Feather collections and stressed-out owls

Ashlee Mikkelsen holding a juvenile northern spotted owl. Photo courtesy Ashlee Mikkelsen.

For six months out of every year, Ashlee Mikkelsen spends her days hiking for miles off-trail in the Ponderosa pine-filled forests of central Washington, hooting like an owl, and carefully listening for responses. These days, responses can be few and far between. You see, Ashlee isn’t just a wildlife enthusiast; she is a research assistant in a long-term US Forest Service monitoring program focused on the northern spotted owl.

Since being listed as threatened by the US Fish and Wildlife Service in 1990, populations of northern spotted owls have continued to decline. In some areas, the number of spotted owls has decreased by more than half in only 20 years (see (Dugger et al. (2016)). Northern spotted owls are inhabitants of old-growth forests. Although northern spotted owls historically could be found in almost every forest from northern California to British Columbia, as forests have shrunk in size through timber harvesting and through changing land use, the amount of suitable habitat has drastically decreased. A second major contributor to the decline of the northern spotted owl is arrival during the last century of the barred owl, which are native to northeastern North America. Barred owls competed with spotted owls for territory and resources, and have been observed fighting with spotted owls.  Ashlee’s master’s research at Oregon State aims to quantify the stress experienced by spotted owls.

Northern spotted owl. Photo courtesy Ashlee Mikkelsen.

When birds experience stress, their bodies respond by releasing larger-than-usual quantities of the hormone corticosterone. Similar to cortisol in humans, corticosterone is always present, but having levels that are very high or that are very low is associated with poor health outcomes. It used to be that in order to measure the physical stress response of a bird, researchers had to take a blood sample. The problem with this is that the process of taking a blood sample itself is a source of stress for the bird. Recently, however, a new technique was introduced based on the fact that corticosterone is also present in feathers. Being able to use feathers is a distinct advantage: birds are constantly dropping feathers, so collecting feathers is fairly non-invasive, and importantly, similar to the benefits of measuring cortisol in hair, feather corticosterone measurements show the average level of the hormone over a long period, rather than just the instant that the feather is collected.

Ashlee banding a juvenile northern spotted owl. Photo courtesy Ashlee Mikkelsen

Ashlee banding a juvenile northern spotted owl. Photo courtesy Ashlee Mikkelsen

Working with professor Katie Dugger (who, incidentally, was Ashlee’s supervisor in the owl-monitoring field crew for the two years prior to beginning graduate school), Ashlee is analyzing a collection of feathers that spans over a 30-year time period. Measuring corticosterone levels in feathers is a high-tech process involving organic chemistry and radioactive isotopes. Although there are many complications that need to be accounted for, tracking the levels of corticosterone in these feathers gives Ashlee insight into the impact of stressors such as environmental degradation and competition with barred owls. Because the data spans so many years, she is able to examine the average stress in spotted owls over periods of change in the populations of barred owls. Ashlee’s data shows a strong response in corticosterone in spotted owls when the number of barred owls in the neighborhood goes up. This supports the view that spotted owls’ woes are not just due to habitat loss, but also due to competition with barred owls.

To hear more about Ashlee’s path to OSU, experiences in research, and of course about northern spotted owls, tune in Sunday, February 16th at 7 PM on KBVR 88.7 FM, live stream the show at http://www.orangemedianetwork.com/kbvr_fm/, or download our
podcast on iTunes!

 

Saving the blue whales of the South Taranaki Bight

A blue whale engulfs a patch of krill. Drone piloted by Todd Chandler.

Until a worldwide ban took effect in 1986, whaling and the production whale products, were leading to a decline in whale populations. Despite a greater global awareness about the importance of protecting our oceans, conflicts still exist between conservation efforts and industry.

This week’s guest, Dawn Barlow, studies the anthropogenic effects on blue whales (Balaenoptera musculus) – the largest known animal to have ever existed! Dawn is a first year PhD student in the Department of Fisheries and Wildlife’s Geospatial Ecology of Marine Megafauna (GEMM) Labwith Dr. Leigh Torres – the same lab where she completed her Master’s degree in 2018.

A blue whale mother and calf surface near Cape Farewell, New Zealand. Photo by Dawn Barlow.

Discovery of new whale population… and problem

Through her Master’s work, Dawn and her colleagues were able to document a genetically distinct population of about 700 blue whalesin the South Taranaki Bight (STB) – a region located between the north and south islands of New Zealand. The STB is not only an important region for the blue whales; however, it is also heavily used by industry, with active oil and gas extraction, seismic surveying, shipping traffic, and proposed seafloor mining. The need for a marine sanctuary in this area is eminent for the longevity of this whale population, but a compromise must be reached with the government and stakeholders. Furthermore, defining a sanctuary area in a dynamic system is not as simple as drawing a line in the sand.

