noise, we can promote management actions that will enhance species conservation.

Thus, I can confidently say, I am a Conservation Physiologist.

Me, in Newport, OR, during fieldwork in 2017.
Source: Sharon Nieukirk, 2017.


Over the next three months I will be meeting with my committee members and studying for my prelims. I hope that this process will prepare me to become a PhD candidate by the time my exams come around in March. Then, I will have accomplished my first goal of 2018, so I can go on to plan for the next ones!



Cooke SJ, Sack L, Franklin CE, Farrell AP, Beardall J, Wikelski M, and Chown SL. What is conservation physiology? Perspectives on an increasingly integrated and essential science. Conserv Physiol. 2013; 1(1): cot001. Published online 2013 Mar 13. doi:  10.1093/conphys/cot001.


GEMM Lab 2017: A Year in the Life

By Dawn Barlow, MSc Student, Department of Fisheries and Wildlife

The days are growing shorter, and 2017 is drawing to a close. What a full year it has been for the GEMM Lab! Here is a recap, filled with photos, links to previous blogs, and personal highlights, best enjoyed over a cup of hot cocoa. Happy Holidays from all of us!

The New Zealand blue whale team in action aboard the R/V Star Keys. Photo by L. Torres.

Things started off with a bang in January as the New Zealand blue whale team headed to the other side of the world for another field season. Leigh, Todd and I joined forces with collaborators from Cornell University and the New Zealand Department of Conservation aboard the R/V Star Keys for the duration of the survey. What a fruitful season it was! We recorded sightings of 68 blue whales, collected biopsy and fecal samples, as well as prey and oceanographic data. The highlight came on our very last day when we were able to capture a blue whale surface lunge feeding on krill from an aerial perspective via the drone. This footage received considerable attention around the world, and now has over 3 million views!

A blue whale surfaces just off the bow of R/V Star Keys. Photo by D. Barlow.

In the spring Rachael made her way to the remote Pribilof Islands of Alaska to study the foraging ecology of red-legged kittiwakes. Her objectives included comparing the birds that reproduce successfully and those that don’t, however she was thrown a major curveball: none of the birds in the colony were able to successfully reproduce. In fact, they didn’t even build nests. Further analyses may elucidate some of the reasons for the reproductive failure of this sentinel species of the Bering Sea… stay tuned.

red-legged kittiwakes
Rachael releases a kittiwake on St. George Island. Photo by A. Fleishman.


The 2017 Port Orford field team. Photo by A. Kownacki.

Florence is a newly-minted MSc! In June, Florence successfully defended her Masters research on gray whale foraging and the impacts of vessel disturbance. She gracefully answered questions from the room packed with people, and we all couldn’t have been prouder to say “that’s my labmate!” during the post-defense celebrations. But she couldn’t leave us just yet! Florence stayed on for another season of field work on the gray whale foraging ecology project in Port Orford, this time mentoring local high school students as part of the projectFlorence’s M.Sc. defense!

Upon the gray whales’ return to the Oregon Coast for the summer, Leila, Leigh, and Todd launched right back into the stress physiology and noise project. This year, the work included prey sampling and fixed hydrophones that recorded the soundscape throughout the season. The use of drones continues to offer a unique perspective and insight into whale behavior.

Video captured under NOAA/NMFS permit #16111.


Solene with a humpback whale biopsy sample. Photo by N. Job.

Solene spent the austral winter looking for humpback whales in the Coral Sea, as she participated in several research cruises to remote seamounts and reefs around New Caledonia. This field season was full of new experiences (using moored hydrophones on Antigonia seamount, recording dive depths with SPLASH10 satellite tags) and surprises. For the first time, whales were tracked all the way from New Caledonia to the east coast of Australian. As her PhD draws to a close in the coming year, she will seek to understand the movement patterns and habitat preferences of humpback whales in the region.

A humpback whale observed during the 2017 coral sea research cruise. Photo by S. Derville.

This summer we were joined by two new lab members! Dom Kone will be studying the potential reintroduction of sea otters to the Oregon Coast as a MSc student in the Marine Resource Management program, and Alexa Kownacki will be studying population health of bottlenose dolphins in California as a PhD student in the Department of Fisheries and Wildlife. We are thrilled to have them on the GEMM Lab team, and look forward to seeing their projects develop. Speaking of new projects from this year, Leigh and Rachael have launched into some exciting research on interactions between albatrosses and fishing vessels in the North Pacific, funded by the NOAA Bycatch Reduction Engineering Program.

During the austral wintertime when most of us were all in Oregon, the New Zealand blue whale project received more and more political and media attention. Leigh was called to testify in court as part of a contentious permit application case for a seabed mine in the South Taranaki Bight. As austral winter turned to austral spring, a shift in the New Zealand government led to an initiative to designate a marine mammal sanctuary in the South Taranaki Bight, and awareness has risen about the potential impacts of seismic exploration for oil and gas reserves. These tangible applications of our research to management decisions is very gratifying and empowers us to continue our efforts.

In the fall, many of us traveled to Halifax, Nova Scotia to present our latest and greatest findings at the 22nd Biennial Conference on the Biology of Marine Mammals. The strength of the lab shone through at the meeting during each presentation, and we all beamed with pride when we said our affiliation was with the GEMM Lab at OSU. In other conference news, Rachael was awarded the runner-up for her presentation at the World Seabird Twitter Conference!

GEMM Lab members present their research. From left to right, top to bottom: Amanda Holdman, Leila Lemos, Solène Derville, Dawn Barlow, Sharon Nieukirk, and Florence Sullivan.

Leigh had a big year in many ways. Along with numerous scientific accomplishments—new publications, new students, successful fieldwork, successful defenses—she had a tremendous personal accomplishment as well. In the spring she was diagnosed with breast cancer, and after a hard fight she was pronounced cancer-free this November. We are all astounded with how gracefully and fearlessly she navigated these times. Look out world, this lab’s Principle Investigator can accomplish anything!

This austral summer we will not be making our way south to join the blue whales. However, we are keenly watching from afar as a seismic survey utilizing the largest seismic survey vessel in the world has launched in the South Taranaki Bight. This survey has been met with considerable resistance, culminating in a rally led by Greenpeace that featured a giant inflatable blue whale in front of Parliament in Wellington. We are eagerly planning our return to continue this study, but that will hopefully be the subject of a future blog.

New publications for the GEMM Lab in 2017 include six for Leigh, three for Rachael, and two for Alexa. Highlights include Classification of Animal Movement Behavior through Residence in Space and Time and A sense of scale: Foraging cetaceans’ use of scale-dependent multimodal sensory systems. Next year is bound to be a big one for GEMM Lab publications, as Amanda, Florence, Solene, Leila, Leigh, and I all have multiple papers currently in review or revision, and more in the works from all of us. How exciting!

