Knowing me, knowing you: the fate of the toninha, a small dolphin endemic to the Western South Atlantic

By Salvatore Siciliano (1,2)

(1) Laboratório de Enterobactérias, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
(2) Grupo de Estudos de Mamíferos Marinhos da Região dos Lagos (GEMM-Lagos)

 

 

Background information on Pontoporia blainvillei

The toninha (Pontoporia blainvillei) as it is called in Brazil, or franciscana (Fig.01), is a small dolphin endemic to coastal waters of southeastern and southern Brazil, Uruguay and Argentina. It is the only representative of an ancient lineage of odontocetes, once widely spread over the Pacific and Atlantic oceans. Toninhas occur in waters shallower than 30 m and present a discontinuous distribution from Itaúnas, Brazil (18º 25’S) to Golfo San Matías, Argentina (42º 10’S). The species is considered one of the most threatened small cetaceans in South America due to high, and possibly unsustainable, bycatch levels as well as increasing habitat degradation. Incidental catches in fishing gear, especially gillnets and trammel nets, have been reported along most of the species’ range since at least the 1940s. Other rapidly-increasing conservation issues of significant importance for the franciscana in this region include: (1) habitat degradation, (2) underwater noise, (3) chemical pollution from industrial and urban wastewater, (4) activities related to the exploration and production of oil and gas, and (5) vessel traffic. P. blainvilleiis currently listed as ‘Vulnerable’ in the IUCN Red List of Threatened Species and ‘Critically Endangered’ by the Brazilian Government.

 

Figure 01: A young Pontoporia blainvillei incidentally caught in gillnets set off the northern coast of the state of Rio de Janeiro, Brazil (December 2011).

 

In order to guide conservation and management actions on a regional basis, the franciscana range was divided into four zones, known as ‘Franciscana Management Areas’ (FMAs), in the early 2000s. FMA I includes Espírito Santo (ES) and northern Rio de Janeiro (RJ), states located in southeastern Brazil. FMA II corresponds to southern RJ, São Paulo (SP), Paraná (PR) and northern Santa Catarina (SC) states, in southeastern and southern Brazil. FMA III encompasses southern SC and Rio Grande do Sul (RS) states, in southern Brazil, in addition to Uruguay. The last FMA, the FMA IV, corresponds to the Argentina coast (Fig.02).

The absence of stranded or incidentally killed animals indicates a gap of approximately 320 km in the franciscana distribution between northern and southern RJ. This gap separates the southern border of FMA I and the northern border of FMA II.

 

Figure 02: The FMA areas (in blue) in P. blainvillei distribution range, and the gaps (in white) in toninha distribution along the Northern limit of its distribution in Southeastern Brazil.

 

The toninha is usually very shy and, for this reason, quite difficult to be seen in the wild. More recently, researchers and citizen science projects have succeeded in obtaining very nice pictures of these animals (Fig.03), which are aiding in elucidating the species mysterious behavior, feeding activity and their preferred habitat conditions.

Figure 03: Toninhas in their natural environment along shallow waters off northern São Paulo state, in the summer of 2019. Photo courtesy of Júlio Cardoso, Baleia à Vista Project.

 

Figure 04: Aerial view of the Restinga de Jurubatiba National Park and its adjacent waters, the main toninha habitat along the northern coast of Rio de Janeiro. Photo by Salvatore Siciliano (November 2017).

 

Threats to P. blainvillei along the Brazilian coast

Gillnets are still the main cause of toninha mortality along its entire range. They can be used at the surface or placed at the bottom of the ocean to catch fish, but these nets also entangle this small dolphin (Fig.05, Fig.06).

Figure 05: Gillnets, used at the surface or placed at the bottom of the ocean.

 

Figure 06: Data on gillnet incidental captures of toninhas (Pontoporia blainvillei) along the northern coast of Rio de Janeiro state collected since1988. Note the concentration of records in the Macaé – Quissamã and Cabo de São Thomé areas, adjacent to the Restinga de Jurubatiba National Park. Data on captures come from Prof. Ana Paula M. Di Beneditto/CBB/LCA/UENF.

 

Toninhas also face other threats along the Brazilian coast, including environmental chemical contamination by metals and persistent organic pollutants. These pollutants are persistent in the aquatic ecosystem and may accumulate and magnify throughout the tropic chain, causing deleterious effects in the aquatic fauna. Recently, an ecotoxicological assessment from our research group (GEMM-Lagos/Fiocruz) verified, for the first time, significant intracellular concentrations of several toxic metals, such as Hg and Pb (Fig.07), in P. blainvillei individuals sampled along the coast of the Rio de Janeiro state.