Data collection Down Under

A pair of blue whales surface in New Zealand’s South Taranaki Bight region. Photo by Leigh Torres.

For her PhD research, Dawn will be continuing work with this same population of whales to get a better understanding of the ecological factors that influence where the blue whales are distributed. So far, three data collection trips have been conducted to gather some of this information. These ship-based trips have collected huge amounts of data using a myriad of equipment and techniques.

Echosounder data is collected using a transducer, which hangs off the boat and sends two pings per second producing measurements from the bounce back that can be used to map out krill aggregations – the blue whale’s primary food source. Conductivity, Temperature, Depth (CTD) casts are used to collect temperature and salinity pressure measurements to determine depth. Wind measurements are also recorded, as this generates upwelling. Photography and videography from the ship deck and via drones are used for identification of individuals whales with their skin providing the equivalent uniqueness as a human fingerprint. Satellite imaging is also used to record sea temperatures and chlorophyll levels. Lastly – and my personal favorite – darts shot from a smaller inflatable boat at close-range are used to collect skin and blubber samples for downstream genetic, stable isotope, and hormone analysis. Opportunistic sampling of fecal matter (i.e. if a whale poops) can also be used for genetic and hormone analysis.

Approaching a blue whale for photo-identification and biopsy sampling. Photo by Kristin Hodge.

Dawn participated in the 2017 field season and also went in July 2018 to disseminate findings to stakeholders. Now she is tasked with sifting through the data to correlate the oceanography with acoustic data, satellite imagery and presence of krill. Preliminary results suggest that the blue whales seem to appear where krill aggregate. Through habitat modeling on an ecosystem scale, Dawn hopes to be able to predict on a seasonal scale where the krill – and therefore, blue whales – will be, allowing for informed, science-based conservation and management decisions to be made.

Finding a passion for conservation biology

Dawn Barlow on the flying bridge of the research vessel during fieldwork in New Zealand. Photo by Kristin Hodge.

Growing up in Northern California near the ocean has always inspired Dawn to pursue a career in marine science. Dawn received dual bachelor’s degrees in Organismal Biology and Environmental Policy at Pitzer College in Claremont, California, where she recognized the need to build a bridge between biology and its translation to conservation policy. Knowing she wanted to get hands-on experience in marine mammal research, Dawn sought out and pursued opportunities through the MARMAM listserv, which landed her two undergraduate internships: one studying bottlenose dolphins in Australia and another in Alaska with humpback whales. These internships allowed Dawn to realize her desire to continue research through a graduate program at Oregon State University, where she has already completed her Master’s degree in Wildlife Science. After completing her PhD, Dawn plans to continue conducting conservation research.

Join us on Sunday, February 10 at 7 PM on KBVR Corvallis 88.7 FM or stream live to learn more about Dawn’s adventures Down Under, journey to graduate school, and answer to the age-old question: what does whale poop look like?

Exploring immigrant identity through poetry

As a 2nd year MFA student in the School of Writing, Literature, and Film, Tatiana Dolgushina is writing her history through poetry as a way to understand herself and the country she came from that no longer exists. Born in Soviet Russia, Tatiana and her family fled the country after it collapsed in 1991. Tatiana grew up in South America and came to the US when she was 12, settling in Ohio. She remarks, “so much cultural history of Soviet Russia is influencing who I am today.” Central to her work are ideas of identity formation and childhood displacement. Through writing, she is digging deeper into her experience as an immigrant growing up in multiple countries.

To better understand the root of her identity, Tatiana is reading about the history that led to the dissolution of Soviet Russia. Reading about the history has helped her to understand the events that led to her family’s displacement. She grew up with silence surrounding why they had left, explaining, “Soviet culture is based on a fear of talking about historical events.” She reflects on feeling shame associated with being an immigrant, and in “not belonging to the old place or the new place.” A fractured in-between place. “As a kid, when you’re displaced, you lose so much: language, traditions, and culture.” She further explains, “you seek assimilation as a kid, and either forget these things, or push them away.”

Tatiana explains that poetry is a catalyst for understanding herself and more broadly, for us to understand ourselves as humans. It’s about connecting the dots. Her family doesn’t speak about what transpired. But reading the history, it begins to make sense. “When you’re a kid, you’re focused on survival.” She reflects that she has been trying to compensate for certain things, and is now understanding how and why she is different. She realized, “the older I get, the more I feel it, my immigrant self emerging.” Her experience growing up in multiple countries has contributed to her identity formation, but she admits that she doesn’t have a space to talk about it. “I blend in, but still feel like an outsider. I am not of this culture, and I realize that I really have no home because my home is not a country.”

Tatiana is still trying to figure out what her writing is about, but articulates that writing is a process of not being able to say certain things in the beginning. It’s about writing through the memory and being able to see the things you need to see when you’re ready, peeling away each layer of experience. Approaching the writing process linearly, Tatiana began writing about early memories, then proceeded beyond to older memories, asking, for example, “why did I write about that nightmare I had when I was 4 years old?”