In our final lab meeting of the year, we went around the table to share what we’ve learned this year. The responses ranged from really grasping the mechanisms of upwelling in the California Current to gaining proficiency in coding and computing, to the importance of having a supportive community in graduate school to trust that the right thing will happen. If you are reading this, thank you for your interest in our work. We are looking forward to a successful 2018. Happy holidays from the GEMM Lab!

GEMM Lab members, friends, and families gather for a holiday celebration.

A Marine Mammal Odyssey, Eh!

By Leila Lemos, PhD student

Dawn Barlow, MS student

Florence Sullivan, MS

The Society for Marine Mammalogy’s Biennial Conference on the Biology of Marine Mammals happens every two years and this year the conference took place in Halifax, Nova Scotia, Canada.

Logo of the Society for Marine Mammalogy’s 22nd Biennial Conference on the Biology of Marine Mammals, 2017: A Marine Mammal Odyssey, eh!

The conference started with a welcome reception on Sunday, October 22nd, followed by a week of plenaries, oral presentations, speed talks and posters, and two more days with different workshops to attend.

This conference is an important event for us, as marine mammalogists. This is the moment where we get to share our projects (how exciting!), get important feedback, and hear about different studies that are being conducted around the world. It is also an opportunity to network and find opportunities for collaboration with other researchers, and of course to learn from our colleagues who are presenting their work.

The GEMM Lab attending the opening plenaries of the conference!

The first day of conference started with an excellent talk from Asha de Vos, from Sri Lanka, where she discussed the need for increased diversity (in all aspects including race, gender, nationality, etc.) in our field, and advocated for the end of “parachute scientists” who come into a foreign (to them) location, complete their research, and then leave without communicating results, or empowering the local community to care or act in response to local conservation issues.  She also talked about the difficulty that researchers in developing countries face accessing research that is hidden behind journal pay walls, and encouraged everyone to get creative with communication! This means using blogs and social media, talking to science communicators and others in order to get our stories out, and no longer hiding our results behind the ivory tower of academia.  Overall, it was an inspirational way to begin the week.

On Thursday morning we heard Julie van der Hoop, who was this year’s recipient of the F.G. Wood Memorial Scholarship Award, present her work on “Drag from fishing gear entangling right whales: a major extinction risk factor”. Julie observed a decrease in lipid reserves in entangled whales and questioned if entanglements are as costly as events such as migration, pregnancy or lactation. Tags were also deployed on whales that had been disentangled from fishing gear, and researchers were able to see an increase in whale speed and dive depth.

Julie van der Hoop talks about different drag forces of fishing gears
on North Atlantic Right Whales.

There were many other interesting talks over the course of the week. Some of the talks that inspired us were:

— Stephen Trumble’s talk “Earplugs reveal a century of stress in baleen whales and the impact of industrial whaling” presented a time-series of cortisol profiles of different species of baleen whales using earplugs. The temporal data was compared to whaling data information and they were able to see a high correlation between datasets. However, during a low whaling season concurrent to the World War II in the 40’s, high cortisol levels were potentially associated to an increase in noise from ship traffic.

— Jane Khudyakov (“Elephant seal blubber transcriptome and proteome responses to single and repeated stress”) and Cory Champagne (“Metabolomic response to acute and repeated stress in the northern elephant seal”) presented different aspects of the same project. Jane looked at down/upregulation of genes (downregulation is when a cell decreases the quantity of a cellular component, such as RNA or protein, in response to an external stimulus; upregulation is the opposite: when the cell increases the quantity of cellular components) to check for stress. She was able to confirm an upregulation of genes after repeated stressor exposure. Cory checked for influences on the metabolism after administering ACTH (adrenocorticotropic hormone: a stimulating hormone that causes the release of glucocorticoid hormones by the adrenal cortex. i.e., cortisol, a stress related hormone) to elephant seals. By looking only at the stress-related hormone, he was not able to differentiate acute from chronic stress responses. However, he showed that many other metabolic processes varied according to the stress-exposure time. This included a decrease in amino acids, mobilization of lipids and upregulation of carbohydrates.

— Jouni Koskela (“Fishing restrictions is an essential protection method of the Saimaa ringed seal”) talked about the various conservation efforts being undertaken for the endangered Lake Saimaa ringed seal. Gill nets account for 90% of seal pup mortality, but if new pups can reach 20kg, only 14% of them will drown in these fishing net entanglements. Working with local industry and recreational interests, increased fishing restrictions have been enacted during the weaning season. In addition to other year-round restrictions, this has led to a small, but noticeable upward trend in pup production and population growth! A conservation success story is always gratifying to hear, and we wish these collaborative efforts continued future success.

— Charmain Hamilton (“Impacts of sea-ice declines on a pinnacle Arctic predator-prey relationship: Habitat, behaviour, and spatial overlap between coastal polar bears and ringed seals”) gave a fascinating presentation looking at how changing ice regimes in the arctic are affecting spatial habitat use patterns of polar bears. As ice decreases in the summer months, the polar bears move more, resulting in less spatial overlap with ringed seal habitat, and so the bears have turned to targeting ground nesting seabirds.  This spatio-temporal mismatch of traditional predator/prey has drastic implications for arctic food web dynamics.

— Nicholas Farmer’s presentation on a Population Consequences of Disturbance (PCoD) model for assessing theoretical impacts of seismic survey on sperm whale population health had some interesting parallels with new questions in our New Zealand blue whale project. By simulating whale movement through modeled three-dimensional sound fields, he found that the frequency of the disturbance (i.e., how many days in a row the seismic survey activity persisted) was very important in determining effects on the whales. If the seismic noise persists for many days in a row, the sperm whales may not be able to replenish their caloric reserves because of ongoing disturbance. As you can imagine, this pattern gets worse with more sequential days of disturbance.

— Jeremy Goldbogen used suction cup tags equipped with video cameras to peer into an unusual ecological niche: the boundary layer of large whales, where drag is minimized and remoras and small invertebrates compete and thrive. Who would have thought that at a marine mammal conference, a room full of people would be smiling and laughing at remoras sliding around the back of a blue whale, or barnacles filter feeding as they go for a ride with a humpback whale? Insights from animals that occupy this rare niche can inform improvements to current tag technologies.