 

Figure 07: Novel HPLC-ICP-MS data on intracellular Pb and Hg in P. blainvillei liver (L), muscle (M) and kidney (K) samples from stranded individuals sampled off the coast of Rio de Janeiro, Brazil.

 

The monitoring of the contaminant levels in toninhas will potentially aid in conservation efforts, as we can identify which metals are of the most concern, because the intracellular presence of toxic metals indicates high bioavailability, probably leading to deleterious effects.

 

Conservation Efforts

What is a Whale Heritage Site (WHS) and why we are proposing ‘Mosaic Jurubatiba’ as a WHS?

Situated on the Northern coast of Rio de Janeiro state, Brazil, the Jurubatiba region (Fig.04; Fig.08) is now a Candidate Whale Heritage Site (WHS). The area has been termed ‘Mosaic Jurubatiba’ as the candidate site includes not only the Jurubatiba National Park, but also encompasses other significant sites for conservation along the central-north coast that lie across three municipalities: Macaé, Carapebus and Quissamã (Fig.08).

Figure 08: Proposed extension of the Jurubatiba National Park to the adjacent waters, home of a vigorous population of P. blainvillei.
Legend: green – Jurubatiba National Park; red – new terrestrial limit; yellow – new marine limit.

 

The location provides habitat to a diversity of wildlife. When considering cetaceans, the most regularly seen individuals are the humpback whales, the Guiana dolphins and the toninhas. This is an important site since it is part of the migration route of humpback whales from their breeding and calving grounds, in warm tropical waters, to their feeding grounds, in Antarctica. In addition, this locality is a significant habitat for the toninha, a restricted range species, and the Guiana dolphin, a data deficient species and, therefore, of great concern. The importance of the site becoming a fully accredited WHS is, therefore, evident to further conserve these species and their habitats.

There is a significant amount of active conservation in the Jurubatiba National Park. The Park is the first to exclusively comprise the Restinga ecosystem. Researchers worked alongside authorities and large organizations, such as IBAMA (Brazilian Ministry of Environment and the federal government), to achieve its national park status.

Figure 09: Outreach material produced for the campaign ‘Mosaic Jurubatiba’ to promote education and conservation of the Toninha.

 

In Quissamã, warning signs were placed along the beaches to alert the population of the importance of the coastal waters as habitat for dolphin species, especially the toninha. This type of cooperation and support of the government and other authorities will aid the candidate site to achieve a full status of WHS.

The long-term goals of the candidate site are to influence the transition away from fishing as a livelihood and to instead embrace the use of responsible tourism to make a living.

 

For more information on Whale Heritage Sites around the world, visit:

http://worldcetaceanalliance.org/

http://whaleheritagesites.org/candidate-site-jurubatiba/

 

For more information on the GEMM-Lagos Project:

contact:gemmlagos@gmail.com

visit their Instagram: toninha_cade_vc

 

Here you can also find a list of some of the Salvatore Siciliano’s publications on Pontoporia blainvillei:

  • Siciliano S, de Moura JF, Tavares DC, Kehrig HA, Hauser-Davis RA, Moreira I, Lavandier R, Lemos LS, EMin-Lima R, Quinete N. 2018. Legacy Contamination in Estuarine Dolphin Species From the South American Coast. In book: Marine Mammal Ecotoxicology. Eds. Fossi MC, Panti C. Publisher: Academic Press.
  • Baptista G, Kehrig HA, Di Beneditto APM, Hauser-Davis RA, Almeida MG, Rezende CE, Siciliano S, de Moura JF and Moreira I. 2016. Mercury, selenium and stable isotopes in four small cetaceans from the Southeastern Brazilian coast: Influence of feeding strategy. Environmental Pollution 218:1298-1307.
  • Frainer G, Siciliano S, Tavares DC. 2016. Franciscana calls for help: the short and long-term effects of Mariana’s disaster on small cetaceans of South-eastern Brazil. International Whaling Commission SC/66b/SM/04. Bled, Slovenia.
  • Lavandier R, Arêas J, Quinete N, de Moura JF, Taniguchi S, Montone RC, Siciliano S, Moreira I. 2015. PCB and PBDE levels in a highly threatened dolphin species from the Southeastern Brazilian coast. Environmental Pollution 208.
  • Lemos LS, de Moura JF, Hauser-Davis RA, de Campos RC, Siciliano S. 2013. Small cetaceans found stranded or accidentally captured in southeastern Brazil: Bioindicators of essential and non-essential trace elements in the environment. Ecotoxicology and Environmental Safety 97:166-175.
  • de Moura JF, Rodrigues ES, Sholl TGC, Siciliano S. 2009. Franciscana dolphin (Pontoporia blainvillei) on the north-east coast of Rio de Janeiro State, Brazil, recorded during a long-term monitoring programme. Marine Biodiversity Records 2:e66.

