Monthly Archives: February 2020

Working with Dungeness crab fishermen to get a ‘sense’ of low-oxygen conditions off the Oregon coast

Linus tidepooling at Yaquina Head, Oregon Coast.

Linus Stoltz is a graduate student in the Marine Resource Management Master’s Program through the College of Earth Ocean and Atmospheric Sciences, co-advised by Dr. Kipp Shearman and Dr. Francis Chan. Only in his second term, Linus is already diving in to a project that means a lot to Oregon coastal communities.

Dungeness crab is the most profitable state-managed fishery in Oregon, generating $66.7 million dollars in commercial sales over the 2018-2019 season alone. However, an increasing threat to this valuable industry that has caused significant harvest reductions in recent years: hypoxia. Hypoxia refers to low-oxygen conditions in the ocean that have been recorded as occurring more frequently off the Oregon Coast and elsewhere in the Pacific Northwest, where Dungeness crab fishing is a major activity. In some parts of the ocean, such as the Gulf Coast, these conditions are triggered by pollution which causes overproduction of algae, followed by excess decomposition. However, here, it’s more complicated. These conditions are generated by offshore wind- driven movement of cold, nutrient-rich but oxygen-poor deep water across the continental shelf, toward the coast.

This process of ‘upwelling’ (see figure below) is a natural occurrence, but scientists speculate that climate change is making these events more frequent and their characteristics severe. As a Marine Biology major in his undergraduate studies at the University of North Carolina Wilmington, Linus admits that oceanography isn’t exactly in his “wheelhouse” but it doesn’t take an oceanographer to understand that atmospheric conditions are strongly tied to ocean circulation patterns. Referring to graphic representations of Northwest wind stress and dissolved oxygen concentrations, he says “they’re pretty well correlated.” Normally, the offshore winds that drive upwelling are counteracted by a shifting of wind patterns that ultimately allow them to mix sufficiently and re-oxygenate. But the reality is that this is happening less and less frequently.

The process of ‘upwelling’ off the West Coast. Source. www.noaa.gov

What does hypoxia mean for Dungeness crabs? Linus describes the events like waves of low-oxygen water moving slowly across the seafloor. As bottom-dwelling organisms that depend on dissolved oxygen to breathe, if conditions are severe enough or persist long enough, they’ll die. More and more instances of crab fishermen pulling up their gear full of dead crabs prompted them to reach out to scientists for help. Oregon Department of Fish and Wildlife (ODFW) biologists and researchers at Oregon State University (OSU) have been working together since 2002 to try and find answers. Check out this video by ODFW to see real-time footage of a hypoxic wave as it flows over a Dungeness crab pot in 2017.

While we are beginning to understand the bigger picture of the oceanographic conditions that result in hypoxia, Linus explains that we don’t have any models that predict this ‘wave’ on a finer scale. He describes the ocean as patchy, where conditions just a thousand yards away from where a fisherman may have set his or her pots may be completely different. The ultimate goal of his research is to be able to predict these conditions and inform management decisions such as seasonal and/or spatial closures.

The roughly two-foot long Sexton oxygen sensor seen above will be attached to an individual crab pot that will transmit data via Bluetooth to the Deck Data Hub which will then relay the information to a receiver on the OSU campus.

But even more important to fisherman now, the project will also provide ‘in situ’ information fisherman can use to make critical decisions while they’re out there. To achieve this, Linus will be equipping fishermen with sensors to be deployed by Dungeness crab fishermen through the season to collect data on dissolved oxygen. The data recorded by the sensors can be seen immediately by fishermen when they retrieve their pots and will also be automatically transferred via Bluetooth to a box on deck which will ultimately transmit to a receiver on the OSU campus. The hope is to capture the variability in oxygen conditions, while minimizing their impact on fishing operations.

Linus tagging red drum in Hancock Creek when he worked for North Carolina Division of Marine Fisheries (NCDMF).

Before coming to OSU, Linus spent time as an observer for the North Carolina Division of Marine Fisheries testing by-catch reduction technology in the shrimp trawling industry, an experience he recounts as “character-building to say the least.” In other words, Linus knows how important it is to streamline the process if he wants to get any cooperation from fishermen and collecting data can’t be in the way or slow them down. A stark contrast, however, between the interactions between fisherman and researchers on the East Coast to Oregon is that this relationship is more than just cooperative, it’s a collaboration. Fishermen here trust scientists, but at the same time the researchers recognize that fishermen are out there more and are the ones who see changes first-hand.

For Linus, this project represents one of just about any marine science topic he’s excited to be involved in. To learn more about Linus’s journey from SCUBA diving in a cold lake in Ohio as a ten-year old to working as an underwater technician monitoring artificial reefs off the coast of North Carolina, tune in to KBVR 88.7 FM or online February 23, 2020 at 7 P.M.

Not all robots are hard and made of metal…

Picture a robot. Seriously, close your eyes for 30 seconds and picture a robot in your head. Ok, most of you probably didn’t do it but if you had, my guess is that you would have pictured something very boxy, perhaps with pincher hands, quite awkward in its movements and perhaps with a weird robotic voice pre-Siri era. Or maybe something R2-D2 like. That’s definitely what comes to mind for me. Well, robots don’t all look like that. In fact, some robots aren’t hard and made of metal at all. Some are soft and pliable, and they’re the kind that Nick Bira studies.