The GEMM Lab was well represented this year with six different talks: four oral presentations and two speed talks! It is evident that all of our hard work and preparation, such as practicing our talks in front of our lab mates two weeks in advance, paid off.  All of the talks were extremely well received by the audience, and a few generated intelligent questions and discussion afterwards – exactly as we hoped.  It was certainly gratifying to see how packed the room was for Sharon’s announcement of our new method of standardizing photogrammetry from drones, and how long the people stayed to talk to Dawn after her presentation about an unique population of New Zealand blue whales – it took us over an hour to be able to take her away for food and the celebratory drinks she deserved!

GEMM Lab members on their talks. From left to right, top to bottom: Amanda Holdman, Leila Lemos, Solène Derville, Dawn Barlow, Sharon Nieukirk, and Florence Sullivan.


GEMM Lab members at the closing celebration. From left to right: Florence Sullivan, Leila Lemos, Amanda Holdman, Solène Derville, and Dawn Barlow.
We are not always serious, we can get silly sometimes!

The weekend after the conference many courageous researchers who wanted to stuff their brains with even more specialized knowledge participated in different targeted workshops. From 32 different workshops that were offered, Leila chose to participate in “Measuring hormones in marine mammals: Current methods, alternative sample matrices, and future directions” in order to learn more about the new methods, hormones and matrices that are being used by different research groups and also to make connections with other endocrinologist researchers. Solène participated in the workshop “Reproducible Research with R, Git, and GitHub” led by Robert Shick.  She learned how to better organize her research workflow and looks forward to teaching us all how to be better collaborative coders, and ensure our analysis is reproducible by others and by our future selves!

On Sunday none of us from the GEMM Lab participated in workshops and we were able to explore a little bit of the Bay of Fundy, an important area for many marine mammal species. Even though we didn’t spot any marine mammals, we enjoyed witnessing the enormous tidal exchange of the bay (the largest tides in the world), and the fall colors of the Annaoplis valley were stunning as well. Our little trip was fun and relaxing after a whole week of learning.

The beauty of the Bay of Fundy.
GEMM Lab at the Bay of Fundy; from left to right: Kelly Sullivan (Florence’s husband and a GEMM Lab fan), Florence Sullivan, Dawn Barlow, Solène Derville, and Leila Lemos.
We do love being part of the GEMM Lab!

It is amazing how refreshing it is to participate in a conference. So many ideas popping up in our heads and an increasing desire to continue doing research and work for conservation of marine mammals. Now it’s time to put all of our ideas and energy into practice back home! See you all in two years at the next conference in Barcelona!

Flying out of Halifax!

The GEMM Lab is Conference-Bound!

By Dawn Barlow, MSc Student, Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

Every two years, an international community of scientists gather for one week to discuss the most current and pressing science and conservation issues surrounding marine mammals. The thousands of attendees range from longtime researchers who have truly shaped the field throughout the course of their careers to students who are just beginning to carve out a niche of their own. I was able to attend the last conference, which took place in San Francisco in 2015, as an undergraduate. The experience cemented my desire to pursue marine mammal research in graduate school and beyond, and also solidified my connection with Leigh Torres and the Geospatial Ecology of Marine Megafauna Laboratory, leading to my current enrollment at Oregon State University. This year, the 22nd Biennial Conference on the Biology of Marine Mammals takes place in Halifax, Nova Scotia, Canada. At the end of this week, Florence, Leila, Amanda, Solene, Sharon and I will head northeast to represent the GEMM Lab at the meeting!

As those of you reading this may not be able to attend, I’d like to share an overview of what we will be presenting next week. If you will be in Halifax, we warmly invite you to the following presentations. In order of appearance:

Amanda will present the final results from part of her MSc thesis on Monday in a presentation titled Comparative fine-scale harbor porpoise habitat models developed using remotely sensed and in situ data. It will be great for current GEMM Lab members to catch up with this recent GEMM Lab graduate on the other side of the continent! (Session: Conservation; Time: 4:00 pm)

On Tuesday morning, Leila will share the latest and greatest updates on her research about Oregon gray whales, including photogrammetry from drone images and stress hormones extracted from fecal samples! Her presentation is titled Combining traditional and novel techniques to link body condition and hormone variability in gray whales. This is innovative and cutting-edge work, and it is exciting to think it will be shared with the international research community. (Session: Health; Time: 10:45 am)

Did you think humpback whales have been so well studied that we must know just about everything about them? Think again! Solene will be sharing new and exciting insights from humpback whales tagged in New Caledonia, who appear to spend an intriguing amount of time around seamounts. Her talk Why do humpback whales aggregate around seamounts in South Pacific tropical waters? New insights from diving behaviour and ocean circulation analyses, will take place on Tuesday afternoon. (Session: Habitat and Distribution Speed Talks; Time: 1:30 pm)

I will be presenting the latest findings from our New Zealand blue whale research. Based on multiple data streams, we now have evidence for a unique blue whale population which is present year-round in New Zealand waters! This presentation, titled From migrant to resident: Multiple data streams point toward a resident New Zealand population of blue whales, will round out the oral presentations on Tuesday afternoon. (Session: Population Biology and Abundance; Time: 4:45 pm)

The GEMM Lab is using new technologies and innovative quantitative approaches to measure gray whale body condition and behaviors from an aerial perspective. On Wednesday afternoon, Sharon will present Drone up! Quantifying whale behavior and body condition from a new perspective on behalf of Leigh. With the emerging prevalence of drones, we are excited to introduce these quantitative applications. (Session: New Technology; Time: 11:45 am)

GoPros, kayaks, and gray whales, oh my! A limited budget couldn’t stop Florence from conducting excellent science and gaining new insights into gray whale fine-scale foraging. On Thursday afternoon, she will present Go-Pros, kayaks and gray whales: Linking fine-scale whale behavior with prey distributions on a shoestring budget, and share her findings, which she was able to pull off with minimal funds, creative study design, and a positive attitude. (Session: Foraging Ecology Speed Talks; Time: 1:55 pm)

Additional Oregon State University students presenting at the conference will include Michelle Fournet, Samara Haver, Niki Diogou, and Angie Sremba. We are thrilled to have such good representation at a meeting of this caliber! As you may know, we are all working on building the GEMM Lab’s social media presence and becoming more “twitterific”. So during the conference, please be sure to follow @GEMMLabOSU on twitter for live updates. Stay tuned!

Migrating to higher latitudes

By Leila Lemos, Ph.D. Student, Department of Fisheries and Wildlife, OSU

On September 10th of 2015 I was catching an airplane to start a whole new phase of my life in Oregon, United States. Many thoughts, many doubts, many fears, many expectations, and one big dream that was about to come true: I was finally going to United States to work with whales.

