Magnet blocks, connect the dots, and the world of modern mathematics

At the Mathematical Sciences Research Institute in Berkely, CA with the Klein quartic sculpture. Photo by Charles Camacho

Charles Camacho, a sixth-year PhD student in the Department of Mathematics at Oregon State University, spends a lot of time thinking about shapes. He describes his research as such: “I study the symmetries of abstract mathematical surfaces made from gluing triangles together.”

Charles explaining his thesis research at the Latinx in the Mathematical Sciences conference at UCLA. Photo by Farida Saleh from the Daily Bruin.

Charles works in a branch of mathematics called topology. Topologists think about shapes and surfaces. There’s a joke among mathematicians that a topologist is someone who can’t tell the difference between a coffee cup and a donut, and there’s some truth to that. It’s not that they can’t see a difference, but that they look past the difference to see the core similarity: both are solid objects punctured with a single hole. Topology as a formal area of mathematics is fairly recent (early 20th century). Topology’s roots go much further back, though, through the streets of Königsberg in the 1700s and to the geometry of the ancient Greeks.

Königsberg bridge problem
There’s a famous puzzle that originated in  Königsberg, Prussia in the 1700s (Königsberg is now Kaliningrad, Russia). The puzzle didn’t originate among mathematicians—but my understanding is that it’s mainly mathematicians that think about the puzzle now. Back then, there were seven bridges crossing the river Preger.

The Bridges of Königsberg (illustration by Leonard Euler, 1736).

The puzzle is this: Is it possible to cross each one of the seven bridges exactly once? (Go on, try it!) In his description of the problem and its solution, Euler said “it neither required the determination of quantities, nor did calculation with quantities help towards its solution.” He was interested in solving this superficially trivial problem because he couldn’t see a way for algebra, counting, or geometry to solve it. This goes against most people’s conception of mathematics—can it really be a math problem if you don’t fill a chalkboard with calculations?

The fact that no one yet had found a way to cross all the bridges without a repeat did not prove that it could not be done. To do that, and thus solve the problem for good, Euler had the insight to try and reduce the problem to its core. Reframing the Königsberg Bridges problem (elements of image from Wikimedia Commons, composited graphic by Daniel Watkins)
Knowing the layout of the city and all of its streets is irrelevant, so we can simplify to a map of just bridges. But even knowing that there is a river and land doesn’t really matter. All we really need is to know is represented in the network on the right (what mathematicians today call a graph). Euler’s solution was this: “If there are more than two regions with an odd number of bridges leading into them, then it can safely be stated that there is no such crossing.” It didn’t matter where the bridges were, it just mattered how many of the possible paths led to each landmass.

With collaborators at a summer research workshop on graph theory. Photo copyright American Mathematical Society

Being a mathematician, Euler wasn’t satisfied just stating a solution to the Königsberg problem. He went further, and generalized: he came up with rules and a solution that would work for any city with any number of bridges. All you have to do is look at the crossings, and note whether there’s an odd number of ways to get there, or an even number of ways. Euler’s method was developed by later mathematicians into graph theory, a branch of mathematics focusing on sets of points and the paths connecting them. Graph theory has a reputation for having many problems that are simple to state, but incredibly difficult to solve conclusively. In this sense, graph theory has a lot in common with geometric toy blocks.

Platonic solids
Charles has a set of magnetic toys in familiar shapes: triangles, squares, pentagons. These shapes are known as regular polygons, which just means that they are shapes composed of straight lines, each of which has the same length. Playing with these, one can hardly help but to arrange them into three-dimensional shapes. Playing with the triangles, you can quickly form a triangular pyramid: a tetrahedron. With six squares, a cube. With eight triangles, an octahedron. And with twelve pentagons, a dodecahedron. Surprisingly, there are only five shapes that can be made this way! Why is this the case? And must this always be the case?

The Platonic Solids: Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron. Image copyright Daniel Watkins.

You might notice some other interesting things about these shapes. If you turn a cube while holding the middle of a side, you will see that it looks the same after each turn. It has rotational symmetry. Each of these shapes has multiple axis of symmetry. They can be rotated holding them in different ways and still show symmetry.