Originally trained as a wildlife biologist, Tatiana decided to change directions after spending time pursuing a Master’s degree. When she initially began the MFA program, she was shocked at the discussion of subjective ideas, which is so different from many areas of scientific discourse. In science, the focus is not so much on identity. But, she explains, “science and art are coming from the same place. It’s about observation, and understanding through observation.”

As a personal goal, Tatiana is working towards publishing a book. It has been something she has wanted to do for many years. “The hope is that a 15 year old immigrant kid in the library will read it and be able to relate to my story.”

Tatiana studies with Dr. Karen Holmberg and will be graduating this Spring. Tune in on Sunday, February 3rd at 7pm on KBVR 88.7 FM to hear more from Tatiana about her thesis work and experience as a graduate student at OSU. You can also stream the show or download our podcast on iTunes!

Sticks and stones may break my bones, and words might unintentionally enforce gendered behavior

Hey guys, do you notice when you or others use gendered language? As with the last sentence, gendered language has become part of our culture’s vocabulary and we may use it without a second thought. There is a growing field of research that studies how language can shape perceptions of ourselves and others.

Jeana presenting “Decolonizing Masculinities” with Nyk Steger and Minerva Zayas at the 2018 Examining Masculinities Conference at OSU

Jeana Moody is a second year Masters student in Women, Gender and Sexuality Studies working with Professor Bradley Boovy. Her thesis research focuses on the use and impact of gendered words and phrases in the English language, such as “throw like a girl”, “man up”, and “don’t be a bitch.” What are the implications of saying “man up” to someone who presents as a woman? As a man? Does the gender of the speaker play a role?

To explore this, Jeana designed a study to collect data through in-person interviews and anonymous online surveys, asking participants to describe situations when they have either used such statements or have been the subject of the statements. The questions include: where did this happen? Who was there? Were there any power dynamics? How did it make you feel then, and now?

For any research involving human participants, OSU researchers must submit a proposal to and be approved by Oregon State’s Institutional Review Board (IRB). This rigorous process requires submission of interview questions, the number of participants, how the data will be collected, and how consent will be obtained from the participants. Additionally, since there is always the possibility of triggering a participant’s traumatic memories from survey questions, help resources must be provided to participants. Jeana’s study was just approved last week.

Jeana hiking in the San Gabriel Mountains in Southern California

From the data collected, Jeana hopes to gain insight into feelings of and implications on participants in the study, and present the anecdotal evidence within a cultural context. This research draws from the subjects of feminist sociolinguistics and critical race theory. It addresses the idea that language begets culture, and culture begets language. Her interest in the subject arose from working with non-native English speakers. She observed that they often use American swear words and racist words without understanding the impact of the words they were using. Just because someone doesn’t understand those words doesn’t mean they don’t hold an impact.

Jeana hiking in the Willamette National Forest in Oregon

When Jeana is not conducting research, she is the instructor of record for Men and Masculinities and is a Teaching Assistant for several other classes. She is originally from Pullman, Washington and attended Western Washington University as part of the Fairhaven College (an interdisciplinary liberal arts college). She enjoys hiking and being anywhere outdoors, and she loves to cook and draw. When not in Corvallis, she can likely be found in Prague where she has taught English and worked for a travel agency.

If you are interested in participating in Jeana’s research study online or in-person, please email moodyje@oregonstate.edu to set up an interview or with any questions you may have, or follow the link to her Gendered Language Online Survey.

Written by Maggie Exton.

Kayaks and Computers: the Gray Whale Research Essentials

Throughout the year, looking out from the Oregon coast, you can often spot gray whales with the naked eye. Behind the magic and mystery of these massive creatures are teams of researchers tracking their migration and studying their diet.

Lisa Hildebrand is a 1st year Master’s student in Wildlife Science working with Dr. Leigh Torres within the College of Agriculture. Lisa studies geospatial ecology of marine megafauna, meaning that her research focuses on the feeding and movement through time and space of sea creatures larger than most fish, including large sea birds, seals, dolphins, and of course, the gray whales. To study such large animals in the ocean, Lisa manages a team that combines diverse technologies coupled with fine scale foraging ecology.

Gray whales feed on very small zooplankton suspended in shallow water. The whales don’t have teeth but instead have rows of baleen which look like a thick brush and act as a filter for water and sediment while letting in large quantities of zooplankton. In July and August, Lisa and her team of 4-5 people go out to Port Orford, Oregon. The team splits into two groups: a cliff team and a kayak team. From a cliff above their 1km2 sampling site, theodolites and computational programs are used to track whales by height and GPS location. Once a whale is spotted, team members kayak to this location and take water samples for analysis of zooplankton density, caloric content, species, and microplastic quantity. Lisa has taken over this ongoing project from a previous Master’s student, Florence Sullivan, and has data on the same research site and whales going back to 2015.