 

 

Highlights from the 11th Sea Otter Conservation Workshop

By Dominique Kone, Masters Student in Marine Resource Management

I recently attended and presented at the 11th biennial Sea Otter Conservation Workshop (the Workshop), hosted by the Seattle Aquarium. As the largest sea otter-focused meeting in the world, the Workshop brought together dozens of scientists, managers, and conservationists to share important information and research on sea otter conservation issues. Being new to this community, this was my first time attending the Workshop, and I had the privilege of meeting some of the most influential sea otter experts in the world. Here, I recount some of my highlights from the Workshop and discuss the importance of this meeting to the continued conservation and management of global sea otter populations.

Source: The Seattle Aquarium.

Sea otters represent one of the most successful species recovery stories in history. After facing near extinction at the close of the Maritime Fur Trade in 1911 (Kenyon 1969), they have made an impressive comeback due to intense conservation efforts. The species is no longer in such dire conditions, but some distinct populations are still considered at-risk due to their small numbers and persistent threats, such as oil spills or disease. We still have a ways to go until global sea otter populations are recovered, and collaboration across disciplines is needed for continued progress.

The Workshop provided the perfect means for this collaboration and sharing of information. Attendees were a mixture of scientists, managers, advocacy groups, zoos and aquarium staff, and graduate students. Presentations spanned a range of disciplines, including ecology, physiology, genetics, and animal husbandry, to name a few. On the first day of the Workshop, most presentations focused on sea otter ecology and management. The plenary speaker – Dr. Jim Estes (retired ecologist and University of California, Santa Cruz professor) – noted that one of the reasons we’ve had such success in sea otter recovery is due to our vast knowledge of their natural history and behavior. Much of this progress can be attributed to seminal work, such as Keyon’s 1969 report, which provides an extensive synthesis of several sea otter ecological and behavioral studies (Kenyon 1969). Beginning in the 1970’s, several other ecologists – such as David Duggins, Jim Bodkin, Tim Tinker, and Jim himself – expanded this understanding to complex trophic cascades, individual diet specialization, and population demographics.

Jim Estes and Tim Tinker. Source: Jim Estes.

These ecological studies have played an integral role in sea otter conservation, but other disciplines were and continue to be just as important. As the Workshop continued into the second and third days, presentations shifted their focus to physiology, veterinary medicine, and animal husbandry. Two of these speakers – who have played pivotal roles in these areas – are Dr. Melissa Miller (veterinarian specialist and pathologist with the California Department of Fish & Wildlife) and Dr. Mike Murray (director of veterinary services at the Monterey Bay Aquarium). Dr. Miller presented her years of work on understanding causes of mortality in wild southern sea otters in California. Her research showed that shark predation is a large source of mortality in the southern stock, but cardiac arrest, which has gained less attention, is also a large contributing factor.

Dr. Murray discussed his practice of caring for and studying the biology of captive sea otters. He provided an overview of some of the routine procedures (i.e. full body exams, oral surgeries, and radio transmitter implantation) his team conducts to assess and treat stranded wild otters, so they can be returned to the wild. Both presenters demonstrated how advances in veterinary medicine have helped us better understand the multitude of threats to sea otters in the wild, and what interventive measures can be taken to recover sick or injured otters so they can contribute to wild population recovery. By understanding how these threats are impacting sea otter health on an individual level, we can be better equipped to prevent population-wide consequences.

Dr. Melissa Miller conducting a sea otter necropsy. Source: California Department of Fish & Game.

Throughout the entire Workshop, experts with decades of experience presented their work. Yet, one of the most encouraging aspects of this meeting was that several graduate students also presented their research, including myself. In a way, listening to presenters both early and late in their careers gave us a glimpse into the past and future of sea otter conservation. Much of the work currently being conducted by graduate students addresses some of the most pressing and emerging issues (e.g. shark predation, plastic pollution, and diseases) in this field, but also builds off the great knowledge base acquired by many of those at the Workshop.