As a mathematician, Charles thinks about ways to generalize these ideas. We know that the five Platonic shapes are the only solids that can be formed from regular polygons, but what shapes could be formed if you used slightly different definitions? What if, for example, you used arcs of a circle to form the lines? What can we say about different kinds of surfaces? These shapes are defined on flat planes, like a piece of paper, but we know of lots of other surfaces, like the world we live on, that aren’t perfectly flat.  What kind of symmetry do polygons in these geometries show? Specifically, I wanted to know all the ways that such surfaces can be rotated a given number of times. I generalized previous research on counting symmetries and discovered a formula describing the number of these rotational symmetries,” Charles said.

A topological representation of a four-holed surface with a twelve-fold rotational symmetry (blue arrows indicate which edges are to be glued to make the surface. Graphic copyright Charles Camacho

Tune in to KBVR Corvallis 88.7 FM on Sunday March, 10 at 7 PM to hear more about Charles’s research, his inspirations, and his path to research in mathematics. Stream the show live or catch this episode as a podcast.

Being the Multilingual, Racialized “Other” in an English Dominated Linguistic Landscape

Jason at the whiteboard

Consider the language and messages you process each day. As you navigate your daily routine, what language do you hear and see most frequently? For folks living in the Corvallis, Oregon, the answer is probably English. In the last month, how many times, when, and where have you been exposed to spoken words or even signs in another language? For those of us on the Oregon State University campus, you could easily overhear or may participate in a conversation in Spanish, Chinese, or Arabic in the Memorial Union or Valley Library. How does the “linguistic landscape” (written or spoken words you encounter in life) affect you? What do you feel and how do you react to hearing a language you don’t understand? Have you been told that you don’t speak English well enough?

Shenanigans in Portland with Pat

Jason Sarkozi-Forfinski, a PhD student in Anthropology, wants to gain insight into the linguistic landscape students at Oregon State University are exposed to and their actions and feelings about about it, especially for students from non-English speaking countries. Jason’s research involves interviewing students and community members about their experiences in the US such as:

  • How do Thai-speaking folks fair when practicing English with a non-American accent?
  • How does a (white) American- English speaker from Roseburg regard different accents?
  • How do Mandarin speakers from Malaysia react to others speaking English with different accents?
  • How does an Arabic speaker from the Gulf region perceive their own accent?
  • How comfortable do Japanese speakers feel speaking a language other than English in the US?
  • How is all of this connected to the institutionalized tool of racism?

Jason has found that folks have preferences or biases about their linguistic landscape. Oregon State recruits both students from around the world and a large multilingual community of more local students. His respondents have reported being discouraged from speaking in a non-English language or facing negative social and professional consequences for speaking other languages or English with a non-(white)American accent. Could a preference for English with a (white) American accent perpetuate division? Or even bigoted practices?

Jason’s current research developed from years of conversations with friends and colleagues about being multilingual in the US. He began exploring language in his undergraduate education where he majored in Spanish and also studied Portuguese. He also studied English in Miami,

Grilled cheese on a school bus in Portland with Veronica (left) and husband, Nick.

Florida, and worked to understand how non-English languages influences local English. Before coming to OSU for his PhD, Jason has worked as a Spanish and English instructor in the US, Spain, Japan, and China.

Tune in to KBVR Corvallis 88.7 FM on Sunday March, 10 at 7 PM to hear more about Jason’s research and his path to graduate school. Stream the show live or catch this episode as a podcast.

Clarification [See Podcast at 25:45]: Asking someone to change their accent, according to Lippi-Green a linguistic who wrote “Speaking with an Accent,” is like asking someone to change their height. It’s doable (with lots of surgery) but would require a lot of intervention. The point here is that it’s not realistic to ask someone to work on their accent. It’s also rather demeaning.

The Hidden Side of Graduate School: Finding your place within your discipline

Summary: Graduate student researchers Brian Erickson and Chelsea Behymer talk about their transition from natural sciences to social sciences and the process of finding their place within their disciplines.

As graduate students, many of our academic conversations focus around our research. But graduate school is about more than just designing and carrying out a project; it also involves finding your place within a larger community.

Chelsea Behymer and Brian Erickson met through a science communication course in the Integrative Biology department (IB599), and they quickly found common ground. Although their research interests are very different, both have had experiences that sparked interest and conviction to explore the human dynamic of the ecological systems with which they are more familiar. While neither is new to academia, they find themselves navigating new identities as they explore what it means to be a social scientist working on human components of environmental issues.

Chelsea takes guests onboard a coastal Alaskan expedition on an intertidal walk.

