Monthly Archives: January 2022

Nuclear: the history, present, and future of the solution to the energy crisis

In August of 2015, the Animas River in Colorado turned yellow almost overnight. Approximately three million gallons of toxic waste water were released into the watershed following the breaching of a tailings dam at the Gold King Mine. The acidic drainage led to heavy metal contamination in the river reaching hundreds of times the safe limits allowed for domestic water, having devastating effects on aquatic life as well as the ecosystems and communities surrounding the Silverton and Durango area. 

This environmental disaster was counted by our guest this week, Nuclear Science and Engineering PhD student Dusty Mangus, as a close-to-home critical moment in inspiring what would become his pursuit of an education and career in engineering. “I became interested in the ways that engineering could be used to develop solutions to remediate such disasters,” he recalls.

Following his BS of Engineering from Fort Lewis College in Durango, Colorado, Dusty moved to the Pacific Northwest to pursue his PhD in Nuclear Engineering here at Oregon State, where he works with Dr. Samuel Briggs. His research here focuses on an application of engineering to solve one of the biggest problems of our age: energy – and more specifically, the use of nuclear energy. Dusty’s primary focus is on using liquid sodium as an alternative coolant for nuclear reactors, and the longevity of various materials used to construct vessels for such reactors. But before we can get into what that means, we should define a few things: what is nuclear energy? Why is nuclear energy a promising alternative to fossil fuels? And why does it have such an undeserved bad rap?

Going Nuclear

Nuclear energy comes from breaking apart the nuclei of atoms. The nucleus is the core of the atom and holds an enormous amount of energy. Breaking apart atoms, also called fission, can be used to generate electricity. Nuclear reactors are machines that have been designed to control the process of nuclear fission and use the heat generated by this reaction to power generators, which create electricity. Nuclear reactors typically use the element uranium as the fuel source to produce fission, though other elements such as thorium could also be used. The heat created by fission then warms the coolant surrounding the reaction, typically water, which then produces steam. The United States alone has more than 100 nuclear reactors which produce around 20% of the nation’s electricity; however, the majority of the electricity produced in the US is from fossil fuels. This extremely potent energy source almost fully powers some nations including France and Lithuania. 

One of the benefits of nuclear energy is that unlike fossil fuels, nuclear reactors do not produce carbon emissions that contribute to the accumulation of greenhouse gases in the atmosphere. In addition, unlike other alternative energy sources, nuclear plants can support the grid 24/7: extreme weather or lack of sunshine does not shut them down. They also take up less of a footprint than, say, wind farms.  

However, despite their benefits and usefulness, nuclear energy has a bit of a sordid history which has led to a persistent, albeit fading in recent years, negative reputation. While atomic radiation and nuclear fission were researched and developed starting in the late 1800s, many of the advancements in the technology were made between 1939-1945, where development was focused on the atomic bomb. First generation nuclear reactors were developed in the 1950s and 60s, and several of these reactors ran for close to 50 years before decommission. It was in 1986 the infamous Chernobyl nuclear disaster occurred: a flawed reactor design led to a steam explosion and fires which released radioactive material into the environment, killing several workers in the days and weeks following the accident as a result of acute radiation exposure. This incident would have a decades-long impact on the perception of the safety of nuclear reactors, despite the significant effect of the accident on reactor safety design. 

Nuclear Reactor Safety

Despite the perception formed by the events of Chernobyl and other nuclear reactor meltdowns such as the 2011 disaster in Fukushima, Japan, nuclear energy is actually one of the safest energy sources available to mankind, according to a 2012 Forbes article which ranked the mortality rate per kilowatt hour of energy from different sources. Perhaps unsurprisingly, coal tops the list, with a global average of 100,000 deaths per trillion kilowatt hour. Nuclear energy is at the bottom of the list with only about 0.1 deaths per trillion kilowatt hour, making it even safer by this metric than natural gas (4,000 deaths), hydro (1400 deaths), and wind (150 deaths). Modern nuclear reactors are built with passive redundant safety systems that help to avoid the disasters of their predecessors.

Dusty’s research helps to address one of the issues surrounding nuclear reactor safety: coolant material. Typical reactors use water as a coolant: water absorbs the heat from the reaction and it then turns to steam. Once water turns to steam at 100 degrees Celsius, the heat transfer is much less efficient – the workaround to this is putting the water under high pressure, which raises the boiling point. However, this comes with an increased safety risk and a manufacturing challenge: water under high pressure requires large, thick metal vessels to contain it.

Sodium, infamous for its role in the inorganic compound known as salt, is actually a metal. In its liquid phase, it is much like mercury: metallic and viscous. Liquid sodium can be used as a low-pressure, safer coolant that transfers heat efficiently and can keep a reactor core cool without requiring external power. The boiling point of liquid sodium is around 900 degrees Celsius, whereas a nuclear reactor operates in the range of around 300-500 degrees Celsius – meaning that reactors can operate within a much safer range of temperatures at atmospheric pressure as compared to reactors that use conventional water cooling systems.