This research project provides opportunities for both undergraduates and high school level students to obtain first-hand field research experience. The students involved are able to take what they’ve heard in a classroom and apply it outdoors. In particular, Lisa is passionate about getting the students in the local Oregon coastal community involved in research on the whales that bring many tourists to their area.

To study the large gray whales, Lisa spends most of her time studying the small zooplankton that they eat. Zooplankton hide under kelp and it turns out, can be separated by populations that are pregnant, or varied in age or species. Gray whales may show preference for some feeding sites and/or types of zooplankton. Why do we care what a gray whale’s dietary preferences are? Plastic use and plastic pollution are rampant. Much of our plastic ends up in the oceans and photodegrade into microplastics small enough to be consumed by zooplankton. Since gray whales are the top predator for zooplankton and eat large qualities, these microplastics accumulate. Microplastic presence may differ between regions and species of zooplankton, which may relate back to whale preferences and migratory patterns. On the Oregon coastline, microplastic profiles of zooplankton have not yet been studied. As humans are also consuming large quantities of seafood, it is important to understand how microplastics are accumulating in these areas.

Lisa is from Germany and grew up in Vietnam and Singapore, but she was first inspired to pursue marine animal research as a career after a family trip to Svalbard, Norway during high school. Before obtaining her undergraduate degree in Marine Zoology from Newcastle University in England, Lisa took two years off from schooling and completed two internships: one with bottlenose dolphin sanctuary research institute in Italy and Spain, and one at a seal research facility in Germany. Now that she’s settled in Oregon for now, Lisa is enjoying the nature and in her free time loves hiking and skiing.

To learn more you can check out GEMM Lab website , the GEMM Lab blog and Lisa’s Twitter, @lisahildy95

To hear more about Lisa’s research, tune in Sunday, January 20th at 7 PM on KBVR 88.7 FM, live stream the show at http://www.orangemedianetwork.com/kbvr_fm/, or download our podcast on iTunes!

Treating the Cancer Treatment: an Investigation into a Chemotherapy drug’s Toxic Product

One of the most difficult hurdles in cancer treatment development is designing a drug that can distinguish between a person’s healthy cells and cancer cells. Cancerous cells take advantage of the body’s already present machinery and biochemical processes, so when we target these processes to kill cancer cells, normal, healthy cells are also destroyed directly or through downstream effects of the drug. The trick to cancer treatment then is to design a drug that kills cancer cells faster than it harms healthy cells. To this end, efforts are being made to understand the finer details that differentiate the anti-cancer effects of a drug from its harmful effects on the individual. This is where the research of Dan Breysse comes in.

Dan a third-year master’s student working with Dr. Gary Merrill in the department of Biochemistry and Biophysics. Dan’s research focuses on a common chemotherapy drug, doxorubicin. Doxorubicin has been researched and prescribed for about 40 years and has been used as a template over the years for many other new drug derivatives. This ubiquitous drug can treat many types of cancer but the amount that can be administered is limited by its toxic effect on the individual. Nicknamed “the red death,” doxorubicin is digested and ultimately converted to doxorubicinol, which in high doses can cause severe and fatal heart problems. However, hope lies in the knowledge that doxorubicinol generation is not related to the drug’s ability to kill cancer cells. These mechanisms appear to be separate, meaning that there is potential to prevent the heart problems, while keeping the anti-cancer process active.

Cancer cells replicate and build more cellular machinery at a much faster rate than the majority of healthy cells. Doxorubicin is more toxic to fast-replicating cancer cells because its mechanism involves attacking the cells at the DNA level. Dividing cells need to copy DNA, so this aspect of doxorubicin harms dividing cells faster than non-dividing cells. It is common for chemotherapy drugs to target processes more detrimental to rapidly dividing cells which is why hair loss is often associated with cancer treatment.

Separately, doxorubicin’s heart toxicity appears to be regulated at the protein level rather than at the DNA level. Doxorubicin is converted into doxorubicinol by an unknown enzyme or group of enzymes. Enzymes are specialized proteins in the cell that help speed up reactions, and if this enzyme is blocked, the reaction won’t occur. For example, an enzyme called “lactase” is used to break down the sugar lactose, found in milk. Lactose intolerance originates from a deficiency in the lactase enzyme. During his time at OSU, Dan has been working to find the enzyme or enzymes turning doxorubicin into doxorubicinol and to understand this chemical reaction more clearly. Past research has identified several potential enzymes, one of which being Carbonyl reductase 1 (CBR1).

Doxorubicin is converted to doxorubicinol with the addition of a single hydrogen atom.