Chelsea is a first-year Ph.D student in the Environmental Sciences graduate program, with a focus on informal science education. For the past six years, Chelsea has engaged diverse groups of people in marine biology and natural history as a Naturalist onboard both large and smaller, expedition style cruise ships. Interacting with a diversity of people in shared travel and learning experiences across the world’s oceans has been one of the most rewarding roles of her career. At the same time, being immersed in nature-based tourism has opened her eyes to the nature-based tourism industry as not only a place where human connections to the natural world are fostered, but provides wonderful opportunities for science communication.

With the growing nature-based tourism industry, perhaps the opportunities to connect have never been more abundant. Chelsea’s research interests aim to understand the potential for citizen science in nature-based tourism to act as both an effective means of engaging people with local scientists, while at the same time providing opportunities for the kind of collaborative environment where meaningful conversations between scientists and the public can occur.

Brian presents work on ocean acidification education during the State of the Coast conference.

Brian is also a first-year Ph.D student studying fisheries social science in the Department of Fisheries and Wildlife. Growing up in the midwest, he first fell in love with the ocean while working as a field technician in the US Virgin Islands, Panama, and the Northwest Hawaiian islands. Partially because he defined himself as a biologist, it took him almost a decade to realize that he was interested in answering social science questions. Brian is generally interested in applying what we know about human behavior to improve marine conservation outcomes for people and the planet. His master’s work at OSU focused on exploring a commonly held assumption – that knowledge of environmental problems leads to action to fix those problems – through the lens of a high school ocean acidification curriculum. For his PhD work, Brian will be collaborating with the SMART Seas Africa Programme to examine social aspects of marine conservation in East Africa.

In this special segment, Chelsea and Brian will talk with ID host Kristen Finch about the challenge of finding their way as social scientists in a field that is working towards interdisciplinary collaboration. Don’t miss this conversation; tune in to KBVR Corvallis 88.7FM at 6 pm PST on Sunday March, 10. Stream the show live or catch the podcast.

Written by Chelsea Behymer and Brian Erickson. Edited by Kristen Finch.

Who Runs the World? Exploring Gender Diversity in the Forest Sector

The following article was written by Pipiet Larasatie and edited by Kristen Finch.

Pipiet Larasatie is a third year PhD student in Wood Science and Engineering Department, College of Forestry, at Oregon State University. Her friends and close colleagues describe her as “Ms. Social” and “Ms. Doing-All.”

And she is! Pipiet is currently involved with four research projects and has standing on four committees at the Department and College level (e.g. College of Forestry’s Diversity Equity Inclusion Committee). Additionally, she is a digital communications coordinator for the International Society of Wood Science and Technology. One of her initiatives is #WomenInWoodScience or a network for women who are associated with wood science.

Pipiet working in the Forest Sciences Dept. University of Helsinki in 2017.

As a woman and a first generation student in her male dominated family, Pipiet has a high passion on empowering young females. For this reason, Pipiet switched her research focus from wood centric to gender diversity in the forest sector.

So far, Pipiet’s research involved collaboration with folks at OSU (her advisor and a Master’s student), but also international collaboration with a professor and a Master’s student in University of Helsinki, Finland. During this part of the project, the team interviewed female executives in the global forest sector companies about gender aspects in the North American and Nordic industries. Some trends became apparent across interview responses. Their respondents agreed that the North American and Nordic forest sector is a historically male-oriented and male-dominated industry, which can lend itself to characteristics of a chauvinistic and masculine culture. This also was clear: to be successful in the male-dominated work setting, young females need a support on multiple levels e.g. good bosses/leaders, mentors, and networks. The interviewees also voiced that education is important when finding a niche in the workplace and for making young females more competitive in the job market. 

Pipiet with one of her mentees joining a faculty led summer course, “The Forest Sector in Alpine Europe.” Photo shows group at University of Primorska, Slovenia.

Tune in to KBVR Corvallis 88.7FM to hear our special segment with Pipiet at 7 pm on March 3, 2019. Pipiet present her research findings alongside pop songs from Beyoncé and Alicia Keys. Later, Pipiet will be accompanied by one of her mentees, Taylor Barnett, a third year undergraduate student studying Natural Resources at College of Forestry. Taylor will share her experience with mentorship programs at OSU and how these mentorship has aided her professional development.