Dusty’s research is helping to push the field of nuclear reactor efficiency and safety into the future. Nuclear energy promises a safer, greener solution to the energy crisis, providing a potent alternative to current fuel sources that generate greenhouse gas emissions. Nuclear energy utilized efficiently could even the capability to power the sequestration of carbon dioxide from the atmosphere, leading to a cleaner, greener future. 

Did we hook you on nuclear energy yet? Tune in to the show or catch the podcast to learn more about the history, present and future of this potent and promising energy source!  Be sure to listen live on Sunday January 30th at 7PM on 88.7FM or download the podcast if you missed it.

Water Woes of the West

Water resources in the western United States are at a turning point. Droughts are becoming more common and as temperatures rise due to climate change more water will be needed to sustain the current landscape. The ongoing issues in the Klamath River Basin, a watershed crossing southern Oregon and northern California, are a case-study of how the West will handle future water scarcity. Aside from the limited supply of water, deciding how to manage this dwindling resource is no easy feat.  Too much water has been promised to too many stakeholder groups, resulting in interpersonal conflict, distrust, and litigation. Our guest this week is Hannah Whitley, a PhD Candidate of Rural Sociology at Pennsylvania State University and a Visiting Scholar in the School of Public Policy at Oregon State University. Hannah grew up on a beef ranch in a small southwestern Oregon town, so she knows some of these issues all too well. Hannah is investigating how governance organizations work together to allocate water in the Upper Klamath Basin and how to tell the story of what water means to different stakeholder groups. By observing countless hours of public meetings, having one-on-one conversations with community members, and incorporating a novel research method called photovoice, she hopes to understand what can make water governance processes successful because the current situation is untenable for everyone involved.

Klamath Project Canal B looking southeast toward Merrill and Malin, Oregon. The Canal, which is typically full, moves water from Upper Klamath Lake to farms and ranchers who are part of the Klamath Project. The canal has been dry since October 2020. Taken September 2021.

How we got here

Prior to the 1800s-era Manifest Destiny movement, the area known today as the Upper Klamath Basin was solely inhabited by the Klamath Tribes (including the Klamath, Modoc, and Yahooskin-Paiute people). At the time, Upper Klamath Lake was at least four times its original size, and c’waam (Lost River suckers) and koptu (shortnose suckers) thrived in abundance. The 1864 Klamath Treaty, ratified in 1870, officially recognized the Klamath Tribes as sovereigns in the eyes of the federal government. Treaties are especially powerful arrangements with the federal government, akin to international agreements between nations. These agreements are generally considered to be permanent laws, or at least that’s what the tribes were told.

As part of the conditions of the Klamath Tribes Treaty, tribes retained hunting, fishing, and water rights on 1.5 million acres of land, but ceded control of 22 million acres to the federal government. Those expropriated lands were given to westward settlers who took advantage of 1862 Homestead Act.  The 1906 Reclamation Project drained much of Upper Klamath Lake, leaving behind soils that are nutrient dense and thus highly valuable. An additional homesteading program associated with the 1902 Reclamation Act prioritized the allocation of reclaimed federal land to veterans following World War I (there is ongoing litigation on whether these settlers have water rights as well, or just land rights). These land deeds have been passed onto families over time, though many mid-twentieth-century homesteaders opted to sell their land during the 1980 Farm Crisis.

The Klamath Tribes’ unceded lands were not contested during the intervening years. In the mid-1950s, however, the U.S. government used the 1954 Termination Act to nullify the Klamath Tribes’ 1864 Treaty. Although the Klamath tribes were “one of the strongest and wealthiest tribal nations in the US,” one result was the loss of the tribes’ remaining land and management rights. In 1986, their status as a federally-recognized tribe was restored, however, no land was returned. Soon after the Klamath Tribes were federally recognized (again), two species of fish that only spawn in the Upper Klamath Lake area were listed as endangered species. This provided both the c’waam and koptu fish species new legal protections, though they have always had significant cultural significance for the Klamath Tribes.

Sump 1B at Tule Lake National Wildlife Refuge is a 3,500-acre wetland and an important nesting, brood rearing, and molting area for a large number of waterfowl. Sump 1B has been dry since October 2020.

Where are we now

The Klamath River Basin is said to be one of the most complicated areas in the world due to the watershed’s transboundary location and the more than 60 different parties who have some interest in the Basin’s water allocation, including federal agencies, the states of California and Oregon, counties, irrigation districts, small farmers, large farmers, ranchers, and tribal communities. The Klamath Tribes play an active role in the management of water Basin-wide, although final governance decisions are made by state and federal agencies including the Bureau of Reclamation, Fish and Wildlife Service, and state departments of environmental quality.

