Tag Archives: engineering

AI that benefits humans and humanity

When you think about artificial intelligence or robots in the everyday household, your first thought might be that it sounds like science fiction – like something out of the 1999 cult classic film “Smart House”. But it’s likely you have some of this technology in your home already – if you own a Google Home, Amazon Alexa, Roomba, smart watch, or even just a smartphone, you’re already plugged into this network of AI in the home. The use of this technology can pose great benefits to its users, spanning from simply asking Google to set an alarm to wake you up the next day, to wearable smart devices that can collect health data such as heart rate. AI is also currently being used to improve assistive technology, or technology that is used to improve the lives of disabled or elderly individuals. However, the rapid explosion in development and popularity of this tech also brings risks to consumers: there isn’t great legislation yet about the privacy of, say, healthcare data collected by such devices. Further, as we discussed with another guest a few weeks ago, there is the issue of coding ethics into AI – how can we as humans program robots in such a way that they learn to operate in an ethical manner? Who defines what that is? And on the human side – how do we ensure that human users of such technology can actually trust them, especially if they will be used in a way that could benefit the user’s health and wellness?

Anna Nickelson, a fourth-year PhD student in Kagan Tumer’s lab in the Collaborative Robotics and Intelligent Systems (CoRIS) Institute in the Department of Mechanical, Industrial and Manufacturing Engineering, joins us this week to discuss her research, which touches on several of these aspects regarding the use of technology as part of healthcare. Also a former Brookings Institute intern, Anna incorporates not just coding of robots but far-reaching policy and legislation goals into her work. Her research is driven by a very high level goal: how do we create AI that benefits humans and humanity?

Anna Nickelson, fourth year PhD student in the Collaborative Robotics and Intelligent Systems Institute.

AI for social good

When we think about how to create technology that is beneficial, Anna says that there are four major considerations in play. First is the creation of the technology itself – the hardware, the software; how technology is coded, how it’s built. The second is technologists and the technology industry – how do we think about and create technologies beyond the capitalist mindset of what will make the most money? Third is considering the general public’s role: what is the best way to educate people about things like privacy, the limitations and benefits of AI, and how to protect themselves from harm? Finally, she says we must also consider policy and legislation surrounding beneficial tech at all levels, from local ordinances to international guidelines. 

Anna’s current research with Dr. Tumer is funded by the NSF AI Institute for Collaborative Assistance and Responsive Interaction for Networked Groups (AI-CARING), an institute through the National Science Foundation that focuses on “personalized, longitudinal, collaborative AI, enabling the development of AI systems that learn personalized models of user behavior…and integrate that knowledge to support people and AIs working together”, as per their website. The institute is a collaboration between five universities, including Oregon State University and OHSU. What this looks like for Anna is lots of code writing and simulations studying how AI systems make trade-offs between different objectives.For this she looks at machine learning for decision making, and how multiple robots or AIs can work together towards a specific task without necessarily having to communicate with each other directly. For this she looks at machine learning for decision making in robots, and how multiple robots or AIs can work together towards a specific task without necessarily having to communicate with each other directly. Each robot or AI may have different considerations that factor into how they accomplish their objective, so part of her goal is to develop a framework for the different individuals to make decisions as part of a group.

With an undergraduate degree in math, a background in project management in the tech industry, engineering and coding skills, and experience working with a think tank in DC on tech-related policy, Anna is uniquely situated to address the major questions about development technology for social good in a way that mitigates risk. She came to graduate school at Oregon State with this interdisciplinary goal in mind. Her personal life goal is to get experience in each sector so she can bring in a wide range of perspectives and ideas. “There are quite a few people working on tech policy right now, but very few people have the breadth of perspective on it from the low level to the high level,” she says. 

If you are interested in hearing more about Anna’s life goals and the intersection of artificial intelligence, healthcare, and policy, join us live at 7 PM on Sunday, May 7th on https://kbvrfm.orangemedianetwork.com/, or after the show wherever you find your podcasts. 

Nuclear: the history, present, and future of the solution to the energy crisis

In August of 2015, the Animas River in Colorado turned yellow almost overnight. Approximately three million gallons of toxic waste water were released into the watershed following the breaching of a tailings dam at the Gold King Mine. The acidic drainage led to heavy metal contamination in the river reaching hundreds of times the safe limits allowed for domestic water, having devastating effects on aquatic life as well as the ecosystems and communities surrounding the Silverton and Durango area. 