Not a local listener? No sweat! Stream the show live or check out the podcast version of this special episode.

3D Modeling Rock Shape: Archeological Research of the Earliest North Americans

At age 17, like a lot of teenagers, Samuel Burns wanted to go to college. Unlike most college-bound 17-year-olds however, Samuel didn’t have a high school degree. Today, Samuel is a first-year master’s student in Applied Anthropology, within the School of Language, Culture, and Society, and the Department of Anthropology. Also, this is his second master’s degree.

Samuel in the field in the Allegheny National Forest, Pennsylvania. Photo by Samuel Burns.

Samuel works with Dr. Loren Davis to investigate the earliest archeological sites in North America, and there are two big questions to answer: when did humans first arrive in North America, and by what route did the earliest humans arrive? Traditionally, humans are thought to have entered North America through the Rocky Mountains, but more recent evidence suggests that maritime cultures may have arrived first, finding North America via the ocean. The oldest fish hooks in North America are somewhere between ~11,300 to 10,700 years years old and were discovered off the coast of Baja California, Mexico on Cedros Island.

Cedros Island is just one of two archeological sites of interest for Samuel’s research group, and while he has been to Cedros to conduct fieldwork, Samuel’s work focuses on artifacts from one pit in the second site: Cooper’s Ferry in Cottonwood, Idaho, near the Salmon River. From Cooper’s Ferry, seemingly interesting artifacts are brought back to the lab where they are sorted, confirmed to be artifacts, and studied.

L-R: Loren White (OSU), Steve Jenevein (Oregon State Parks), and Samuel Burns on board the flight from Cedros Island, Baja California, Mexico after a successful field session in January, 2019. Photo by Samuel Burns.

Samuel is able to take the artifacts, make 3D scans of the object, and input this information into a computational program. The computer converts the 3D scans into mathematical shapes and 3D models. So instead of looking at a couple things by eye and estimating if artifacts are similar or different, the program can compare large sets of data with discreet numbers and make conclusions about whether or not two artifacts found in different places have similar shapes. This allows researchers to ask questions about tool development over time and place.

To make 3D images, a laser scanner has been used in the past, but this is both expensive and large, so new methods are actively being developed for this purpose. One option is a structured light scanner, which has a light shining through multiple holes. To use a structured light scanner, you place your artifact on a patterned background and take lots of photos at many angles, producing a large amount of data to feed the computer program. Another easier option for 3D modeling is photogrammetry, which only requires a camera and a computer, even just a phone camera will work. This soft ware used is called “GLiMR” (GIS-based Lithic Morphometric Research) and is based on GIS software for modeling geographical landscapes, and the automation and ease of such a program enables archeologists to spend less time collecting numbers and more time assessing these numbers through statistical analyses and asking interesting questions.

Samuel’s crew lining up to conduct a systematic surface survey near Paulina, Oregon. Photo by Samuel Burns.

When you think about ancient North American stone artifacts, megafauna hunting tools like arrow heads and spears come to mind. However, in both the Cedros and Cooper’s Ferry sites, simpler tools are being found that suggest early North Americans exploited a wide range of resources and had a broad-spectrum diet. For example, artifacts found include shell or stone tools for processing fiber to making fishing line.

Samuel using a digital total station to take measurements at a Medieval Christian period site at el Kurru, Northern State, Sudan. Photo by Walter De Winter.

Growing up, Samuel never went to school and wasn’t homeschooled, but always loved history. He lived in an 1850s farmhouse, and spent his childhood going through old objects from his backyard, left behind over the past 100+ years. At age 17, realizing he wanted to go to college but not having the traditional requirements, Samuel applied to a University in Jerusalem and got in. After spending a year there, he ran out of money, and spent next few years working and moving around the world, including in South Korea and Israel. Eventually, he returned to the US and jumped back into school at a community college in Michigan and ultimately transferred to the University of Michigan, where he focused on ancient cultures and language of middle east.

Field camp near Colt, Arkansas, home for 6 months in 2016-2017. Photo by Samuel Burns.

Samuel graduated from UM in 2010 and then got a master’s degree at the University of Cambridge in the United Kingdom, focusing on Egyptian studies. This first master’s centered around Syria and unfortunately, this research project was not able to be pursued further, so Samuel spent the next five years working in cultural resource management in the US. Through this job, he was able to travel around the US and soon became interested in North American archeological research. Samuel had a strong liberal arts background but, wanting to expand his earth science knowledge, came to Oregon State.