I am from Rio de Janeiro, Brazil, a big city known for pretty beaches, tropical weather and restless nights. Thus, to arrive in a really small city on the countryside that usually rains for about six months a year was the opposite of what I was always used to. Trying to understand another language and culture differences was also not an easy step.

In addition, taking my first classes was a big challenge. It was hard to understand everything that was being said, but recording and listening to the classes afterwards definitely was what helped me the most. Also, my first meetings and discussions where I needed to explain my thoughts in another language was difficult, but when I look back and I can now see how much I have improved and it is gratifying to know that all of my efforts were worth it.

Feeling welcome was essential to start overcoming all of the difficulties. My advisor Leigh and my lab mates (Florence, Amanda, Rachael, Erin, Dawn and Courtney) always created a friendly atmosphere and I started being more confident over time. I also had amazing and understanding teachers who were patient and helped me along the way. My first roommates Jane and Angie, from US, and the students and teachers from Crossroads (an English group that I attend) made me practice English every day and I started feeling more comfortable about speaking (and also thinking) in English, and they became my “Oregon family” together with new friends I made from different nationalities. Also important were my family and friends back in Brazil that never stopped encouraging and supporting me.

Figure 1: GEMM-Lab, from left to right, starting at the top: Leigh Torres, me, Erin, Amanda, Dawn, Rachael, our interns from 2016 season (Catherine, Cat and Kelli), and Florence.


Figure 2: Practicing English at Crossroads.


The weather and seasons here are also very different from Brazil. We don’t have cold weather or snow, and we don’t see all of the changes that happen here from season to season. The first season I saw was the fall. Seeing all of the fall colors in the trees for the first time was magical and I can already say that fall is my favorite season here. The winter was a bit cruel for me, not because of the cold or eventually the snow, but because of the rain. There is a saying in my city that “people from Rio de Janeiro do not like gray days” and it is true: my mood changes with weather. However, I did travel a bit around Oregon during winter and got to enjoy the snow, and how fun is to slide in the snow, make snow angels and throw snowballs. The spring starts bringing sunny days after cold months and endless rain. Also all of the flowers around the Corvallis campus are so pretty and colorful. Finally the summer is hot, and in some days it can almost be as hot as Rio de Janeiro. However, I spend summer days in the coast, where the temperature is mild. For me, summer days are synonymous with fieldwork, since gray whales are migrating northbound and becoming resident along the Oregon coast to feed, and this is right when the fun begins!

Figure 3: Different seasons in Oregon: (A) Trees during the fall in Corvallis, (B) Winter in Crater Lake, (C) Spring at OSU campus: my office at Hovland Building, and (D) fieldwork in Port Orford during the summer.


I finally saw my first gray whale in July of 2016 and got to dive into all of the methodologies we wanted to apply in this project. I learned how to photograph whales for photo-identification, how to take important notes, how to collect fecal samples for hormonal analysis, and how to fly with a drone for the photogrammetry method.

Figure 4: Learning how to fly with a drone over gray whales.
Source: Florence Sullivan


I had to digest a lot of information while trying to equilibrate in the boat and to not get seasick. However, it was so pleasurable to see how my field skills were getting better over time and how close I was to the Pacific marine fauna.

During my master’s degree I worked on toxicology in dolphins, which means working with dead carcasses. I remember telling myself all of the time that I wanted to do something different for my PhD – that I would be involved in a project with live animals. I am very glad I could accomplish that goal. Gray whales, sea lions, seals and a variety of marine birds are just some examples of the great diversity the Pacific Ocean has to offer and I am totally amazed.

Figure 5: Great diversity of the Oregon coast. Source: GEMMLab (Leila Lemos, Leigh Torres and Florence Sullivan)

After months of fieldwork it was time to return to the land and start learning how to work with all of the data we collected. We have amazing collaborators working with us and I have had wonderful opportunities to learn from all of them about the different methods we are applying in our project.

Figure 6: Learning the hormonal analysis technique at the Seattle Aquarium.


Thus, after one year and a half in Oregon I can already say that I feel home. The experience as an international student is not easy, but that’s what makes it such a valuable and gratifying experience. It has been a great journey, and I hope to continue to see improvements over time and keep learning throughout this amazing project studying gray whales.


“Marching for Science” takes many forms

By Florence Sullivan, MSc student, Oregon State University.

Earth day is a worldwide event celebrated annually on April 22, and is typically observed with beach, park, or neighborhood clean ups, and outreach events sponsored by environmental groups.  Last year, environmentalists rejoiced when 195 nations signed the Paris Agreement – to “strengthen global response to the threat of climate change by keeping global temperature rise below 2 degrees C”.

GEMM Lab member Dawn Barlow helps carry the banner for the Newport, OR March for Science which over 600 people attended. photo credit: Maryann Bozza

This year, the enviro-political mood is more somber. Emotions in the GEMM Lab swing between anger and dismay to cautious optimism and hope. The anger comes from threatened budget cuts, the dismissal of climate science, and the restructuring of government agencies, while we find hope at the outpouring of support from our local communities, and the energy building behind the March for Science movement.

The Newport March for Science. photo credit: Maryann Bozza

What is perhaps most striking about the movement is how celebratory it feels. Instead of marching against something, we are marching FOR science, in all its myriad forms. With clever signs and chants like “The oceans are rising, and so are we”, “Science, not Silence”, and “We’re nerds, we’re wet, we’re really quite upset” (it rained on a lot of marches on Saturday) echoing around the globe, Saturday’s Marches for Science were a cathartic release of energy, a celebration of like-minded people.

Our competition room for NOSB 2017! Game officials are in the front of the picture, competitors at the first two desks, and parents, coaches and supporters in the back.

While millions of enthusiastic people were marching through the streets, I “Ran for Science” at the 20th annual National Ocean Science Bowl (NOSB) – delivering question sheets and scores between competitors and graders as 25 teams competed for the title of national champion! Over the course of the competition, teams of four high school students compete through rounds of buzzer-style multiple choice questions, worksheet style team challenge questions, and the Scientific Expert Briefing, a mock congressional hearing where students present science recommendations on a piece of legislation.  The challenges are unified with a yearly theme, which in 2017 was Blue Energy: powering the planet with our ocean.  Watching the students (representing 33 states!) compete is exciting and inspiring, because they obviously know the material, and are passionate about the subject matter.  Even more encouraging though, is realizing that not all of them plan to look for jobs as research scientists. Some express interest in the arts, some in policy, or teaching or engineering. This competition is not just about fostering the next generation of leading marine scientists, but rather about creating an ocean-literate, and scientifically-literate populace.  So, congratulations to Santa Monica High School, who took home the national title for the first time this year! Would you like to test your knowledge against some of the questions they faced? Try your luck here!