This environmental disaster was counted by our guest this week, Nuclear Science and Engineering PhD student Dusty Mangus, as a close-to-home critical moment in inspiring what would become his pursuit of an education and career in engineering. “I became interested in the ways that engineering could be used to develop solutions to remediate such disasters,” he recalls.

Following his BS of Engineering from Fort Lewis College in Durango, Colorado, Dusty moved to the Pacific Northwest to pursue his PhD in Nuclear Engineering here at Oregon State, where he works with Dr. Samuel Briggs. His research here focuses on an application of engineering to solve one of the biggest problems of our age: energy – and more specifically, the use of nuclear energy. Dusty’s primary focus is on using liquid sodium as an alternative coolant for nuclear reactors, and the longevity of various materials used to construct vessels for such reactors. But before we can get into what that means, we should define a few things: what is nuclear energy? Why is nuclear energy a promising alternative to fossil fuels? And why does it have such an undeserved bad rap?

Going Nuclear

Nuclear energy comes from breaking apart the nuclei of atoms. The nucleus is the core of the atom and holds an enormous amount of energy. Breaking apart atoms, also called fission, can be used to generate electricity. Nuclear reactors are machines that have been designed to control the process of nuclear fission and use the heat generated by this reaction to power generators, which create electricity. Nuclear reactors typically use the element uranium as the fuel source to produce fission, though other elements such as thorium could also be used. The heat created by fission then warms the coolant surrounding the reaction, typically water, which then produces steam. The United States alone has more than 100 nuclear reactors which produce around 20% of the nation’s electricity; however, the majority of the electricity produced in the US is from fossil fuels. This extremely potent energy source almost fully powers some nations including France and Lithuania. 

One of the benefits of nuclear energy is that unlike fossil fuels, nuclear reactors do not produce carbon emissions that contribute to the accumulation of greenhouse gases in the atmosphere. In addition, unlike other alternative energy sources, nuclear plants can support the grid 24/7: extreme weather or lack of sunshine does not shut them down. They also take up less of a footprint than, say, wind farms.  

However, despite their benefits and usefulness, nuclear energy has a bit of a sordid history which has led to a persistent, albeit fading in recent years, negative reputation. While atomic radiation and nuclear fission were researched and developed starting in the late 1800s, many of the advancements in the technology were made between 1939-1945, where development was focused on the atomic bomb. First generation nuclear reactors were developed in the 1950s and 60s, and several of these reactors ran for close to 50 years before decommission. It was in 1986 the infamous Chernobyl nuclear disaster occurred: a flawed reactor design led to a steam explosion and fires which released radioactive material into the environment, killing several workers in the days and weeks following the accident as a result of acute radiation exposure. This incident would have a decades-long impact on the perception of the safety of nuclear reactors, despite the significant effect of the accident on reactor safety design. 

Nuclear Reactor Safety

Despite the perception formed by the events of Chernobyl and other nuclear reactor meltdowns such as the 2011 disaster in Fukushima, Japan, nuclear energy is actually one of the safest energy sources available to mankind, according to a 2012 Forbes article which ranked the mortality rate per kilowatt hour of energy from different sources. Perhaps unsurprisingly, coal tops the list, with a global average of 100,000 deaths per trillion kilowatt hour. Nuclear energy is at the bottom of the list with only about 0.1 deaths per trillion kilowatt hour, making it even safer by this metric than natural gas (4,000 deaths), hydro (1400 deaths), and wind (150 deaths). Modern nuclear reactors are built with passive redundant safety systems that help to avoid the disasters of their predecessors.

Dusty’s research helps to address one of the issues surrounding nuclear reactor safety: coolant material. Typical reactors use water as a coolant: water absorbs the heat from the reaction and it then turns to steam. Once water turns to steam at 100 degrees Celsius, the heat transfer is much less efficient – the workaround to this is putting the water under high pressure, which raises the boiling point. However, this comes with an increased safety risk and a manufacturing challenge: water under high pressure requires large, thick metal vessels to contain it.

Sodium, infamous for its role in the inorganic compound known as salt, is actually a metal. In its liquid phase, it is much like mercury: metallic and viscous. Liquid sodium can be used as a low-pressure, safer coolant that transfers heat efficiently and can keep a reactor core cool without requiring external power. The boiling point of liquid sodium is around 900 degrees Celsius, whereas a nuclear reactor operates in the range of around 300-500 degrees Celsius – meaning that reactors can operate within a much safer range of temperatures at atmospheric pressure as compared to reactors that use conventional water cooling systems.