Eventually, Samuel wants to obtain a PhD and work in academia, continuing to formulate and direct research projects.

To hear more about Samuel’s path to OSU and experiences in archeological research, tune in Sunday, February 16th at 7 PM on KBVR 88.7 FM, live stream the show at, or download our
podcast on iTunes!


Davis, L. G., Bean, D. W., Nyers, A. J., & Brauner, D. R. (2015). GLiMR: A GIS-Based Method for the Geometric Morphometric Analysis of Artifacts. Lithic Technology, 40(3), 199–217.
Des Lauriers, M. R., Davis, L. G., Turnbull, J., Southon, J. R., & Taylor, R. E. (2017). The Earliest Shell Fishhooks from the Americas Reveal Fishing Technology of Pleistocene Maritime Foragers. American Antiquity, 82(3), 498–516.

Feather collections and stressed-out owls

Ashlee Mikkelsen holding a juvenile northern spotted owl. Photo courtesy Ashlee Mikkelsen.

For six months out of every year, Ashlee Mikkelsen spends her days hiking for miles off-trail in the Ponderosa pine-filled forests of central Washington, hooting like an owl, and carefully listening for responses. These days, responses can be few and far between. You see, Ashlee isn’t just a wildlife enthusiast; she is a research assistant in a long-term US Forest Service monitoring program focused on the northern spotted owl.

Since being listed as threatened by the US Fish and Wildlife Service in 1990, populations of northern spotted owls have continued to decline. In some areas, the number of spotted owls has decreased by more than half in only 20 years (see (Dugger et al. (2016)). Northern spotted owls are inhabitants of old-growth forests. Although northern spotted owls historically could be found in almost every forest from northern California to British Columbia, as forests have shrunk in size through timber harvesting and through changing land use, the amount of suitable habitat has drastically decreased. A second major contributor to the decline of the northern spotted owl is arrival during the last century of the barred owl, which are native to northeastern North America. Barred owls competed with spotted owls for territory and resources, and have been observed fighting with spotted owls.  Ashlee’s master’s research at Oregon State aims to quantify the stress experienced by spotted owls.

Northern spotted owl. Photo courtesy Ashlee Mikkelsen.

When birds experience stress, their bodies respond by releasing larger-than-usual quantities of the hormone corticosterone. Similar to cortisol in humans, corticosterone is always present, but having levels that are very high or that are very low is associated with poor health outcomes. It used to be that in order to measure the physical stress response of a bird, researchers had to take a blood sample. The problem with this is that the process of taking a blood sample itself is a source of stress for the bird. Recently, however, a new technique was introduced based on the fact that corticosterone is also present in feathers. Being able to use feathers is a distinct advantage: birds are constantly dropping feathers, so collecting feathers is fairly non-invasive, and importantly, similar to the benefits of measuring cortisol in hair, feather corticosterone measurements show the average level of the hormone over a long period, rather than just the instant that the feather is collected.

Ashlee banding a juvenile northern spotted owl. Photo courtesy Ashlee Mikkelsen

Ashlee banding a juvenile northern spotted owl. Photo courtesy Ashlee Mikkelsen

Working with professor Katie Dugger (who, incidentally, was Ashlee’s supervisor in the owl-monitoring field crew for the two years prior to beginning graduate school), Ashlee is analyzing a collection of feathers that spans over a 30-year time period. Measuring corticosterone levels in feathers is a high-tech process involving organic chemistry and radioactive isotopes. Although there are many complications that need to be accounted for, tracking the levels of corticosterone in these feathers gives Ashlee insight into the impact of stressors such as environmental degradation and competition with barred owls. Because the data spans so many years, she is able to examine the average stress in spotted owls over periods of change in the populations of barred owls. Ashlee’s data shows a strong response in corticosterone in spotted owls when the number of barred owls in the neighborhood goes up. This supports the view that spotted owls’ woes are not just due to habitat loss, but also due to competition with barred owls.

To hear more about Ashlee’s path to OSU, experiences in research, and of course about northern spotted owls, tune in Sunday, February 16th at 7 PM on KBVR 88.7 FM, live stream the show at, or download our
podcast on iTunes!


Saving the blue whales of the South Taranaki Bight

A blue whale engulfs a patch of krill. Drone piloted by Todd Chandler.