While at OSU, Dan has ruled out other potential enzymes but has shown that when CBR1 is removed, generation of doxorubicinol is decreased but not completely eliminated, suggesting that it is one of several enzymes involved. In the lab, Dan extracts CBR1 from mouse livers, and measures its ability to produce doxorubicinol by measuring the amount of energy source consumed to carry out the process. To extract and study CBR1, Dan uses a process called “immunoclearing,” which takes advantage of the mammal’s natural immune system. Rabbits are essentially vaccinated with the enzyme of interest, in this case, with CBR1. The rabbit’s immune system recognizes that something foreign has been injected and the system creates CBR1-specific antibodies which can recognize and bind to CBR1. These antibodies are collected from the rabbits and are then used by Dan and other researchers to bind to and purify CBR1 from several fragments of mouse livers.

Prior to his time at OSU, Dan obtained a B.S. in Physics with a concentration in Biophysics from James Madison University where he also played the French horn. Realizing he loved to learn about the biological sector of science but not wanting to completely abandon physics, Dan applied to master’s programs specific to biophysics. Ultimately, Dan hopes to go to medical school. During his time at OSU, he has balanced studying for the MCAT, teaching responsibilities, course loads, research, applying to medical schools, and still finds time to play music and occasionally sing a karaoke song or two.

To hear more about Dan’s research, tune in Sunday, December 16th at 7 PM on KBVR 88.7 FM, live stream the show at http://www.orangemedianetwork.com/kbvr_fm/, or download our podcast on iTunes!

Applying medical anthropology: a history of stress in Puerto Rico and its impacts on birth outcomes

Over the course of the last six years, Holly Horan, a doctoral candidate in the Applied Anthropology program at Oregon State University, has developed and carried out a course of research culminating in the largest-ever study measuring perceived and biological maternal stress during and after pregnancy in Puerto Rico. By combining in-depth interviews with Puerto Rican mothers with quantitative analysis of perceived stress and the stress hormone cortisol during each stage of pregnancy, Holly has gained insights into both the perceived and the physiological components of maternal stress that have potential to impact birth outcomes (in particular, timing of birth).

Holly describes herself as an applied medical anthropologist. She strives to take a holistic approach to health, considering not only the physiology of an individual, but external factors as well: the political situation, economics, the culture, and the historical context of the research site. She is passionate about “community-led research.” In community-led research, the community where the research is being conducted takes a role in the development, execution, analysis, and evaluation of the research.

Holly has found a way to combine her personal and professional interests in maternal and infant health with her desire to engage in research with Puerto Rican communities. Holly’s mother is Puerto Rican, and she had long wanted to engage in research that could benefit the island. While completing a master’s degree in anthropology at the University of Montana, Holly did preliminary research on the early onset of puberty among Puerto Rican girls. Here at OSU, Holly has been able to use both qualitative and quantitative methods to research maternal and infant health within a community-led framework.

At the beginning of her dissertation research, Holly learned that the cesarean birth rate in Puerto Rico was close to 50% — far higher than the rate in the continental U.S., which hovers around 30%. Both rates are much higher than the rate recommended by the World Health Organization, which indicates that the cesarean birth rate should be no higher than 15%. She also learned that the island struggled with high incidence of preterm birth and low birth weight, both of which are important population-level health indicators. Holly’s advisor, Dr. Melissa Cheyney, is a home-birth midwife and an associate professor within the Applied Anthropology program in the School of Language, Culture, and Society. Dr. Cheyney helped connect Holly to Puerto Rican midwives, who, in turn, connected them to other medical providers in Puerto Rico.

In the summer of 2014, Holly conducted a pilot study, spending six weeks in Puerto Rico interviewing maternal and infant health-care professionals. These interviews allowed her to develop goals for her dissertation research that aligned with the needs of the community. Participant narratives frequently displayed concerns associated with unexplainable high rates of preterm birth.

Holly’s National Science Foundation (NSF)-funded dissertation research examined the relationship between perceived maternal stress, biological maternal stress, and prematurity. After the 2014 pilot study, she moved to Puerto Rico for 16 months, where she used semi-structured interviews and perceived stress questionnaires to develop an understanding of this relationship. In addition to this qualitative component, she also measured the stress hormone cortisol from maternal hair samples. Cortisol is one of the most well-understood biological stress indicators. Up until recently, the primary available way to measure cortisol levels was through blood or saliva samples, which provided only an indication of short-term stress. As it turns out, however, cortisol is also incorporated into hair. Hair cortisol provides a measure of long-term stress — the type of stress that is speculated to impact maternal and infant health outcomes, including preterm birth.