Dusty’s research is helping to push the field of nuclear reactor efficiency and safety into the future. Nuclear energy promises a safer, greener solution to the energy crisis, providing a potent alternative to current fuel sources that generate greenhouse gas emissions. Nuclear energy utilized efficiently could even the capability to power the sequestration of carbon dioxide from the atmosphere, leading to a cleaner, greener future. 

Did we hook you on nuclear energy yet? Tune in to the show or catch the podcast to learn more about the history, present and future of this potent and promising energy source!  Be sure to listen live on Sunday January 30th at 7PM on 88.7FM or download the podcast if you missed it.

Healthcare, but in paper-form

Hospitals can provide a wide variety of lab tests to better understand our ailments. But have you ever wondered what happens to the sample after it’s in your doctor’s test-tube but before you get results? The answer is usually complicated and slow lab work; requiring lots of individual little steps to isolate and measure some specific molecule in your body. (Think of PCR-based COVID-19 tests). But not all tests require lab work.

You’re probably familiar with some paper-based diagnostic tools like checking the chlorine or pH level of your swimming pool. These are “dipsticks” of special papers and suitable for large volume samples. But what if you only have a couple drops to spare? For example, a diabetic is usually monitoring their blood’s glucose molecules with only a few drops of blood on special paper, then adding that paper to a measuring device. But you still need that small electronic device to know your blood glucose levels! This device requirement makes testing and diagnosis less accessible to people around the world. What if you could make a paper-based diagnostic tool, that works with tiny volumes, but doesn’t need any other equipment, or fancy software, or a trip to the hospital to get your answer? This is exactly why researchers are excited about paper-based microfluidic devices.

Pregnancy tests are one of the best examples (See Figure 2.4) of how researchers have automated a complex laboratory test onto a single device someone can purchase from any local pharmacy, at a relatively low cost, to get an answer within minutes, inside their own home. These tests actually measure a specific hormone, but it’s presented as a color indicator. Inside the device is porous media, to help move the sample, and a few different reagents in a specific order that generate the chemical reactions so you can see your test result as an easy to interpret color. No extra fancy machines, no hospital visit, rapid results, and relatively affordable disposable devices make pregnancy tests a success story. But this was commercialized in 1988, and urine samples are generally thought to be larger volume samples. There are still many more potential uses of paper-based diagnostic tools, using small-volume blood samples, yet to be developed.

This evening we have Lael Wentland, a PhD candidate in the College of Engineering, who is discussing her ongoing research on developing paper-based microfluidic tests for rare diseases. A central pillar of her work is to make healthcare more sustainable and accessible for a greater number of people, but especially those in more remote settings. The World Health Organization has an ASSURED criteria for the development of more paper based diagnostics to help guide researchers. The ASSURED criteria principles require the device be: Affordable, Sensitive, Specific, User friendly, Rapid and Robust, Equipment free and Deliverable to end users.

Using this framework, Lael has already developed one tool to monitor a metabolic disorder, and continues to work on another rare biomolecule. She started her research at OSU on phenylketonuria, a metabolic disorder where your body cannot breakdown a key amino acid (phenylalanine) found in foods. If you get too little of this amino acid, your body can’t make all the proteins it needs for growth, repair, or maintenance. Too much of this amino acid can cause seizures and developmental delays. Keeping close tabs on this phenylalanine is needed for people with this disorder because you can alter your diet to suit your body and remain healthy. But the current tests to monitor this amino acid is not as readily available as one may need. This is why Lael worked to make a paper-based microfluidic device that would adhere to the ASSURED criteria to make this more accessible for anyone. Lael was way past the proof-of-concept stage of her device, and was already recruiting subjects to test their blood using her new device when COVID-19 become prominent in March 2020. That’s one reason she pivoted to monitoring another rare disorder using similar principles.

We’ll get into that, and so much more, Sunday 7pm on 88.7FM KBVR.

Did you miss the show Sunday night? You can listen to Lael’s episode on Apple Podcasts!

Tsunami Surfing and the Giant Snot

Sam Harry’s research is filled with bizarre scientific instruments and massive contraptions in an effort to bring large natural events into the laboratory setting. 