Perhaps even more encouraging was the level of collaboration and mentorship between graduate students and seasoned experts. Included in almost every graduate student’s acknowledgement section of their presentations, were the names of several Workshop attendees who either advised them or provided guidance on their research. These presentations were often followed up with further meetings between students and their mentors. These types of interactions really demonstrated how invested the sea otter community is in fostering the next generation of leaders in this field. This “passing of the mantel” is imperative to maintain knowledge between generations and to continue to make progress in sea otter conservation. As a graduate student, I greatly appreciated getting the opportunity to interact with and gain advice from many of these researchers, whom I’ve only read about in articles.

Source: Bay Nature.

To summarize my experience, it became clear how important this Workshop was to the broader sea otter conservation community. The Workshop provided the perfect venue for collaboration amongst experts, as well as mentorship of upcoming leaders in the field. It’s important to recognize the great progress and strides the community has made already in understanding the complex lives of sea otters. Sea otters have not recovered everywhere. Therefore, we need to continue to acquire knowledge across all disciplines if we are to make progress in the future, especially as new threats and issues emerge. It will take a village.

Literature Cited:

Kenyon, K. W. 1969. The sea otter in the eastern Pacific Ocean. North American Fauna. 68. 352pp.

Self-improvement as Revenge – a strategy of persistent hope

By Florence Sullivan, MSc (GEMM Lab alumni, 2017)

Frustrating. Exhausting. Time-consuming. Repetitive. Draining. De-Motivating. A sine wave of cautious excitement followed by the crash of disappointment at another rejection.  The longer my job search continues, the more adjectives I have to describe it.

Last spring, I got rejected from a marine mammal and bird survey technician position because I didn’t have enough experience identifying birds. I found this immensely frustrating. So, fueled by the desire to prove “them” wrong, I embarked on my journey of revenge. First, I registered for a free online bird ID course at the Cornell Lab of Ornithology. Then, I got my bird books out, and started paying more attention to the species I encountered in my neighborhood. Next, I attended a training session for the Puget Sound Seabird Survey with the Seattle Audubon Society, and joined a citizen science monitoring team. We are responsible for documenting seabird habitat use at 3 beaches in the South Puget Sound on the first Saturday of each month. Most of my team members have been birding for decades, and they have been helpfully pointing out ID tricks like flight patterns, wing shapes, and color bands to distinguish one species from another. I feel like my marine bird ID is coming along nicely, but there are SO MANY bird species out there…. I know I learn better, and am more focused, when I am working for a team effort, so two weeks ago I attended a training for the Secretive Wetland Bird Monitoring project with the Puget Sound Bird Observatory. We’ll be doing playback surveys for species like American Bittern, Virginia Rail, and Green Herons during three survey windows from April to June. I’m excited for this project because even if I don’t learn to ID the birds by sight (they are secretive after all), it’s a chance to improve my ‘birding by ear’ skills! With all this, I think the next time a job application asks about my experience with birds, I’ll be able to give some more informed answers.

In Summer 2018, I had a rather tumultuous field research experience with a very disorganized project leader.  I ended up leaving the project after a series of poor safety choices by the leadership culminated in the vessel running aground on a well-marked reef.  Several of my colleagues and I were injured in the accident, and it was the first time in my 10 year maritime career that I grabbed my emergency bag and seriously thought I might have to abandon ship.  In this case, we made it to shore, and there was a clinic nearby where we got treated, but what if there hadn’t been?  The more I reflected on what happened, the more I realized how bad the situation could have been.  My revenge on that feeling of helplessness was to sign up for a NOLS Wilderness First Aid Course.  During the course, we practiced patient assessment, discussed the most common injuries when adventuring in the remote areas, and played out scenarios, as both patients and first responders. We discussed proper scene assessment, basic wound care and splints (those were fun to practice), situations like hypo and hyperthermia, and how to make a radio call for help that transmits the most relevant information. After this two day course, I feel much more confident in my ability to manage emergency situations for myself and any team I work with. Handily enough, many field technician jobs list ‘Wilderness First Aid/Wilderness First Responder” in their desired qualifications sections, so I can check that bullet off now too!

One of the best bits of finishing my grad degree has been getting my evenings and weekends back from the depths of homework and research fueled need-to-be-productive-all-the-time depression.  I like making things.  Shortly after turning in my thesis, I traded labor for a sheep fleece & two alpaca fleeces.

This alpaca’s name was ‘Timid’. Here we are leading him to the shearing area.