In the summer of 2016, Holly initiated her dissertation research with an extensive series of in-depth interviews with pregnant and recently-postpartum women. At this time, the ZIKA virus was declared a public health emergency, and there was a variety of public health messaging concerning delayed reproduction and the risk of microcephaly. Through these interviews, Holly learned that the U.S. Government’s public health messaging led to an internal conflict for many pregnant Puerto Rican women. Families felt stress and fear about the prospect of infants developing microcephaly. However, the warnings and official recommendations to delay reproduction provided uncomfortable reminders of the island’s colonial past, which includes targeted experimental clinical trials of oral contraceptives and sterilization offered primarily to low-income women. This led many interviewees to be skeptical about the threat of the Zika virus, but did not deter them from being concerned for their fetus’ well-being.

These participants identified sources of stress that varied widely, ranging from socioeconomic concerns, political changes, and gender-based inequalities. For example, in May 2016, Puerto Rico’s government defaulted on over 70 billion dollars of debt. Under the regulations passed by La Junta, the appointed fiscal board, many employees were fired and then rehired for lower pay. Also affected was the secondary public-school system: nearly 150 schools were closed. While these events are structural, the interviews revealed that within the Puerto Rican people, the impact of the events was personal, and the magnitude of impacts depended on individuals social support networks and life circumstances.

After comparing maternal cortisol levels with the perceived maternal stress from the structured surveys, which were collected in each trimester across pregnancy, Holly found a counter-intuitive result: some of the mothers who had most problems with their pregnancies (such as premature birth) had unusually low levels of cortisol. One current theory is the concepts of allostasis or allostatic load and “weathering,” a term which has been in the media in recently describing the cumulative effects of chronic stress on health (discussed in an NPR interview here in the context of race-based discrimination). Normally, the body responds to stress by heightening the amount of hormones such as cortisol. After the stressor is removed, hormone levels shift back to a low-stress state. However, if stress is prolonged over months or years–such as when living under a system of oppression–the body starts to experience “wear-and-tear,” causing the body’s stress response system to become ineffective. This ultimately impacts health outcomes, such as premature birth.

There have been road bumps along the way. In late summer 2017, Holly was nearly three quarters completed with data collection and the project was moving along smoothly. However, Mother Nature had different plans: In September 2017, Puerto Rico was hit first by Hurricane Irma and then by Category 4 Hurricane Maria two weeks later. The hurricanes destroyed the power grid and most of the island’s infrastructure. Holly was evacuated by OSU a week after the storm. Although she was worried about the well-being of her participants, and the impact this storm would have on the research project, NSF and her other funders graciously supported her to return and complete the study, which she did in February and March of 2018. As a separate side-project, Holly plans to return to Puerto Rico this summer to share study results with the community and with community partners.

To hear more about Holly’s research, tune in Sunday, December 9th at 7 PM on KBVR 88.7 FM, live stream the show at http://www.orangemedianetwork.com/kbvr_fm/, or download our
podcast on iTunes!

Testing Arctic climate models: how much detail can we capture?

Many of us have heard that as a consequence of climate change, Arctic sea ice is rapidly decreasing and that the Arctic is warming twice as fast as the rest of the planet. It’s a complicated system that we don’t understand very well: few people live in the Arctic, and the data from limited study sites may not be representative of the region as a whole. How will Arctic climates change at different timescales in the coming years? What could this mean for coastal Arctic communities that rely on sea ice for preventing erosion or fishing in deep waters? How will navigation and shipping routes change? And in addition, how does a changing Arctic affect climates at lower latitudes?

Visualization of winter sea ice in the Arctic by Cindy Starr, courtesy the NASA Scientific Visualization Studio.

Daniel Watkins is a fourth-year PhD student of Atmospheric Science in OSU’s College of Earth, Ocean, and Atmospheric Science (CEOAS). Working with Dr. Jennifer Hutchings, he is analyzing climate model experiments in order to find answers to these questions. An important step in this is to evaluate the quality of climate simulations, which he does by matching up model output with real-life observations of temperature, sea ice, and cloud cover. Climate scientists have many models that predict how these factors will change in the Arctic over the next several decades. No model can take every detail into account, so how accurate can its predictions be? For example, the frigid Arctic temperatures can cause water molecules in low-lying clouds to trap heat in a very different way than they do here in the Pacific Northwest. Is it necessary to take a detail like this into account?

In cold regions like the Arctic where surface ocean temperatures are much warmer than the overlying atmosphere, the ocean transfers a lot of heat into the air. Sea ice insulates the ocean and prevents heat transfer to the atmosphere, so when there is less ice, a cycle of increasing warming can perpetuate. Because water has a higher heat capacity than air, the ocean doesn’t cool off as much as the atmosphere warms. This is particularly bad news for the Arctic, where layers of cold, dense air often sit beneath warmer air in a phenomenon called a temperature inversion. Effectively, this prevents heat from moving on to higher layers of the atmosphere, so it stays low where it could melt more sea ice. This contributes to a phenomenon called Arctic Amplification, where for every degree of warming seen in the global average, the Arctic surface temperature warms by about four degrees. While it may be tempting to build a model containing every cloud in the atmosphere or chunk of ice in the Arctic Ocean, these could make it too computationally difficult to solve. Daniel has to simplify, because his goal is not to provide a weather forecast, but to evaluate how well models match observed measurements of Arctic temperatures.