Sam Harry, second year PhD candidate in Civil Engineering

“There’s only a couple like it in the world, so it’s pretty unique”. Unique may be an understatement when describing what may be the largest centrifuge in North America. A centrifuge is a machine with a rapidly rotating container that can spin at unfathomable speeds and in doing so applies centrifugal force (sort of like gravitational force) to whatever is inside. This massive scientific instrument– with a diameter of roughly 18 feet– was centerpiece to Sam’s Master’s work studying how tsunamis affect boulder transport, and the project drew him in to continue studying the impact of tsunamis on rivers for his PhD. 

But before we jump ahead, let’s talk about what a giant centrifuge has to do with tsunamis. Scientists studying tsunamis are faced with the challenge of scale; laboratory simulations of tsunamis in traditional water-wave-tank facilities are often difficult and inaccurate because of the sheer size and power of real tsunamis. By conducting experiments within the centrifuge, Sam and his research group were able to control body force within the centrifuge environment and thus reduce the mismatch in fluid flow conditions between the simulated experiment and real-life tsunamis. 

When tsunamis occur they cause significant damage to coastal infrastructure and the surrounding natural environment. Tsunamis hit the coast with a force that can move large boulders– so large, in fact, that they aren’t moved any other way. Researchers can actually date back to when a boulder moved by analysing the surrounding sediments, and thus, can back calculate how long ago that particular tsunami hit. However, studying the movement of massive boulders, like tsunamis, is not easily carried out in the lab. So, Sam used a wave maker within, of course, the massive centrifuge to study the movement of boulders when they are hit with some big waves. 

Sam’s work space. The Green dye added to the water within the glass tank is what gives this tank it’s name: The Giant Snot

As Sam was completing his Master’s an opportunity opened up for him to continue the work that he loves through a PhD program in civil engineering with OSU’s wave lab. Now Sam conducts his research using the “glass tank”, which, as the name alludes to, is a glass tank roughly the size of a commercial kitty pool that is used to contain the water and artificial waves the lab generates for their research. There are actually three glass tanks of varying sizes. The largest tank, which is larger than a football field, is used for more “practical applications”. Sam gives us the example of a recent study in which researchers built artificial sand dunes inside of the tank, let vegetation establish, and then hit the dunes with waves to study how tsunamis impact that environment. (Legend has it that the largest tank was actually surfed in by one of the researchers!)

Sam’s smaller glass tank, though, is really meant for making precision measurements to better study waves. He uses lasers to measure flow velocity and depth of water to build mathematically difficult, complex models. Essentially, his models are intended to be the benchmarks for numerical simulations. Sam, now into his second year of his PhD, will be using these models in his research to study the interaction between tsunamis and rivers, with the goal of understanding the movement and impact of tsunamis as they propagate upstream.

To learn more about tsunamis, boulders, rivers, and all of the interesting methods Sam’s lab uses to study waves, tune into KBVR 88.7 FM on Sunday, November 3rd at 7pm or live stream the show at http://www.orangemedianetwork.com/kbvr_fm/. If you can’t join us live, download the episode from the “Inspiration Dissemination” podcast on iTunes!

Learning without a brain

Instructions for how to win a soccer game:

Score more goals than your opponent.

Sounds simple, but these instructions don’t begin to explain the complexity of soccer and are useless without knowledge of the rules of soccer or how a “goal” is “scored.” Cataloging the numerous variables and situations to win at soccer is impossible and even having all that information will not guarantee a win. Soccer takes teamwork and practice.

Researchers in robotics are trying to figure out how to make a robot learn behaviors in games such as soccer, which require collaborative and/or competitive behaviors.

How then would you teach a group of robots to play soccer? Robots don’t have “bodies,” and instructions based on human body movement are irrelevant. Robots can’t watch a game and later try some fancy footwork. Robots can’t understand English unless they are designed to. How would the robots communicate with each other on the field? If a robot team did win a soccer game, how would they know?

Multiple robot systems are already a reality in automated warehouses.

Although this is merely an illustrative example, these are the types of challenges encountered by folks working to design robots to accomplish specific tasks. The main tool for teaching a robot to do anything is machine learning. With machine learning, a roboticist can give a robot limited instructions for a task, the robot can attempt a task many times, and the roboticist can reward the robot when the task is performed successfully. This allows the robot to learn how to successfully accomplish the task and use that experience to further improve. In our soccer example, the robot team is rewarded when they score a goal, and they can get better at scoring goals and winning games.

Programming machines to automatically learn collaborative skills is very hard because the outcome depends on not only what one robot did, but what all other robots did; thus it is hard to learn who contributed the most and in what way.