Was a career in robotics always on the horizon for Nick? Perhaps…judging by this photo of him with his home-made robot, “Mr. Klanky”.

Nick is a 3rd year PhD student in the Department of Robotics working with Dr. Joseph Davidson. When asked to summarize his research into just a few words, Nick answered that he works on magnetism and soft robotics. What is soft robotics and why would we want a soft robot you may ask (I know I certainly did)? Well, soft robotics is exactly what the phrase implies – they’re robots that are soft, absolutely no hard parts (or very few) to them. Why would we want a soft robot? Well, imagine if you have a small space that you need a robot to fit through, like a small hole. A soft robot can mold into the shape that you need it to. Alternatively, soft robots are becoming more and more needed and used in medical robotics. After all, you don’t want some hard, klanky thing poking around inside of you and possibly causing damage. You’d much rather have something that’s soft, gentle, compliant and non-damaging. Another example is in instances of human-robot interactions and increasing the safety of such interactions. A big, metallic, hard robot on an assembly line could easily spin and injure a human. But a robot with arms designed like tentacles that are floppy and soft, will perhaps push you over and bruise you, but not lead to serious damage.

The utility of soft robotics is manifold. So why aren’t they used more or why haven’t you heard much of them before? Well, the challenge is how to keep the utility of a hard robot while making it soft and, by proxy, safe. In part, this is down to how the robot and its movements are controlled. Most soft robots to date are controlled by or pneumatics or hydraulics (using air or liquid pressure). The downside of these is that the soft robot has to be accompanied by bulky hard components, such as a pumps, electrical sources, batteries, or air tanks. So even though you may have this super soft, compliant robot, it comes with large apparatuses that are not soft. Kind of counter-intuitive. 

This is where the other half of Nick’s research phrase comes in – magnetism. Magnetism has very limited usage as a tool in soft robotics and Nick thinks it should be applied more. If you’re having a hard time picturing how a magnet could be used in soft robotics, then visualize this example Nick gave us. It could be used in a pincher – instead of using air pressure in inflate the pincers to open and close, you could have the fingers of the pincer be made out of stretch magnetic material that closes when exposed to a magnetic field. It seems pretty simple right? And yet, it doesn’t yet exist in soft robotics. This is why Nick is exploring this possibility because he believes ideas like this could be useful building blocks, and once we have them, we can build more complicated things. 

Now, you may be thinking, hang on, magnets are hard, I thought this was all about soft robotics? Good thought – here’s how Nick is planning to work around that. Nick is embedding iron particles, which are magnetically soft, into silicone rubber, which is a soft elastic material, to make a material that is soft and hyper elastic and when brought close to an ordinary magnet, will stick to it. However, this is only step 1. Nick is interested in creating magnetic fields within the robot rather than it only working if there is a big, hard magnet nearby. One core goal of soft robotics is to have them function on their own without needing some hard object nearby to ‘support’ it. He is still in the development and testing stages of this material, but Nick does have an application in mind. He wants to make a magneto-rheological fluid (MRF) valve that can be used in soft robots. Rather than have this valve open and shut with air pressure (which would require air tanks to accompany the robot), Nick wants the valve to open and close through a magnetic field generated by the elastic, soft magnetic material. This way everything would be compact, stretchy, and wouldn’t require any additional bulky parts.

To hear more about Nick’s research and also about his journey to OSU and more on his personal background, tune in on Sunday, February 16 at 7 PM on KBVR Corvallis 88.7 FM or stream live. Also, be sure to check out his Instagram (@nick_makes_stuff and @nick_bakes_stuff) and Twitter (@BiraNick) accounts. 

Fitness for Life: Sport psychology and the motivations behind healthy lifestyles

Portrait of Alex Szarabajko

For graduate teaching assistant Alex Szarabajko, being part of the team teaching the 3,000-plus students who take Lifetime Fitness for Health (HHS 231) every term is not just a job. “It’s the last time students are able to learn about physical activity, nutrition and mental health before adulthood, ” says Alex. The course, which tied for first place in a “Best of 2020” vote, lays a foundation for healthy habits by addressing physical activity, nutrition, and mental health. Alex started work on her doctorate in Kinesiology at Oregon State University in 2018 after completing master’s degrees in General Psychology and in Exercise and Sport Science at Eastern Kentucky University. As a researcher in the field of sport psychology, Alex works to understand the reasons that people pursue their fitness goals and engage in healthy behavior. 

Alex sprinting at a track meet.

Alex first came to the United States to work as an au pair in Bethesda, Maryland. Her host family were very enthusiastic about college sports. In particular, Alex wanted to know: “Why are they so popular?” In her native Germany, university sports are not taken seriously. Instead, serious athletes are members of athletic clubs. If athletes are paid at all, it is typically only a small amount. With the exception of footballers, most elite German athletes need supplemental income, often from a career in a more traditional domain. (Link 2)  Alex was excited by the idea of college athletes having national attention and earning scholarships through sport. Perhaps this was a way that she, too, could continue to compete, at least for a few more years. After returning to Germany and resuming track and field practice at her local club, Alex began applying for college in the United States. She was recruited by Eastern Kentucky University on a track and field scholarship. 