Until a worldwide ban took effect in 1986, whaling and the production whale products, were leading to a decline in whale populations. Despite a greater global awareness about the importance of protecting our oceans, conflicts still exist between conservation efforts and industry.

This week’s guest, Dawn Barlow, studies the anthropogenic effects on blue whales (Balaenoptera musculus) – the largest known animal to have ever existed! Dawn is a first year PhD student in the Department of Fisheries and Wildlife’s Geospatial Ecology of Marine Megafauna (GEMM) Labwith Dr. Leigh Torres – the same lab where she completed her Master’s degree in 2018.

A blue whale mother and calf surface near Cape Farewell, New Zealand. Photo by Dawn Barlow.

Discovery of new whale population… and problem

Through her Master’s work, Dawn and her colleagues were able to document a genetically distinct population of about 700 blue whalesin the South Taranaki Bight (STB) – a region located between the north and south islands of New Zealand. The STB is not only an important region for the blue whales; however, it is also heavily used by industry, with active oil and gas extraction, seismic surveying, shipping traffic, and proposed seafloor mining. The need for a marine sanctuary in this area is eminent for the longevity of this whale population, but a compromise must be reached with the government and stakeholders. Furthermore, defining a sanctuary area in a dynamic system is not as simple as drawing a line in the sand.

Data collection Down Under

A pair of blue whales surface in New Zealand’s South Taranaki Bight region. Photo by Leigh Torres.

For her PhD research, Dawn will be continuing work with this same population of whales to get a better understanding of the ecological factors that influence where the blue whales are distributed. So far, three data collection trips have been conducted to gather some of this information. These ship-based trips have collected huge amounts of data using a myriad of equipment and techniques.

Echosounder data is collected using a transducer, which hangs off the boat and sends two pings per second producing measurements from the bounce back that can be used to map out krill aggregations – the blue whale’s primary food source. Conductivity, Temperature, Depth (CTD) casts are used to collect temperature and salinity pressure measurements to determine depth. Wind measurements are also recorded, as this generates upwelling. Photography and videography from the ship deck and via drones are used for identification of individuals whales with their skin providing the equivalent uniqueness as a human fingerprint. Satellite imaging is also used to record sea temperatures and chlorophyll levels. Lastly – and my personal favorite – darts shot from a smaller inflatable boat at close-range are used to collect skin and blubber samples for downstream genetic, stable isotope, and hormone analysis. Opportunistic sampling of fecal matter (i.e. if a whale poops) can also be used for genetic and hormone analysis.

Approaching a blue whale for photo-identification and biopsy sampling. Photo by Kristin Hodge.

Dawn participated in the 2017 field season and also went in July 2018 to disseminate findings to stakeholders. Now she is tasked with sifting through the data to correlate the oceanography with acoustic data, satellite imagery and presence of krill. Preliminary results suggest that the blue whales seem to appear where krill aggregate. Through habitat modeling on an ecosystem scale, Dawn hopes to be able to predict on a seasonal scale where the krill – and therefore, blue whales – will be, allowing for informed, science-based conservation and management decisions to be made.

Finding a passion for conservation biology

Dawn Barlow on the flying bridge of the research vessel during fieldwork in New Zealand. Photo by Kristin Hodge.

Growing up in Northern California near the ocean has always inspired Dawn to pursue a career in marine science. Dawn received dual bachelor’s degrees in Organismal Biology and Environmental Policy at Pitzer College in Claremont, California, where she recognized the need to build a bridge between biology and its translation to conservation policy. Knowing she wanted to get hands-on experience in marine mammal research, Dawn sought out and pursued opportunities through the MARMAM listserv, which landed her two undergraduate internships: one studying bottlenose dolphins in Australia and another in Alaska with humpback whales. These internships allowed Dawn to realize her desire to continue research through a graduate program at Oregon State University, where she has already completed her Master’s degree in Wildlife Science. After completing her PhD, Dawn plans to continue conducting conservation research.

Join us on Sunday, February 10 at 7 PM on KBVR Corvallis 88.7 FM or stream live to learn more about Dawn’s adventures Down Under, journey to graduate school, and answer to the age-old question: what does whale poop look like?