Our guest this week, Yathartha Tuladhar, a PhD student studying Robotics in the College of Engineering, is focused on improving multi-robot coordination. He is investigating both how to effectively reward robots and how robot-to-robot communication can increase success. Fun fact: robots don’t use human language communication. Roboticists define a limited vocabulary of numbers or letters that can become words and allow the robots to learn their own language. Not even the roboticist will be able to decode the communication!

 

Human-Robot collaborative teams will play a crucial role in the future of search and rescue.

Yathartha is from Nepal and became interested in electrical engineering as a career that would aid infrastructure development in his country. After getting a scholarship to study electrical engineering in the US at University of Texas Arlington, he learned that electrical engineering is more than developing networks and helping buildings run on electricity. He found electrical engineering is about discovery, creation, trial, and error. Ultimately, it was an experience volunteering in a robotics lab as an undergraduate that led him to where he is today.

Tune in on Sunday at 7pm and be ready for some mind-blowing information about robots and machine learning. Listen locally to 88.7FM, stream the show live, or check out our podcast.

Can soil bacteria clean up our toxic messes?

Thousands of sites across the US are contaminated with chemical solvents that have been used for decades in industrial processes. These solvents can leach into groundwater and create plumes up to several miles long. 1,4-dioxane, a probable human carcinogen, is often present in groundwater contaminant plumes because of its historical use in degreasing heavy machinery, but it’s also present in trace amounts in products as varied as laundry detergents, deicing agents, cosmetics, and even in food.

There’s good news and bad news here: The Resource Conservation and Recovery Act, enacted in 1980, established laws for the management and disposal of hazardous wastes, meaning new releases to the environment have diminished considerably. Decontamination of chlorinated solvents often involves pumping groundwater to the surface and removing the contamination through volatilization or adsorption. However, this process is expensive, time- and energy-consuming, and ineffective at removing some chemicals, like water-soluble 1,4-dioxane.

Some jobs require the help of friends. In this case, for Hannah Rolston, a fifth-year PhD student in the Department of Environmental Engineering working with Dr. Lewis Semprini, these friends are soil bacteria that are able to naturally degrade this carcinogen. Bioremediation, or the practice of putting these bacteria to work to degrade contaminants, offers some hope in cases like these. Sometimes they can degrade certain pollutants all by themselves (called natural attenuation), but when you’re dealing with carcinogens in areas with people nearby, you want to use an engineered approach to make sure this process goes as quickly and efficiently as possible.

Hannah explained to us that not all compounds are easily degraded by bacteria, and even though some will consume 1,4-dioxane as food, environmental concentrations are not enough to sustain their growth (though remain harmful to humans). To work around this, she has been using a strategy called cometabolism. This involves adding a different carbon source into the groundwater plume for the microbes to eat–ideally, one that will cause the bacteria to produce enzymes that not only degrade the food source, but the 1,4-dioxane as well. This can be tricky, and not only in an engineering sense: you need to know enough microbial metabolism to be sure they’re not converting the hazardous compound into something even worse.

Hannah collecting groundwater samples from test wells at the OSU motor pool.

Using soil samples from two contaminated sites in Colorado and California, Hannah and the Semprini group are using isobutane (yes, the same gas you use for your camp stove) to nourish the native microbial communities so that they produce a type of enzyme called a monooxygenase. She has observed the 1,4-dioxane levels decrease in these enrichments. Preliminary work shows the bacteria convert 1,4-dioxane all the way to carbon dioxide–completely benign compared to what we started with.

Hannah began her undergraduate at Seattle University as an international studies major interested in a career in diplomacy. Feeling her first year of humanities classes provided her a wide breadth of knowledge but didn’t give her applicable skills, she transferred to environmental engineering, where she became interested in groundwater and hazardous waste remediation. After graduation, she worked for the US Army Environmental Command, working with army installations across the country to comply with environmental regulations.. When the spreadsheets and desk work didn’t quite live up to its expectations, she knew it was time to seek out graduate programs where she could put her engineering background and interest in hazardous waste remediation to work.

When she’s not tricking microbes into consuming carcinogenic contaminants, Hannah can be found road biking and doing ceramics at the OSU craft center. She is also involved in the OSU Chemical, Biological, and Environmental Engineering Graduate Student Association and the OMSI Science Communication Fellowship program. To hear more about her research and journey to graduate school, tune in to Inspiration Dissemination Sunday August 26th at 7pm on 88.7 FM, or download the podcast episode.