Daniel by the Skogafoss in Iceland in June 2018. If you’re lucky (and he was), you can see sea ice, turbulent boundary layer cloud layers, and the Greenland ice sheet when you fly between Portland and Iceland.

To accomplish this, Daniel uses model output data, re-analyzed data that fits models to observations, and temperature measurements from weather balloons. These sources contain terabytes of data, so he has written code and contributed to open-source software that subsets and analyzes these datasets in a meaningful way. Daniel then uses the re-analyzed and weather balloon data to test whether the model reproduces various features of the Arctic climate, such as widespread temperature inversions. Working with this vast amount of information requires some mathematical prowess. While studying as an undergraduate at BYU Idaho, Daniel decided to major in math when he heard a professor describe mathematics as “a toolbox to solve science problems with”. An internship at Los Alamos National Laboratory later suggested geophysical modeling as a worthy task to tackle.

When he’s not modeling the future of the Arctic, Daniel spends time with his children, Milo and Owen, and plays in a rock band he formed with his wife, Suzanne, called Mons La Hire. Daniel is also a DJ on KBVR and is excited to become the newest host of Inspiration Dissemination. To hear more, tune in on Sunday, December 2nd at 7 PM on KBVR 88.7 FM, live stream the show, or catch our podcast!

Finding hope in invaded spaces

While Senecio triangularis, native to Western Oregon, was not the intended hostplant of the introduced cinnabar moth, it has been supporting moth populations for decades.

Invaded places are not broken spaces

“It was some of the hardest work I have done,” says this week’s guest, Katarina Lunde recounting her arduous work interning with the Nature Consortium in the Duwamish region of Seattle. Katarina was passionate about her work in conservation ecology, spending countless hours leading groups of volunteers in restoration projects and educating the community about the restoration sites. But it was somewhere in the bone-chilling cold tearing out invasive species like the Himalayan blackberry and English ivy that Katarina had a shift in perception – these spaces were not broken. Katarina realized that informed decisions could tip the scales in the right direction in these vulnerable spaces. There was still hope to be found in the midst of these invasions. The desire to study ecology more deeply led Katarina to pursue a master’s degree in plant ecology with Dr. Peter McEvoy in the Department of Botany and Plant Pathology at Oregon State University.

Learning to tip the scales

In the 1920s, tansy ragwort (Senecio jacobaea) was first observed in the Portland, Oregon. This introduced, noxious weed, was causing severe liver failure and even death for grazing cattle and deer. The major economic implications on livestock prompted the Oregon Department of Agriculture to intervene. By the 1960s, the cinnabar moth (Tyria jacobaeae) was released as one of three insect biological control agents. The role of the cinnabar moth was to reduce tansy ragwort populations by depositing their eggs on the underside of the leaf and allowing newly hatched caterpillars to feed on and eventually kill the plant. However, there was an unintended consequence. When these very hungry caterpillars were released in the mountainous Cascade region, they found that a closely-related native plant species, arrowleaf groundsel (Senecio triangularis), was also quite appetizing.

Cinnabar caterpillars strip late-season Senecio triangularis stems of foliage. Luckily, most plants will have set seed and stored energy before the caterpillars reach peak feeding stages.

Despite this outcome, the release of the cinnabar moth has been largely viewed as a success, even though this biocontrol agent likely would not have been released under current standards. This system does then provide an ideal model system to identify long-term risks and benefits of biocontrol use. When it comes to biological invasions, the cost of inaction is often too high, so what are the risks and benefits?

Katarina Lunde installs experimental plots at a field site with the help of fellow lab members. She measured Senecio triangularis seedling recruitment under seed addition/reduction scenarios to assess potential impacts of seed loss due to cinnabar moth herbivory.

By studying seed loss and plant recruitment – do more seeds equal more plants? – on Marys Peak in Oregon’s coastal range, Katarina has been able to assess the risk that cinnabar moths pose on native plant survival. The answers are nuanced, of course, as this deals with a dynamic natural system, but Katarina’s work is allowing for better questions to be asked that will in turn better inform decision making regarding biological controls.

Finding the perfect fit

Katarina studied plants and plant systematics at Oberlin College where she obtained a bachelor’s degree in biology and creative writing. With student loans to pay off and a desire to find a career that fit her unique abilities and interests, Katarina spent six years working in fine dining and exploring future career paths in Seattle, WA, volunteering with various non-profits. Through her restoration program internship with the Nature Consortium, she was finally able to hone-in on the field of plant ecology. Katarina is currently nearing the end of her master’s program and seeks to apply her newly learned skills in an urban conservation and restoration setting, where she can continue to ask questions and interact with her work in a tangible way.