Exploring immigrant identity through poetry

As a 2nd year MFA student in the School of Writing, Literature, and Film, Tatiana Dolgushina is writing her history through poetry as a way to understand herself and the country she came from that no longer exists. Born in Soviet Russia, Tatiana and her family fled the country after it collapsed in 1991. Tatiana grew up in South America and came to the US when she was 12, settling in Ohio. She remarks, “so much cultural history of Soviet Russia is influencing who I am today.” Central to her work are ideas of identity formation and childhood displacement. Through writing, she is digging deeper into her experience as an immigrant growing up in multiple countries.

To better understand the root of her identity, Tatiana is reading about the history that led to the dissolution of Soviet Russia. Reading about the history has helped her to understand the events that led to her family’s displacement. She grew up with silence surrounding why they had left, explaining, “Soviet culture is based on a fear of talking about historical events.” She reflects on feeling shame associated with being an immigrant, and in “not belonging to the old place or the new place.” A fractured in-between place. “As a kid, when you’re displaced, you lose so much: language, traditions, and culture.” She further explains, “you seek assimilation as a kid, and either forget these things, or push them away.”

Tatiana explains that poetry is a catalyst for understanding herself and more broadly, for us to understand ourselves as humans. It’s about connecting the dots. Her family doesn’t speak about what transpired. But reading the history, it begins to make sense. “When you’re a kid, you’re focused on survival.” She reflects that she has been trying to compensate for certain things, and is now understanding how and why she is different. She realized, “the older I get, the more I feel it, my immigrant self emerging.” Her experience growing up in multiple countries has contributed to her identity formation, but she admits that she doesn’t have a space to talk about it. “I blend in, but still feel like an outsider. I am not of this culture, and I realize that I really have no home because my home is not a country.”

Tatiana is still trying to figure out what her writing is about, but articulates that writing is a process of not being able to say certain things in the beginning. It’s about writing through the memory and being able to see the things you need to see when you’re ready, peeling away each layer of experience. Approaching the writing process linearly, Tatiana began writing about early memories, then proceeded beyond to older memories, asking, for example, “why did I write about that nightmare I had when I was 4 years old?”

Originally trained as a wildlife biologist, Tatiana decided to change directions after spending time pursuing a Master’s degree. When she initially began the MFA program, she was shocked at the discussion of subjective ideas, which is so different from many areas of scientific discourse. In science, the focus is not so much on identity. But, she explains, “science and art are coming from the same place. It’s about observation, and understanding through observation.”

As a personal goal, Tatiana is working towards publishing a book. It has been something she has wanted to do for many years. “The hope is that a 15 year old immigrant kid in the library will read it and be able to relate to my story.”

Tatiana studies with Dr. Karen Holmberg and will be graduating this Spring. Tune in on Sunday, February 3rd at 7pm on KBVR 88.7 FM to hear more from Tatiana about her thesis work and experience as a graduate student at OSU. You can also stream the show or download our podcast on iTunes!

Sticks and stones may break my bones, and words might unintentionally enforce gendered behavior

Hey guys, do you notice when you or others use gendered language? As with the last sentence, gendered language has become part of our culture’s vocabulary and we may use it without a second thought. There is a growing field of research that studies how language can shape perceptions of ourselves and others.

Jeana presenting “Decolonizing Masculinities” with Nyk Steger and Minerva Zayas at the 2018 Examining Masculinities Conference at OSU

Jeana Moody is a second year Masters student in Women, Gender and Sexuality Studies working with Professor Bradley Boovy. Her thesis research focuses on the use and impact of gendered words and phrases in the English language, such as “throw like a girl”, “man up”, and “don’t be a bitch.” What are the implications of saying “man up” to someone who presents as a woman? As a man? Does the gender of the speaker play a role?

To explore this, Jeana designed a study to collect data through in-person interviews and anonymous online surveys, asking participants to describe situations when they have either used such statements or have been the subject of the statements. The questions include: where did this happen? Who was there? Were there any power dynamics? How did it make you feel then, and now?

For any research involving human participants, OSU researchers must submit a proposal to and be approved by Oregon State’s Institutional Review Board (IRB). This rigorous process requires submission of interview questions, the number of participants, how the data will be collected, and how consent will be obtained from the participants. Additionally, since there is always the possibility of triggering a participant’s traumatic memories from survey questions, help resources must be provided to participants. Jeana’s study was just approved last week.