Comunicación Científica con Franco

Kristen Finch interviewing Francisco Guerrero for this special episode. (Photo by Adrian Gallo)

This week on Inspiration Dissemination we will be featuring a previous guest: Francisco Guerrero, a PhD student in the Department of Forest Engineering, Resources, and Management. Francisco’s first interview aired on October 18, 2015, and we called him back for a follow-up because he has been selected for the American Association for the Advancement of Science (AAAS) Mass Media Science and Engineering Fellowship. As a fellow, Franco will be writing feature stories about climate change and health for CNN en Español. Part of the fellowship will involve helping with film production, as well. FUN FACT last time Franco was on the show, he told us that he always wanted to be a movie producer. Franco will take this amazing opportunity during the final push for his PhD research to enhance his science communication skills and gain experience in production and video broadcasting.

This special interview will begin at 6:30 pm on May 6, 2018. We will be asking Franco about the application process, his responsibilities as a fellow, and his goals for the fellowship. After our interview with Franco, we will rebroadcast his first interview on Inspiration Dissemination at 7 pm.

Tune in to KBVR Corvallis 88.7 FM at 6:30 pm to hear about the AAAS Fellowship and learn about Franco’s research in the College of Forestry. Not a local listener? No sweat! Stream the show live on line or hear the podcast next week.

Franco wants to hear from you! Tweet him with ideas for CNN Español, specifically stories about Climate Change and Health. 

The folks behind the episode: Francisco Guerrero, Kristen Finch, and Lillian Padgitt-Cobb. (Photo by Adrian Gallo)

Workplace Woes for Women in Engineering

The human race has given rise to incredible engineering accomplishments. Some examples include an Egyptian pyramid with 2.3 million perfectly placed limestone blocks, the Great Wall of China that traverses difficult terrain and can be seen from space, or the more recent example of the SpaceX Falcon Heavy launch, sending a sports car floating through space with re-usable rockets landing back on Earth to use for a future mission. It’s no surprise that the engineering field attracts the best and brightest among us because they are innovators, problem solvers, and basically all white males. Wait – What?

Four minutes into SpaceX’s Falcon Heavy launch, the manufacturing division was shown which has errily similar demographics to the NASA space race era. via @B0yle on Feb 6th 2018

During the celebration of the Falcon Heavy launch the SpaceX guys were shown jumping for joy at the technological milestones. The same way you cringe from an oncoming car with high beams is the same way many felt about the gender imbalance that was present in the 1970’s during the NASA days and continues to persists in one of the most innovative companies the world has ever seen. For example, the 2016 film Hidden Figures began to break that mold, detailing the story of female African-American mathematicians and engineers living in the south in the 1950’s who helped propel NASA to the moon, yet few knew or acknowledged their enormous role. Since their story remained in the shadows how could a young student believe ‘I too could be a female engineer’ if they believe it’s never been done before? One’s life expectations are shaped by what they see around them, and without role models that ‘look like me’ in positions of power, how can we expect for anything to change?

Gender gap in bachelor’s degrees awarded by field of study, 1969-2009. Figure 1. Courtesy of Legewie, J., and T. DePrete. 2014. The High School Environment and the Gender Gap in the Science and Engineering. Sociology of Education. 87(4):259-280.

Our guest this evening is Andrea Haverkamp, a 2nd year PhD student in the College of Engineering, who is asking what it means to think of yourself as an engineer, and examining how the engineering culture has perpetuated the lack of diversity we see today. Of the currently active engineering professionals approximately 90% are men, university engineering programs are nearly 80% male dominated. Herein lies the paradox; girls get better grades than their male counterparts from kindergarten through high school, girls have a similar level of STEM interest as their male counterparts early in their schooling career and within the last decade women outnumber men among college graduates. Unfortunately, women significantly lag behind men in college STEM degrees and only 1 out of 6 engineering degrees are received by women.

Andrea snuggling up with her beloved dog, Spaghetti.

