Monthly Archives: December 2017

It’s a Bird Eat Bird World

Female sage-grouse in eastern Oregon, 2017. Photo credit: Hannah White

Over the last half century, populations of Greater Sage-grouse – a relative of pheasants and chickens – have declined throughout their range. Habitat loss and degradation from wildfires is regarded as a primary threat to the future of sage-grouse in Oregon. This threat is exacerbated by the spread of invasive annual grasses (read: fuel for fires). In addition, raven populations, a predator of sage-grouse nests, are exploding. But how does all of this relate? PhD student Terrah Owens of Dr. Jonathan Dinkins lab in the Department of Animal and Rangeland Sciences at Oregon State University and her colleagues are trying to find out.

Specifically, Terrah’s research is focused on the impact of wildfire burn areas – the burn footprint and edge – on sage-grouse predation pressure and how this influences habitat selection,

Terrah Owens with a radio-collared female sage-grouse in Nevada, 2015.

survival, and reproductive success. To do this work Terrah is characterizing six sites in Baker and Malheur counties, Oregon, based on their burn history, abundance of avian predators, shrub and flowering plant cover, as well as invasive annual grasses. To monitor sage-grouse populations, Terrah captures and radio-marks female sage-grouse to identify where the birds are nesting and if they are producing offspring. Additionally, Terrah conducts point counts to determine the density and abundance of avian predators (ravens, hawks, and eagles) in the area. Burn areas generally provide less protective cover for prey, making it an ideal hunting location for predators. Ultimately, Terrah hopes her work will help determine the best ways to allocate restoration funds through proactive, rather than reactive measures.

An encounter with a Bengal tiger at a petting zoo as a young girl inspired Terrah’s lifelong interest in wildlife conservation. As an undergraduate, Terrah studied Zoology at Humboldt State University in Arcata, CA. She then interned at Bonneville

Banding a juvenile California spotted owl, 2016.

Dam on the Columbia River for the California sea lion and salmon project. After this she went on to work for the U.S. Forest Service in northern California as a wildlife crew leader working with spotted owls, northern goshawk, fisher, and marten, among other species. She eventually moved on to work with sage-grouse in Nevada with the U.S Geological Survey.

After graduate school, Terrah would like to head a wildlife service research unit and apply her wealth of knowledge and government experience to bridge the gap between scientists and policymakers.

Join us on Sunday, December 10, at 7 PM on KBVR Corvallis 88.7 FM or stream live to learn more about Terrah’s research, how she captures sage-grouse, and her journey to graduate school.

You can also download Terrah’s iTunes Podcast Episode!

Exploring a protein’s turf with TIRF

Investigating Otoferlin

Otoferlin is a protein required for hearing. Mutations in its gene sequence have been linked to hereditary deafness, affecting 360 million people globally, including 32 million children. Recently graduated PhD candidate Nicole Hams has spent the last few years working to characterize the activity of Otoferlin using TIRF microscopy. There are approximately 20,000 protein-coding genes in humans, and many of these proteins are integral to processes occurring in cells at all times. Proteins are encoded by genes, which are comprised of DNA; when mutations in the gene sequence occur, diseases can arise. Mutations in DNA that give rise to disease are the focus of critical biomedical research. “If DNA is the frame of the car, proteins are the engine,” explains Nicole. Studying proteins can provide insight into how diseases begin and progress, with the strategic design of therapies to treat disease founded on our understanding of protein structure and function.

Studying proteins

Proteins are difficult to study because they’re so small: at an average size of ~2 nanometers (0.000000002 meters!), specific tools are required for visualization. Enter TIRF. Total Internal Reflection Fluorescence is a form of microscopy enabling scientists like Nicole to observe proteins tagged with a fluorescent marker. One reason TIRF is so useful is that it permits visualization of samples at the single molecule level. Fluorescently-tagged proteins light up as bright dots against a dark background, indicating that you have your protein.

Another reason why proteins are hard to study is that in many cases, parts of the protein are not soluble in water (especially if part of the protein is embedded in the fatty cell membrane). Trying to purify protein out of a membrane is extremely challenging. Often, it’s more feasible for scientists to study smaller, soluble fragments of the larger protein. Targeted studies using truncated, soluble portions of protein offer valuable information about protein function, but they don’t tell the whole story. “Working with a portion of the protein gives great insight into binding or interaction partners, but some information about the function of the whole protein is lost when you study fragments.” By studying the whole protein, Nicole explains, “we can offer insight into mechanisms that lead to deafness as a result of mutations.”

Challenges and rewards of research

Nicole cites being the first person in her lab to pursue single molecule studies as a meaningful achievement in her graduate career. She became immersed in tinkering with the new TIRF instrument, learning from the ground up how to develop new experiments. Working with cells containing Otoferlin, in a process known as tissue culture, required Nicole to be in lab at unusual hours, often for long periods of time, to make sure that the cells wouldn’t die. “The cells do not wait on you,” she explains, adding, “even if they’re ready at 3am.” Sometimes Nicole worked nights in order to get time on the TIRF. “If you love it, it’s not a sacrifice.”

Why grad school?

As an undergraduate student studying Agricultural Biochemistry at the University of Missouri, Nicole worked in a soybean lab investigating nitrogen fixation, and knew she wanted to pursue research further. She had worked in a lab work since high school, but didn’t realize it was a path she could pursue, instead convinced that she wanted to go to medical school. Nicole’s mom encouraged her to pursue research, because she knew that it was something she enjoyed, and her undergraduate advisor (who completed his post-doc at OSU) suggested that she apply to OSU. She feels lucky to have found an advisor like Colin Johnson, and stresses the importance of finding a mentor who is personally vested in their graduate student’s success.

Besides lab work…

In addition to research, Nicole has been actively involved in outreach to the community, serving as Educational Chair of the local NAACP Chapter. Following completion of her PhD, Nicole intends to continue giving back to the community, by establishing a scholarship program for underrepresented students. Nicole remembers a time when she was told and believed that she wasn’t good enough, and while she was able to overcome this discouraging dialogue, she has observed that many students do not find the necessary support to pursue higher education. Her goal is to reach students who don’t realize they have potential, and provide them with resources for success.

Tune in on December 3rd  at 7pm to 88.7 KBVR Corvallis or stream the show live right here to hear more about Nicole’s journey through graduate school!

Thanks for reading!

You can download Nicole’s iTunes Podcast Episode!

Earlier in the show we discussed current events, specifically how the tax bill moving through the House and Senate impact students. Please see our references and sources for more information.