Starting out, Alex thought she had her career path figured out. As a freshman at EKU she was required to go to a majors expo, which she reluctantly attended. At the expo Alex found a booth advertising the field of sport psychology, an experience she describes as an “immediate lightbulb.” She promptly changed her major to psychology to prepare for graduate work in sport psychology.

Following the completion of her bachelor’s degree, Alex stayed at EKU in order to do graduate work under the tutelage of Dr. Jonathan Gore. Psychologists use the term intrinsic motivation to describe actions inspired by internal rewards. For example, a person playing a sport just for fun is intrinsically motivated. Extrinsic motivation describes actions influenced by others. An employee performing a task that they personally don’t care about is extrinsically motivated. Working with Dr. Gore, Alex examined a third type of motivation, relational motivation, among athletes. Relational motivation is defined by the needs of a group. Initially, Alex expected to find that athletes in team sports like football and basketball were more relationally motivated than athletes in individual sports. To their surprise, she found little difference between sports. Instead, she found differences between the levels of relational motivation among female athletes and male athletes. She found that female athletes’ performance was significantly linked to relationships between athletes and coaches.

In 2018, Alex left Kentucky and came to Oregon. She arrived at the start of the academic year, never having been to Oregon before. It didn’t take long for her to feel at home. “I just fell in love with Oregon when I got here,” says Alex. “I was able to go to the coast, go to the waterfalls.” Being near to Eugene (Track Town, USA) is also a bonus: that’s where the 2020 Olympic trials for track and field are being held. Being raised by Polish parents in Germany, Alex speaks both languages fluently and holds citizenship in both countries. She’s volunteered as an official translator for the Polish national team in the past, and hopes to volunteer again for either the German or Polish team.

As a graduate student in Kinesiology with a Psychosocial emphasis, Alex is focusing now on health and fitness in adults, rather than only among adults who consider themselves athletes. About 10 years ago, her advisor, Dr. Bradley Cardinal, carried out a study examining required health classes in colleges and found that since 1930 the number of schools requiring a course in fitness and healthy living has dropped from 80% to 39%. Alex is interested in finding out whether this trend has continued since that study was carried out. Oregon State’s version of the class, Lifetime Fitness for Health, has adapted with time to address student needs. In particular, student responses to end-of-class surveys resulted in the addition of a mental health component the class, which initially only focused on physical activity and nutrition. Alex hopes to uncover more about how required health classes across multiple universities have adapted to changing needs of students, and whether the number of schools requiring such classes has continued to drop.

Tune in Sunday, February 2nd at 7pm on 88.7 FM or online to learn more about Alex’s research and her personal journey!

Swimming with Salmon(ids)

Dams, bears, and anglers aren’t the only challenges that salmon face as they undergo their journeys from their mountain river birthplaces to the Pacific Ocean and back again. Timber harvests, dam-induced streamflow changes, and climate change have increased stream temperatures throughout the Pacific Northwest. Native cold-water-loving species like salmon and trout struggle in warm water, while certain parasitic microbes flourish.

The confluence of the Deschutes and Columbia Rivers. Illustration by Daniel Watkins.

Sofiya Yusova, a master’s degree candidate in the Department of Microbiology at Oregon State University, researches the microbe Ceratonova shasta. Her work aims to understand how C. shasta adapts to climate change in river ecosystems in the Pacific Northwest. Her advisor, Dr. Jerri Bartholomew, runs a long-term monitoring project in the Klamath River, and recently began applying the same methods to the Deschutes and Willamette Rivers. Dr. Bartholomew and her lab identified the complex lifecycle of the parasite, recognizing that C. shasta requires an intermediate host (the polychaete worm) in order to infect fish. Understanding the lifecycle is critical for understanding how to intervene when fish populations are struggling, as well as for anticipating the effects of climate change. As stated on Dr. Bartholomew’s website, “Climate change is expected to have profound effects on host-pathogen interactions. We are examining how this might affect myxozoan disease by developing predictions for how the phenology of parasite life cycles will change under future climates, how changing flow dynamics will alter disease, and to identify river habitats that should be protected as refugia.”

Lifecycle of ceratanova shasta. Illustration by Daniel Watkins.

Having a healthy population of salmon is important for many groups, including tribal communities, commercial and recreational anglers. Salmonids (a family of fish including salmon, trout, whitefish, and char) are particularly susceptible to infection when water temperature is warmer than usual, stream flow is low, or the number of C. shasta spores is high. Collaborative monitoring projects on the Klamath River and the Deschutes River have shown that the danger of deadly infections varies along the course of the river. This knowledge has allowed river managers to focus their efforts. For example, if the number of infectious spores is especially high, dam flowthrough rates can be increased to “flush out” the pathogens.

Tune in Sunday, February 2nd at 7pm on 88.7 FM or online to learn more about Sofiya’s research and her personal journey.