Santa Monica competes in the final round

The GEMM Lab also recently participated in the Hatfield Marine Science Center’s Marine Science Day.  It’s an annual open house where the community is invited to come tour labs, meet scientists, get behind the scenes, and learn about all the exciting research going on.  For us as researchers, it’s a great day to practice explaining our work and its relevance to many different groups, from school children to parents and grandparents, from artists to fishermen to teachers, fellow researchers, and many others.  This year the event attracted over 2,000 people, and the GEMM Lab was proud to be a part of this uniquely interactive day.  Outreach events like this help us feel connected to our community and the excitement present in all the questions field during this event reassure us that the public still cares about the work that we do.

Lab members Florence, Leila, and Dawn (L to R) answer questions from the public.

Our science is interdisciplinary, and we recognize the strength of multiple complimentary avenues of action to affect change.  If you are looking to get involved, consider taking a look at these groups:

500 Women Scientists: “working to promote a diverse and inclusive scientific community that brings progressive science-based solutions to local and global challenges.” Read their take on the March for Science.

314Action: starting from Pi (3.14), their mission is “to (1) strengthen communication among the STEM community, the public and our elected officials, (2) Educate and advocate for and defend the integrity of science and its use, (3) Provide a voice for the STEM community on social issues, (4) Promote the responsible use of data driven fact based approaches in public policy and (5) Increase public engagement with the STEM Community through media.”

She should run: “A movement working to create a culture that inspires women and girls to aspire towards public leadership. We believe that women of all backgrounds should have an equal shot at elected leadership and that our country will benefit from having a government with varied perspectives and experiences.” https://peoplesclimate.org/

And finally, The March for Science is finishing up it’s week of action, culminating in the People’s Climate March on April 29.

How will you carry the cause of science forward?


How Unmanned Aircraft Systems (UAS, aka “drones”) are being applied in conservation research

By Leila Lemos, Ph.D. Student, Department of Fisheries and Wildlife, OSU


Unmanned Aircraft Systems (UAS), also known as “drones”, have been increasingly used in many diverse areas. Concerning field research, the use of drones has brought about reduced errors, increased safety and survey efforts, among other benefits, as described in a previous blog post of mine.

Several study groups around the world have been applying this new technology to a great variety of research applications, aiding in the conservation of certain areas and their respective fauna and flora. Examples of these studies include forest monitoring and tree cover analyses, .

Using drones for forest monitoring and tree cover analyses allows for many applications, such as biodiversity and tree height monitoring, forest classification and inventory, and plant disease and detection. The Ugalla Primate Project, for example, performed an interesting study on tree coverage mapping in western Tanzania (Figure 1).

Figure 1: Tree coverage analyses in Tanzania.
Source: Conservation Drones, 2016.


The access to this data (not possible before from the ground) and the acquired knowledge on tree density and structure were important to better understand how wild primates exploit a mosaic landscape. Here is a video about this project:


Forest restoration activities can also be monitored by drones. Rainforests around the world have been depleted through deforestation, partly to open up space for agriculture. To meet conservation goals, large areas are being restored to rainforests today (Elsevier 2015). It is important to monitor the success of the forest regeneration and to ensure that the inspected area is being replenished with the right vegetation. Since inspection events can be costly, labor intensive and time consuming, drones can facilitate these procedures, making the monitoring process more feasible.

Zahawi et al. (2015) conducted an interesting study in Costa Rica, being able to keep up with the success of the forest regeneration. They were also able to spot many fruit-eating birds important for forest regeneration (eg. mountain thrush, black guan and sooty-capped bush tanager). Researchers concluded that the automation of the process lead to equally accurate results.

Drones can also be used to inspect areas for illegal logging and habitat destruction. Conservationists have struggled to identify illegal activities, and the use of drones can accelerate the identification process of these activities and help to monitor their spread and ensure that they do not intersect with protected areas.

The Amazon Basin Conservation Association Los Amigos conservancy concession (LACC) has been monitoring 145,000 hectars of the local conservation area. Illegal gold mining and logging activities were identified (Figure 2) and drones have aided in tracking the spread of these activities and the progress of reforestation efforts.

Figure 2: Identification of illegal activities in the Amazon Basin.
Source: NPR, 2015.


Another remarkable project was held in Mexico, in one of the most important sites for monarch butterflies in the country: the Monarch Butterfly Biosphere Reserve. Around 10 hectars of vital trees were cut down in the reserve during 2013-2015, and a great decrease of the monarch population was perceived. The reserve did not allow researchers to enter in the area for inspection due to safety concerns. Therefore, drones were used and were able to reveal the illegal logging activity (Figure 3).

Figure 3: Identification of illegal logging at the Monarch Butterfly Biosphere Reserve, Mexico.
Source: Take Part, 2016.


Regarding the use of drones for mapping vulnerable areas, this new technology can be used to map potential exposed areas to avoid catastrophes. Concerning responses to fires or other natural disasters, drones can fly immediately, while planes and helicopters require a certain time. The drone material also allows for operating successfully under challenging conditions such as rain, snow and high temperatures, as in the case of fires. Data can be assessed in real time, with no need to have firefighters or other personnel at a dangerous location anymore. Drones can now fulfill this role. Examples of drone applications in this regard are the detection, monitoring and support for catastrophes such as landslides, tsunamis, ship collisions, volcanic eruptions, nuclear accidents, fire scenes, flooding, storms and hurricanes, and rescue of people and wildlife at risk. In addition, the use of a thermal image camera can better assist in rescue operations.

Researchers from the Universidad Politécnica de Madrid (UPM) are developing a system to detect forest fires by using a color index (Cruz et al. 2016). This index is based on vegetation classification techniques that have been adapted to detect different tonalities for flames and smoke (Figure 4). This new technique would result in more cost-effective outcomes than conventional systems (eg. helicopters, satellites) and in reaching inaccessible locations.

Figure 4: Fire detection with Forest Fire Detection Index (FFDI) in different scenes.
Source: UPM, 2016.


Marine debris detection by drones is another great functionality. The right localization and the extent of the problem can be detected through drone footage, and action plans for clean-ups can be developed.

A research conducted by the Duke University Marine Lab has been detecting marine debris on beaches around the world. They indicate that marine debris impacts water quality, and harms wildlife (eg. whales, sea birds, seals and sea turtles) that might confuse floating plastic with food. You can read a bit more about their research and its importance for conservation ends here.