Andrea’s research seeks to answer what happens in the engineering workplace that continues to be unwelcoming to women; but gender cannot be taken in isolation because there is a confluence of race, socioeconomic class, and potential disabilities that color our thought process that we cannot avoid. Her work also focuses on LGBT students and a broader, more expansive, theory of gender than has been used in prior engineering research. Furthermore she is using novel approach that breaks traditional boundaries in the social sciences field that she hopes to encourage her interviewees to become an active participant and empower them to become co-authors on future research papers. This method, Community Collaborative Research, was made popular by a researcher who lived in a prison to better relate to those people in his work. How can you expect to have female engineers rise through the ranks, if there are hardly any female engineers to look up to; can you see yourself become a superhero if you’re from an underrepresented minority? A recent pop-culture example is the release of the Marvel’s Black Panther; the first film with an all black cast, predominately black writers, and directors that celebrates black culture. Here is how one fan reacted from just seeing the poster [displaying the all black cast] “This is what white people get to feel all the time? Since the beginning of cinema, you get to feel empowered like this and represented? If this is what you get to feel like all the time I would love this country too!”

There is no silver bullet that will be an overnight fix for the gender imbalance in the workplace or the salary disparity between men and women in the same job. But there are some positive examples; such as some companies are taking concrete actions to get women into leadership roles, or how the Indian Space Agency (with a recent boom in women engineers) sent a rocket to Mars that was less expensive than the making of “The Martian! Through Andrea’s research we can at least begin to systematically answer the questions of how to develop a more inclusive culture for aspiring women engineers and workplaces alike. As Jorja Smith sings in the Black Panther soundtrack, “I know that we have asked for change. Don’t be scared to put the fears to shame…”

You can listen to the show at 7PM Sunday March 4th on 88.7FM or stream the show live online!

If you want to hear more from Andrea, she also hosts her own KBVR radio show called LaborWave every other Friday at 2PM. If you want to read more about Andrea’s field, she’s on the Editorial Board for the International Journal of Engineering, Social Justice, and Peace.

How many robots does it take to screw in a light bulb?

As technology continues to improve over the coming years, we are beginning to see increased integration of robotics into our daily lives. Imagine if these robots were capable of receiving general instructions regarding a task, and they were able to learn, work, and communicate as a team to complete that task with no additional guidance. Our guest this week on Inspiration Dissemination, Connor Yates a Robotics PhD student in the College of Engineering, studies artificial intelligence and machine learning and wants to make the above hypothetical scenario a reality. Connor and other members of the Autonomous Agents and Distributed Intelligence Laboratory are keenly interested in distributed reinforcement learning, optimization, and control in large complex robotics systems. Applications of this include multi-robot coordination, mobile robot navigation, transportation systems, and intelligent energy management.

Connor Yates.

A long time Beaver and native Oregonian, Connor grew up on the eastern side of the state. His father was a botanist, which naturally translated to a lot of time spent in the woods during his childhood. This, however, did not deter his aspirations of becoming a mechanical engineer building rockets for NASA. Fast forward to his first term of undergraduate here at Oregon State University—while taking his first mechanical engineering course, he realized rocket science wasn’t the academic field he wanted to pursue. After taking numerous different courses, one piqued his interest, computer science. He then went on to flourish in the computer science program eventually meeting his current Ph.D. advisor, Dr. Kagan Tumer. Connor worked with Dr. Tumer for two of his undergraduate years, and completed his undergraduate honors thesis investigating the improvement to gauge the intent of multiple robots working together in one system.

Connor taking in a view at Glacier National Park 2017.

Currently, Connor is working on improving the ability for machines to learn by implementing a reward system; think of a “good robot” and “bad robot” system. Using computer simulations, a robot can be assigned a general task. Robots usually begin learning a task with many failed attempts, but through the reward system, good behaviors can be enforced and behaviors that do not relate to the assigned task can be discouraged. Over thousands of trials, the robot eventually learns what to do and completes the task. Simple, right? However, this becomes incredibly more complex when a team of robots are assigned to learn a task. Connor focuses on rewarding not just successful completion an assigned task, but also progress toward completing the task. For example, say you have a table that requires six robots to move. When two robots attempt the task and fail, rather than just view it as a failed task, robots are capable of learning that two robots are not enough and recruit more robots until successful completion of the task. This is seen as a step wise progression toward success rather than an all or nothing type situation. It is Connor’s hope that one day in the future a robot team could not only complete a task but also report reasons why a decision was made to complete an assigned task.

In Connor’s free time he enjoys getting involved in the many PAC courses that are offered here at Oregon State University, getting outside, and trying to teach his household robot how to bring him a beer from the fridge.

Tune in to 88.7 FM at 7:00 PM Sunday evening to hear more about Connor and his research on artificial intelligence, or stream the program live.