Monthly Archives: October 2023

Taking Inspiration from Life: Short stories on why we believe what we believe

This week we are chatting with new ID host Selene Ross on her path to earning an MFA in fiction in the School of Writing, Literature, and Film. Inspired by her upbringing and life in northern California, Selene’s interest lies in looking deeper at why we believe what we believe, exploring power, women, and trust through short stories. What makes a short story different than a novel? In short stories, nothing has to change except everything to change, leading to a “surprising but inevitable” ending.

Selene began her journey at UC Santa Barbara studying Environmental Science and Sociology, focusing on the native plants of Central California. Straight from undergrad, she moved to Berlin, Germany on an au pair visa and became part of a vibrant community of writers and poets. After moving back to the U.S., Selene looked to radio as a way to do creative work and worked with various production companies prior to starting here at Oregon State. In wanting to stay connected with the audio world she is starting her own show on KBVR, Mystic Yarn, and joining us here at Inspiration Dissemination.

What does getting an MFA in creative writing look like? This program encompasses two main areas, writing workshops and more interdisciplinary “craft” classes. The workshop is where students submit original work and gather critiques from peers, while the “craft” classes are more generative, and a place to draw inspiration from other areas of creative expression, like poetry or non-fiction. The final hurdle is the thesis defense, which can take many forms depending on the area of focus. In Selene’s case, this will look like a collection of fiction short stories.

Tune in this week to hear all about her writing process, how she incorporates “spooky” into her writing, and listen to an excerpt from her work.

Forever Chemicals: How can we better detect PFAS?

Per and polyfluoroalkyl substances, also known as PFAS, are widely used, long lasting chemicals, components of which break down very slowly over time. This is why you may have heard these substances called “forever chemicals.” Because of their widespread use in anything from firefighting foams to non-stick pan coating, and their persistence in the environment, many PFAS are found in the blood of people and animals all over the world. PFAS are found in water, air, fish, and soil at locations across the world and have been linked to harmful health effects, including various forms of cancer. However, the toxicity of these substances are not fully understood. 

There are thousands of PFAS chemicals, and they are found in many different consumer, commercial, and industrial products, making it challenging to study and assess the potential human health and environmental risks. Additionally, it is challenging to accurately detect and quantify PFAS levels in environmental samples. 

Esteban Hernandez is a chemistry PhD student conducting his research in the lab of Jennifer Field in the department of Environmental and Molecular Toxicology. His research focuses on developing fast and accurate detection techniques for PFAS. Specifically, he utilizes nuclear magnetic resonance spectroscopy (NMR), which provides an alternative to the canonical methods of PFAS detection such as mass spectroscopy. Esteban has found that utilizing NMR this way allows for detection of different varieties of PFAS, which had previously not been detectable with other methods. This has big implications for the field of PFAS research and environmental testing. 

Esteban comes from a part of North Carolina that has been highly impacted by environmental PFAS contamination, sporting the title of the second worst drinking water in the country behind Flint, Michigan. His research has a very personal connection to his history and where he comes from. However, researching forever chemicals was not always his plan. He started his undergraduate journey as a theater major at Mars Hill University, eventually finding his way to chemistry and the University of North Carolina. In his undergraduate research at UNC he worked on developing an estrogen analog to help treat breast cancer. During his masters (also at UNC) he worked on synthesizing an anticancer compound originally found in sea cucumbers from the sea of Japan. Even when he came to OSU he didn’t initially think he would be working on PFAS detection. When he joined the Field lab, and consequently the field of PFAS research, he found the right fit for him. Tune in to Inspiration Dissemination this week to hear all about Esteban’s research and pathway to graduate school.

Poopy predators: Assessing carnivore diet and population dynamics via non-invasive genetics 

Ellen with a wolf den in Alaska

Getting to the bottom of what top predators in an ecosystem are eating is critical to understand how they may be influencing dynamics in the entire system and food web. But how do you figure out what a predator is eating if it’s hard to catch and collar or watch continuously? Easy, you use their poop! Ellen Dymit, a 4th year graduate student in the Department of Fisheries, Wildlife, and Conservation Sciences advised by Dr. Taal Levi, is our guest on the show this week and she is a poop-tracker extraordinaire!

For her PhD research, Ellen uses primarily non-invasive genetic methods to study large carnivores in two projects in Alaska and Central America. While the systems and carnivores she studies for these two projects are pretty different, the techniques she uses to analyze the collected scats are the same. The Alaska project is focused on determining what different wolf populations and packs across coastal Alaska are consuming, whether individuals are specialized in their feeding habits, and how large the populations are. The Central America project, which is based out of Guatemala, looks at a whole host of predators, including jaguars, pumas, and ocelots, to gain a better understand of the food web dynamics in the ecosystem.

One of Ellen’s extremely remote field camps in Alaska

Both of these projects involve some unique challenges in the field that Ellen has had to learn to tackle. DNA can deteriorate pretty quickly, especially in warm Guatemalan temperatures, which is problematic when you’re trying to analyze it. Yet, Ellen’s lab has perfected methods over the last few years to work with neotropical samples. Ellen’s Alaska field work is incredibly remote as it’s just Ellen and one field technician roaming the Alaskan tundra in search of wolf scat. Accessing her field sites involves being flown in on a small fixed wing plane, where they are extremely space and weight-limited. Therefore, every single piece of gear needs to be weighed to ensure that the pilot has enough fuel to get to the site and back. As a result, Ellen isn’t able to collect the entire scat samples that she finds but can only take a small, representative sample.

Ellen sub-sampling a wolf scat

Ellen’s incredibly adventurous field work is followed by months spent in the lab processing her precious scat samples. So far, her results have revealed some pretty interesting differences in diet of wolf packs and populations across three field sites in Alaska. The Guatemalan project, which occurs in collaboration with the Wildlife Conservation Society Guatemala, is one of the first to analyze a large sample size of ocelot scats and the first to attempt DNA metabarcoding of samples collected in the neotropics. 

To hear more details about both of these projects, as well as Ellen’s background and some bad-a$$ stories from her Alaskan field work, tune in this Sunday, October 15th live on 88.7 FM or on the live stream. Missed the show? You can listen to the recorded episode on your preferred podcast platform!