Drones are also being extensively used for wildlife monitoring. Through drone footage, researchers around the world have been able to detect and map wildlife and habitat use, estimate densities and evaluate population status, detect rare behaviors, combat poaching, among others. One of the main benefits of using a drone instead of using helicopters or airplanes, or having researchers in the area, is the lower disturbance it may cause on wildlife.

A research team from Monash University is using drones for seabird monitoring in remote islands in northwestern Australia (Figure 5). After some tests, researchers were able to detect which altitude (~75 meters) the drone would not cause any disturbances to the birds. Results achieved by projects like this should be used in the future for approaching the species safely.

Figure 5: Photograph taken by a drone of a crested tern colony on a remote island in Australia.
Source: Conservation Drones, 2014.


Drones are also being used to combat elephant and rhino poaching in Africa. They are being implemented to predict, trace, track and catch suspects of poaching. The aim is to reduce the number of animals being killed for the detusking and dehorning practices and the illegal trade. You can read more about this theme here. The drone application on combating one of these illegal practices is also shown here in this video.

As if the innovation of this device alone was not enough, drones are also being used to load other tools. A good example is the collection of whale breath samples by attaching Petri dishes or sterile sponges in the basal part of the drones.

The collection of lung samples allows many health-monitoring applications, such as the analysis of virus and bacteria loads, DNA, hormones, and the detection of environmental toxins in their organisms. This non-invasive physiological tool, known as “Snotbot”, allows sampling collection without approaching closely the individuals and with minimal or no disturbance of the animals. The following video better describes about this amazing project:

It is inspiring to look at all of these wonderful applications of drones in conservation research. Our GEMM Lab team is already applying this great tool in the field and is hoping to support the conservation of wildlife.




Conservation Drones. 2014. Conservation Drones for Seabird Monitoring. Available at: https://conservationdrones.org/2014/05/05/conservation-drones-for-seabird-monitoring/

Conservation Drones. 2016. Tree cover analyses in Tanzania in collaboration with Envirodrone. Available at: https://conservationdrones.org/2016/09/17/tree-cover-analyses-in-tanzania-in-collaboration-with-envirodrone/

Cruz H, Eckert M, Meneses J and Martínez JF. 2016. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs). Sensors 16(893):1-16.

Elsevier. 2015. Drones Could Make Forest Conservation Monitoring Significantly Cheaper: new study published in the Biological Conservation wins Elsevier’s Atlas award for September 2015. Available at: https://www.elsevier.com/about/press-releases/research-and-journals/drones-could-make-forest-conservation-monitoring significantly-cheaper

NPR. 2015. Eyes In The Sky: Foam Drones Keep Watch On Rain Forest Trees. Available at: http://www.npr.org/sections/goatsandsoda/2015/05/19/398765759/eyes-in-the-sky-styrofoam-drones-keep-watch-on-rainforest-trees

Take Part. 2016. Drones Uncover Illegal Logging in Critical Monarch Butterfly Reserve. Available at: http://www.takepart.com/article/2016/06/22/drones-uncover-illegal-logging-monarch-butterfly-habitat

UPM. 2016. New automatic forest fire detection system by using surveillance drones. Available at: http://www.upm.es/internacional/UPM/UPM_Channel/News/dc52fff26abf7510VgnVCM10000009c7648aRCRD

Zahawi RA, Dandois JP, Holl KD, Nadwodny D, Reid JL and Ellis EC. 2015. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biological Conservation 186:287–295.


Challenges of fecal hormone analyses (Round 2): finally in Seattle!

By Leila Lemos, Ph.D. Student, Department of Fisheries and Wildlife, OSU

In a previous blog of mine, you could read about the challenges I have been facing while I am learning to analyze the hormone content in fecal samples of gray whales (Eschrichtius robustus). New challenges appeared along the way over the last month, while I was doing my training at the Seattle Aquarium (Fig. 1).

Figure 1: View of the Seattle Aquarium.


My training lasted a week and I am truly grateful to the energy and time our collaborators Shawn Larson (research coordinator), Amy Green and Angela Smith (laboratory technicians) contributed. They accompanied me throughout my training to ensure I would be able to conduct hormonal analysis in the future, and to handle possible problems along the way.

The first step was weighing all of the fecal samples (Fig. 2A). Subsequently, the samples were transferred to appropriate glass tubes (Figs. 2B & 2C) for the next laboratorial step.

Figure 2: Analytical processes: (A) Sample weighing; (B) Transference of the sample to a glass tube; (C) Result from the performed steps.


The second conducted step was the hormone extraction. The extraction began with the addition of an organic solvent, called methanol (CH3OH), to the sample tubes (Fig. 3A & 3B). Hormones leach out from the samples and dissolve in the methanol, due to their affinity for this polar solvent.

Tubes were then placed on a plate shaker (Fig. 3C) for 30 minutes, which is used to mix the substances, in order extract the hormones from the fecal samples. The next step was to place the tubes in a centrifuge (Fig. 3D) for 20 minutes. The centrifuge uses the sedimentation principle, causing denser substances or particles to settle to the bottom of the tube, while the less dense substances rise to the top.

Figure 3: Analytical processes: (A) Methanol addition; (B) Sample + methanol; (C) Plate shaker; (D) Centrifuge.


After this process, the two different densities were separated: the high-density particles of the feces were in the bottom of the tube, while the methanol containing the extracted hormones was at the top. The top phase (methanol + hormones) was then pipetted into a different tube (Fig. 4A). The solvent was then evaporated, by using an air dryer apparatus (Fig. 4B), with only the hormones remaining in the tube.

The third performed step was dilution. A specific amount of water, measured in correlation with sample weight and to the amount of the methanol mixed with each sample, was added to each tube (Fig. 4C). Since the hormones were concentrated in the methanol, the readings would exceed the measurement limits of the equipment (plate reader). Thus, in order to prepare the extracts for the immunoassays, different dilutions were made.

Figure 4: Analytical processes: (A) Methanol transference; (B) Methanol drying; (C) Water addition.


The fourth and final step was to finally conduct the assays. Each assay kit is specific to the hormone to be analyzed with specified instructions for each kit. Since we were analyzing four different hormones (cortisol, testosterone, progesterone, and triiodothyronine – T3) we followed four different processes accordingly.

First, a table was filled with the identification numbers of the samples to be analyzed in that specific kit (Fig. 5A). The kit (Fig. 5B) includes the plate reader and several solutions that are used in the process to prepare standard curves, to initiate or stop chemical reactions, among other functions.