Jeana hiking in the San Gabriel Mountains in Southern California

From the data collected, Jeana hopes to gain insight into feelings of and implications on participants in the study, and present the anecdotal evidence within a cultural context. This research draws from the subjects of feminist sociolinguistics and critical race theory. It addresses the idea that language begets culture, and culture begets language. Her interest in the subject arose from working with non-native English speakers. She observed that they often use American swear words and racist words without understanding the impact of the words they were using. Just because someone doesn’t understand those words doesn’t mean they don’t hold an impact.

Jeana hiking in the Willamette National Forest in Oregon

When Jeana is not conducting research, she is the instructor of record for Men and Masculinities and is a Teaching Assistant for several other classes. She is originally from Pullman, Washington and attended Western Washington University as part of the Fairhaven College (an interdisciplinary liberal arts college). She enjoys hiking and being anywhere outdoors, and she loves to cook and draw. When not in Corvallis, she can likely be found in Prague where she has taught English and worked for a travel agency.

If you are interested in participating in Jeana’s research study online or in-person, please email to set up an interview or with any questions you may have, or follow the link to her Gendered Language Online Survey.

Written by Maggie Exton.

Kayaks and Computers: the Gray Whale Research Essentials

Throughout the year, looking out from the Oregon coast, you can often spot gray whales with the naked eye. Behind the magic and mystery of these massive creatures are teams of researchers tracking their migration and studying their diet.

Lisa Hildebrand is a 1st year Master’s student in Wildlife Science working with Dr. Leigh Torres within the College of Agriculture. Lisa studies geospatial ecology of marine megafauna, meaning that her research focuses on the feeding and movement through time and space of sea creatures larger than most fish, including large sea birds, seals, dolphins, and of course, the gray whales. To study such large animals in the ocean, Lisa manages a team that combines diverse technologies coupled with fine scale foraging ecology.

Gray whales feed on very small zooplankton suspended in shallow water. The whales don’t have teeth but instead have rows of baleen which look like a thick brush and act as a filter for water and sediment while letting in large quantities of zooplankton. In July and August, Lisa and her team of 4-5 people go out to Port Orford, Oregon. The team splits into two groups: a cliff team and a kayak team. From a cliff above their 1km2 sampling site, theodolites and computational programs are used to track whales by height and GPS location. Once a whale is spotted, team members kayak to this location and take water samples for analysis of zooplankton density, caloric content, species, and microplastic quantity. Lisa has taken over this ongoing project from a previous Master’s student, Florence Sullivan, and has data on the same research site and whales going back to 2015.

This research project provides opportunities for both undergraduates and high school level students to obtain first-hand field research experience. The students involved are able to take what they’ve heard in a classroom and apply it outdoors. In particular, Lisa is passionate about getting the students in the local Oregon coastal community involved in research on the whales that bring many tourists to their area.

To study the large gray whales, Lisa spends most of her time studying the small zooplankton that they eat. Zooplankton hide under kelp and it turns out, can be separated by populations that are pregnant, or varied in age or species. Gray whales may show preference for some feeding sites and/or types of zooplankton. Why do we care what a gray whale’s dietary preferences are? Plastic use and plastic pollution are rampant. Much of our plastic ends up in the oceans and photodegrade into microplastics small enough to be consumed by zooplankton. Since gray whales are the top predator for zooplankton and eat large qualities, these microplastics accumulate. Microplastic presence may differ between regions and species of zooplankton, which may relate back to whale preferences and migratory patterns. On the Oregon coastline, microplastic profiles of zooplankton have not yet been studied. As humans are also consuming large quantities of seafood, it is important to understand how microplastics are accumulating in these areas.

Lisa is from Germany and grew up in Vietnam and Singapore, but she was first inspired to pursue marine animal research as a career after a family trip to Svalbard, Norway during high school. Before obtaining her undergraduate degree in Marine Zoology from Newcastle University in England, Lisa took two years off from schooling and completed two internships: one with bottlenose dolphin sanctuary research institute in Italy and Spain, and one at a seal research facility in Germany. Now that she’s settled in Oregon for now, Lisa is enjoying the nature and in her free time loves hiking and skiing.

To learn more you can check out GEMM Lab website , the GEMM Lab blog and Lisa’s Twitter, @lisahildy95

To hear more about Lisa’s research, tune in Sunday, January 20th at 7 PM on KBVR 88.7 FM, live stream the show at, or download our podcast on iTunes!