Katarina’s research has been supported by a NIFA grant and several awards from agencies that focus on native plant restoration and conservation, including: the Hardman Foundation Award, the Native Plant Society of Oregon, and the Portland Garden Club.

Join us on Sunday, November 18 at 7 PM on KBVR Corvallis 88.7 FM or stream live to learn more about the nuance of biological controls and Katarina’s journey to graduate school.

Core Strategies for Conservation of Greater Sage-Grouse

Greater sage-grouse (GRSG) is a North American bird species that nests exclusively in sagebrush habitat. In the last century, natural populations of this species have significantly declined largely due to human influenced habitat loss and fragmentation. This has prompted multiple petitions to the U.S. Fish and Wildlife Service (USFWS) to list GRSG under the Endangered Species Act (ESA), which would require mandatory restrictions on critical sagebrush habitat. This means that land managers of sagebrush areas would face land use restrictions for natural resource extraction and development, the bulk of the economy in Wyoming.

Wyoming Basin study site with associated GRSG Core Areas in blue. These Core Areas were designated as part of the GRSG Core Area Protection Act, Wyoming’s GRSG conservation policy aimed at protecting at least 67% of male GRSG attending leks. This policy is focused on directing development outside of these areas by setting strict conservation measures inside the Core Areas. Overall, the policy has remained effective in protecting at least 2/3 of GRSG habitat and has been identified as having the highest conservation value to maintaining sustainable GRSG populations.

 

Scent station and associated trail camera set-up in Natrona County, WY. Scent stations were randomly placed throughout the study site along roads and stratified between Core and Non-Core Areas. Mammalian predators are known to use roads for easy travel. These scent stations will help gather occupancy data of mammalian predators (Photo Credit: Eliana Moustakas).

Wyoming is a stronghold for GRSG, with the most birds, the most leks (male mating display grounds), and the largest contiguous sagebrush habitat in North America. Since GRSG declines have led to its possible endangered listing, Wyoming Governor Dave Freudenthal launched an effort in 2007 to develop stronger policies for GRSG that would protect the species and its habitat while also sustaining the state’s economy. A public forum followed, including representatives from state and federal agencies, non-governmental organizations, and industries, and in 2008 a conservation policy called the Greater Sage-Grouse Core Area Protection Strategy was developed to maintain and restore suitable habitat and active breeding GRSG pairs. The plan aims to protect at least 67% of male GRSG attending leks, and is focused on directing development outside of Core Areas by setting strict conservation measures inside Core Areas. By protecting sagebrush habitat and allowing development and mining in Non-Core Areas, Wyoming can continue to expand its natural resource economy and play a critical role in GRSG conservation.

In 2010, the USFWS concluded that GRSG were warranted protection but left them off the ESA list because threats were moderate and did not occur equally across their range. The status of GRSG was reevaluated in 2015 and the USFWS determined that GRSG did not warrant protection, claiming that the Core Area Strategy was sound framework for a policy by which to conserve GRSG in WY. However, recent monitoring of GRSG has shown that populations are still in decline in some Core Areas and in populations across their range. Our guest this week, Claire Revekant, a second year Master’s student in the Department of Animal and Rangeland Science, is trying to understand if avian and mammalian predator abundance differs between Core and Non-Core Areas.

Golden eagle using a utility pole to perch. Raptors and corvids are known to use  structures to perch and nest.

 

Working under Dr. Jonathan Dinkins, Claire estimates associations between human influence areas and habitat variables on the abundance of predatory birds and occupancy of mammalian predators. For example, raptors and corvids have been documented to perch and nest on fences and other human structures, and roads have been found to be used as travel paths for mammalian predators. Claire’s hypothesis is that predatory animals will be higher in Non-Core Areas where human-influenced environments serves as areas of food subsidies. Identifying areas of predator abundance and relating those areas to human features and habitat variables may help policy makers prioritize plans to mitigate human influence and protect sagebrush habitat.

Badger captured by trail camera at scent station in Lincoln County.

While her research is focused on predators of GRSG, Claire’s work for GRSG conservation contributes to the conservation of other sagebrush-obligate species (species that relay on sagebrush for all or some parts of their life cycle). By protecting the ecosystem for one “umbrella” species, other species may also benefit. Throughout her career as a wildlife biologist, Claire has been involved with numerous projects where she has handled and monitored several species. From learning to band raptors as a child to monitoring seabird productivity as an intern at the Monomoy National Wildlife Refuge, Claire has developed a passion for research. She told us that she can’t remember a time when she had a different dream job. Tune in tonight Sunday November, 11 at 7 to hear more about Claire’s research and her journey to graduate school on 88.7 FM KBVR Corvallis, or stream the show live.