A standard curve, also known as calibration curve, is a common procedure in laboratory analysis for determining the concentration of an element in an unknown sample. The concentration of the element is determined by comparison with a set of standard samples of known concentration.

The plate contains several wells (Fig. 5C & 5D), which are filled with the samples and/or these other solutions. When the plate is ready, (Fig.5D) it is carried to the microplate reader that measures the intensity of the color of each of the wells. The intensity of the color is inversely proportional to the concentration of the hormone in both the standards and the samples.

Figure 5: (A) Filling the assay table with the samples to be analyzed; (B) Assay kit to be used; (C) Preparation of the plate; (D) Plate ready to be read.


Since this is the first fecal hormone analysis being performed in gray whales, a validation process of the method is required. Two different tests (parallelism and accuracy) were performed with a pool of three different samples. Parallelism tests that the assay is measuring the antigen (hormone) of interest and also identifies the most appropriate dilution factor to be used for the samples. Accuracy tests that the assay measurement of hormone concentration corresponds to the true concentration of the sample (Brown et al. 2005).

This validation process only needs to be done once. Once good parallelism and accuracy results are obtained, and we have identified the correct dilution factor and approximate concentration of the samples, the samples are ready to be analyzed. Below you can see examples of a good parallelism test (parallel displacement; Fig. 6) and bad parallelism tests (Fig. 7) that indicate no displacement, low concentration or non-parallel displacement; and a good accuracy test (Fig. 8).

Figure 6: Example of a good parallelism test. The dark blue line indicates the standard curve; the pink line indicates a good parallelism test, showing a parallel displacement; and the ratios in black indicate the dilution factors.
Source: Brown et al. (2005)


Figure 7: Examples of bad parallelism tests. The dark blue line indicates the standard curve; the light blue line is an example of no displacement; the pink line is an example of low concentration of the sample; and the green line is an example of non-parallel displacement.
Source: Brown et al. (2005)


Figure 8: Example of a good accuracy test while analyzing hormone levels of pregnanediol glucuronide (Pdg) in elephant urine. The graph shows good linearity (R2 of 0.9986) and would allow for accurate concentration calculations.
Source: Brown et al. (2005)


After the validation tests returned reliable results, the samples were also analyzed. However, many complications were encountered during the assay preparations and important lessons were learned that I know will allow this work to proceed more smoothly and quickly in the future. For instance, I now know to try to buy assay kits of the same brand, and to be extremely careful while reading the manual of the process to be performed with the assay kit. With practice over the coming years, my goal is to master these assay preparations.

Now, the next step will be to analyze all of the results obtained in these analyses and start linking the multiple variables we have from each individual, such as age, sex and body condition. The results of this analysis will lead to a better understanding of how reproductive and stress hormones vary in gray whales, and also link these hormone variations to nutritional status and noise events, one of my PhD research goals.


Cited Literature:

Brown J, Walker S and Steinman K. 2005. Endocrine manual for reproductive assessment of domestic and non-domestic species. Smithsonian’s National Zoological Park, Conservation and Research Center, Virginia 1-69.

Challenges of fecal analyses (Round 1)

By Leila Lemos, Ph.D. Student, Department of Fisheries and Wildlife, OSU

Fieldwork is done for the year and lab analyses just started with some challenges. This is not unexpected since no previous hormonal analysis has been conducted with any gray whale tissue, and whale fecal sample analysis is a relatively new technique. So, I have been thinking, learning, consulting, and creating a methodology as I go along. I am grateful to the expert advice and help from many great collaborators:

  • Kathleen Hunt (Northern Arizona University, AZ, United States)
  • Shawn Larson (Seattle Aquarium, WA, United States)
  • Amy Green (Seattle Aquarium, WA, United States)
  • Rachel Ann Hauser-Davis (Fiocruz, RJ, Brazil)
  • Maziet Cheseby (Oregon State University, OR, United States)
  • Scott Klasek (Oregon State University, OR, United States)

I have learned that an important step before undertaking fecal a hormonal analysis is the desalting process of the samples since salts can interfere in hormonal determinations, leading to false results. In order to remove salt content, each sample was first filtered (Fig. 1A), to remove a majority of the salt water content (Fig. 1B) that is inevitably collected along with the fecal sample. Each sample was then re-suspended in ultra-pure water, to dilute the remaining salt content in a higher water volume (Fig. 1C).

Figure 1: Analytical processes: (A) Filtration of the samples; (B) Result from filtration; (C) Addition of pure water to the samples.
Figure 1: Analytical processes: (A) Filtration of the samples; (B) Result from filtration; (C) Addition of pure water to the samples.

After these steps were completed for each sample, the samples were centrifuged (Fig. 2A) to  precipitate the fecal matter and leave the lighter salt ions in the supernatant (the liquid lying above a solid residue; Fig. 2B). After finishing these two phases, the water was removed with aid of a plastic pippete (Fig. 2C), and I was left with only desalted fecal at the bottom of the tubes (Fig. 2D).

Figure 2: Analytical processes: (A) Samples centrifugation; (B) Result from the centrifugation; (C, D) Results from separating water and sample.
Figure 2: Analytical processes: (A) Samples centrifugation; (B) Result from the centrifugation; (C, D) Results from separating water and sample.

The fecal samples were then frozen at -80°C (Fig. 3A & 3B) and then freeze-dried on a lyophilizer for 2 days to remove all remaining water content (Fig. 3C). Finally, I have what I need: desalted, dry fecal samples, ready for hormone analysis (Fig. 3D).

Figure 3: Analytical processes: (A) Freezing process of the samples; (B) Frozen samples ready to go to the lyophilizer; (C) Samples in the lyophilizer; (D) Final result of the lyophilizing process.
Figure 3: Analytical processes: (A) Freezing process of the samples; (B) Frozen samples ready to go to the lyophilizer; (C) Samples in the lyophilizer; (D) Final result of the lyophilizing process.

Writing this now, this process seems simple, but it was laborious, and took time to find the equipment needed at the right times. The end product is crucial to get a good final result, so my time investment (and my own increased stress level!) was worth it. This type of analysis is very new for marine mammals and our research lab is still in the learning the best methods. Along the way we were unsure of some decisions, some mistakes were made, and we were afraid of losing precious fecal material. But, this is the fun and challenge of working with a new species and new type of sample and, importantly, we have developed a working protocol that should make the process more efficient and reduce our stress levels next time around.

At the end of this sample preparation process, our 53 samples look great and are ready to be analyzed during my training at the Seattle Aquarium. We are also planning to analyze the water that was removed from the samples (Fig. 2D) to see if any hormone leached out from the poop into the water.