Currently, the Upper Klamath Basin is occupied by multi-generation farmers and ranchers on lands that are exceedingly favorable for agricultural production. Some families have accumulated significant portions of land since the 1900s while others are still small-acreage farmers. As a result of farm consolidations that resulted from economic distress during the twentieth-century, many families  had overwhelming success in purchasing adjacent and nearby land parcels as they were sold over the last hundred years. The result is that these few well-resourced families have disproportionate control of the area’s agricultural and natural resources compared to smaller-scale farms. 

There are a variety of crops under production such as potatoes for Frito-Lay, Kettle Foods and In-N-Out Burger, as well as peppermint for European teas, and alfalfa used to feed cattle in China and the Willamette Valley. Regardless of the crop, as temperatures have risen and drought conditions worsen, Basin farmers and ranchers need more water each and every season. And it’s typically the more established farms who have a bigger say in how Upper Basin water (or lack thereof) and drought support programs are managed, regularly leaving smaller farms frustrated with decision-making processes. In addition to the seasonal droughts keeping lake levels low, stagnant water, summer sunshine, and nutrient runoff contribute to algae proliferation in the Upper Basin that decreases the survival rate of the endangered fish. Unfortunately, there is simply not enough water to continue with the status quo.

Near Tulelake, California. September 2021.

How are we moving forward

How do you balance all* of these competing interests through a collaborative governance model? (*We haven’t even mentioned the dams, or the downstream Yurok and Karuk tribes relying on water for salmon populations, the Ammon Bundy connection, or the State of Jefferson connection, read the multi-part series in The Herald for a deeper dive.) There needs to be a process where everyone is able to contribute and understand how these decisions will be made so they will be accepted in the future. Unfortunately, little research has been done in this area even though the need for new climate adaptation policies are increasingly in demand.

This is ongoing work that Hannah Whitley is conducting for her dissertation; how are stakeholders engaged in water governance? What are the different effects of these processes on factors like interpersonal trust, perceptions of power, and participation in state-led programs? The theory of the case is that if everyone’s voice is heard, and their concerns are addressed as best they can given limited resources, the final agreement may not completely satisfy all parties, but it’s an arrangement that is workable across all stakeholders. 

Hannah has been conducting field work since September that includes observing public meetings, interviewing stakeholders, and diving into archives. Hannah attended an in-person farm tour in September. During lunch, one Upper Basin stakeholder inquired about the feasibility of conducting a photovoice project similar to what Hannah did for her Masters thesis work with a group of women farmers and gardeners in Pittsburgh, Pennsylvania. The photovoice project allows individuals to tell their own stories through provided cameras with further input through collaborative focus groups. We will talk about this and so much more. Be sure to listen live on Sunday January 23rd at 7PM on 88.7FM or download the podcast if you missed it! Follow along with Hannah’s fieldwork on Instagram at @myrsocdissertation or visit her website.

This post was written by Adrian Gallo and edited by Hannah Whitely

Hannah Whitley completed her undergraduate degrees at Oregon State in 2017. Now a PhD Candidate at Penn State, Hannah will be a Visiting Scholar in the OSU School of Public Policy while she completes her dissertation fieldwork.

Radio in the Time of Covid

Here at Inspiration Dissemination we are adapting to the global pandemic’s ever changing obstacles. Because of COVID we are unable to be in the booth this week. That means no interviews. But we will have interviews starting next week.

Have you heard (the new voices on the radio)?

Inspiration Dissemination is excited to announce three new hosts, Bryan K. Lynn, Grace Deitzler, and Miriam F. Lipton.

Bryan is Ph.D. candidate in Integrative biology researching the evolution of cooperation using bacteria and math. You can read more about Bryan and his research here when he was a guest on ID.

Grace is a Ph.D. candidate in microbiology studying the relationship between the gut microbiome and behavior. You can read more about Grace and her research here when she was a guest on ID.

Miriam is a Ph.D. candidate in history and philosophy of science. She studies the history of antibiotic resistance in the United States and the Soviet Union during the Cold War. You can read more about Miriam and her research here when she was a guest on ID.

What’s that? Another awesome way to learn about graduate student experiences at OSU?

In collaboration with the Graduate School, Inspiration Dissemination is proud to announce Oregon State University’s annual Grad Inspire event set to take place at the end of April 2022. The event, where a few hand-selected graduate students share their research in a short 10 minute talk, will be in person (COVID dependent) in the MU Ballroom. Video streaming and live captions will be available for anyone who cannot attend in person. For the most up to date information, please visit this website.

There is a lot to look forward this term.

Coming up this term we already have a stellar line-up. We have students from Public Policy, Nuclear Engineering, Materials Science, and Botany and Plant Pathology. Listen each week at 7pm live at KBVR Corvallis, stream, or download the podcast episode from where ever you are.

Are you a grad student? Are you doing awesome things? We want to hear from you.

We are always interested in hearing from graduate students at OSU. If you are interested in joining the show, click on the “New Guest Sign Up” tab at the top of this page.

Thanks to everyone for your patience as we navigate doing live radio during COVID.

We will back on the air next week. Tune in!