Results from this process will aid in future whale fecal hormone studies. Perhaps only the centrifugation step is needed and we can discard the water without losing hormone content. Or, perhaps we need to analyze both portions of the sample and sum the hormones found in each. We shall know the answer when we get our hormone metabolite results. Just another protocol to be worked out as I move ahead with the hormone analysis of these fecal samples. And through all these challenges I keep the end goal of this work in my mind: to learn about the reproductive and stress hormonal variation in gray whales and to link these variations to nutritional status and noise events. Onward!




The five senses of fieldwork

By Leila Lemos, PhD student


This summer was full of emotions for me: I finally started my first fieldwork season after almost a year of classes and saw my first gray whale (love at first sight!).

During the fieldwork we use a small research vessel (we call it “Red Rocket”) along the Oregon coast to collect data for my PhD project. We are collecting gray whale fecal samples to analyze hormone variations; acoustic data to assess ambient noise changes at different locations and also variations before, during and after events like the “Halibut opener”; GoPro recordings to evaluate prey availability; photographs in order to identify each individual whale and assess body and skin condition; and video recordings through UAS (aka “drone”) flights, so we can measure the whales and classify them as skinny/fat, calf/juvenile/adult and pregnant/non-pregnant.

However, in order to collect all of these data, we need to first find the whales. This is when we use our first sense: vision. We are always looking at the horizon searching for a blow to come up and once we see it, we safely approach the animal and start watching the individual’s behavior and taking photographs.

If the animal is surfacing regularly to allow a successful drone overflight, we stay with the whale and launch the UAS in order to collect photogrammetry and behavior data.

Each team member performs different functions on the boat, as seen in the figure below.

Figure 1: UAS image showing each team members’ functions in the boat at the moment just after the UAS launch.
Figure 1: UAS image showing each team members’ functions in the boat at the moment just after the UAS launch.


While one member pilots the boat, another operates the UAS. Another team member is responsible for taking photos of the whales so we can match individuals with the UAS videos. And the last team member puts the calibration board of known length in the water, so that we can later calculate the exact size of each pixel at various UAS altitudes, which allows us to accurately measure whale lengths. Team members also alternate between these and other functions.

Sometimes we put the UAS in the air and no whales are at the surface, or we can’t find any. These animals only stay at the surface for a short period of time, so working with whales can be really challenging. UAS batteries only last for 15-20 minutes and we need to make the most of that time as we can. All of the members need to help the UAS pilot in finding whales, and that is when, besides vision, we need to use hearing too. The sound of the whale’s respiration (blow) can be very loud, especially when whales are closer. Once we find the whale, we give the location to the UAS pilot: “whale at 2 o’clock at 30 meters from the boat!” and the pilot finds the whale for an overflight.

The opposite – too many whales around – can also happen. While we are observing one individual or searching for it in one direction, we may hear a blow from another whale right behind us, and that’s the signal for us to look for other individuals too.

But now you might be asking yourself: “ok, I agree with vision and hearing, but what about the other three senses? Smell? Taste? Touch?” Believe it or not, this happens. Sometimes whales surface pretty close to the boat and blow. If the wind is in our direction – ARGHHHH – we smell it and even taste it (after the first time you learn to close your mouth!). Not a smell I recommend.

Fecal samples are responsible for the 5th sense: touch!

Once we identify that the whale pooped, we approach the fecal plume in order to collect as much fecal matter as possible (Fig.2).

Figure 2: A: the poop is identified; B: the boat approaches the feces that are floating at the surface (~30 seconds); C: one of the team members remains at the bow of the boat to indicate where the feces are; D: another team member collects it with a fine-mesh net. Filmed under NOAA/NMFS permit #16111 to John Calambokidis).
Figure 2: A: the poop is identified; B: the boat approaches the feces that are floating at the surface (~30 seconds); C: one of the team members remains at the bow of the boat to indicate where the feces are; D: another team member collects it with a fine-mesh net. Filmed under NOAA/NMFS permit #16111 to John Calambokidis).


After collecting the poop we transfer all of it from the net to a small jar that we then keep cool in an ice chest until we arrive back at the lab and put it in the freezer. So, how do we transfer the poop to the jar? By touching it! We put the jar inside the net and transfer each poop spot to the jar with the help of water pressure from a squeeze bottle full of ambient salt water.

Figure 3: Two gray whale individuals swimming around kelp forests. Filmed under NOAA/NMFS permit #16111 to John Calambokidis).
Figure 3: Two gray whale individuals swimming around kelp forests. Filmed under NOAA/NMFS permit #16111 to John Calambokidis).


That’s how we use our senses to study the whales, and we also use an underwater sensory system (a GoPro) to see what the whales were feeding on.

GoPro video of mysid swarms that we recorded near feeding gray whales in Port Orford in August 2016:

Our fieldwork is wrapping up this week, and I can already say that it has been a success. The challenging Oregon weather allowed us to work on 25 days: 6 days in Port Orford and 19 days in the Newport and Depoe Bay region, totaling 141 hours and 50 minutes of effort. We saw 195 whales during 97 different sightings and collected 49 fecal samples. We also performed 67 UAS flights, 34 drifter deployments (to collect acoustic data), and 34 GoPro deployments.

It is incredible to see how much data we obtained! Now starts the second part of the challenge: how to put all of this data together and find the results. My next steps are:

– photo-identification analysis;

– body and skin condition scoring of individuals;

– photogrammetry analysis;

– analysis of the GoPro videos to characterize prey;

– hormone analysis laboratory training in November at the Seattle Aquarium


For now, enjoy some pictures and a video we collected during the fieldwork this summer. It was hard to choose my favorite pictures from 11,061 photos and a video from 13 hours and 29 minutes of recording, but I finally did! Enjoy!

Figure 4: Gray whale breaching in Port Orford on August 27th. (Photo by Leila Lemos; Taken under NOAA/NMFS permit #16111 to John Calambokidis).
Figure 4: Gray whale breaching in Port Orford on August 27th. (Photo by Leila Lemos; Taken under NOAA/NMFS permit #16111 to John Calambokidis).


Figure 5: Rainbow formation through sunlight refraction on the water droplets of a gray whale individual's blow in Newport on September 15th. (Photo by Leila Lemos; Taken under NOAA/NMFS permit #16111 to John Calambokidis).
Figure 5: Rainbow formation through sunlight refraction on the water droplets of a gray whale individual’s blow in Newport on September 15th. (Photo by Leila Lemos; Taken under NOAA/NMFS permit #16111 to John Calambokidis).


Likely gray whale nursing behavior (Taken under NOAA/NMFS permit #16111 to John Calambokidis):