An acquaintance needed help shearing his small flock, and I saw the opportunity to try a “Sheep to Shawl” project – where you take the raw fiber, clean it, spin it into thread, and weave it into a shawl. I learned how to weave in high school, but I did not know how to spin my own thread.  I borrowed a spinning wheel from my fiber arts mentor, found a spinning group at my local yarn store, and since January have been spinning my own thread!

The bundle of blue/green fiber front and center is the raw wool “roving” that is fed onto the bobbin in the spinning process. The bobbin on the spinning wheel holds a single thread. Thread from two bobbins is then “plyed” together to create yarn – The final yarn is draped over the wheel.

I started with some practice wool to figure the whole thing out, and have just started to spin the fleeces I helped to harvest. It’s going to take me a while, but I’m more interested in the process than any sort of speed. There’s an unfortunate cultural dichotomy between “art” and “science”, but I find that the sort of thinking needed to plan how the threads will intertwine to make a solid and beautiful cloth, is the same sort of thinking needed to understand the myriad processes that inform how an ecosystem functions. If you think about it sideways, knitting & weaving pattern drafts are the first form of binary computer programs – repetitive patterns that when followed result in a product. The creativity needed to make beautiful art is the same creativity that helps problem solve in the field, and long term project planning, forethought and tenacity are all necessary in both research and in fiber arts. While the art itself may not be relevant to the jobs I apply for, the skills are transferable, and the actions recharge my batteries so I can keep solving problems creatively.

I knit my first hand spun yarn into a fun scarf!

It’s an easy trap to fall into – the idea that learning only happens in the classroom, and that once you’ve finally finished school and thrown off the trappings of academia you’re done and never have to learn again.

But never learning anything new would get boring quickly, wouldn’t it?

I may be frustrated by how long it is taking me to find ‘a career’, but I can’t regret the lily pads that I have landed on in the mean-time, or the skills that I have had the opportunity to pick up.

Exciting. Inspiring. Educational. Opportunistic. Expanding my network. Hopeful. A sine wave of disappointment followed by renewed determination to keep trying.  The longer my job search continues, the more adjectives I have to describe it.

More data, more questions, more projects: There’s always more to learn

By Dawn Barlow, PhD student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab 

As you may have read in previous blog posts, my research focuses on the ecology of blue whales in New Zealand. Through my MS research and years of work by a dedicated team, we were able to document and describe a population of around 700 blue whales that are unique to New Zealand, present year-round, and genetically distinct from all other known populations [1]. While this is a very exciting discovery, documenting this population has also unlocked a myriad of further questions about these whales. Can we predict when and where the whales are most likely to be? How does their distribution change seasonally? How often do they overlap with anthropogenic activity? My PhD research will aim to answer these questions through models of blue whale distribution patterns relative to their environment at multiple spatial and temporal scales.

Because time at sea for vessel-based surveys is cost-limited and difficult to come by, it is in any scientist’s best interest to collect as many concurrent streams of data as possible while in the field. When Dr. Leigh Torres designed our blue whale surveys that were conducted in 2014, 2016, and 2017, she really did a miraculous job of maximizing time on the water. With more data, more questions can be asked. These complimentary datasets have led to the pursuit of many “side projects”. I am lucky enough to work on these questions in parallel with what will form the bulk of my PhD, and collaborate with a number of people in the process. In this blog post, I’ll give you some short teasers of these “side projects”!

Surface lunge feeding as a foraging strategy for New Zealand blue whales

Most of what we know about blue whale foraging behavior comes from studies conducted off the coast of Southern California[2,3] using suction cup accelerometer tags. While these studies in the California Current ecosystem have led to insights and breakthroughs in our understanding of these elusive marine predators and their prey, they have also led us to adopt the paradigm that krill patches are denser at depth, and blue whales are most likely to target these deep prey patches when they feed. We have combined our prey data with blue whale behavioral data observed via a drone to investigate blue whale foraging in New Zealand, with a particular emphasis on surface feeding as a strategy. In our recent analyses, we are finding that in New Zealand, lunge feeding at the surface may be more than just “snacking”. Rather, it may be an energetically efficient strategy that blue whales have evolved in the region with unique implications for conservation.

Figure 1. A blue whale lunges on an aggregation of krill. UAS piloted by Todd Chandler.

Combining multiple data streams for a comprehensive health assessment

In the field, we collected photographs, blubber biopsy samples, fecal samples, and conducted unmanned aerial system (UAS, a.k.a. “drone”) flights over blue whales. The blubber and fecal samples can be analyzed for stress and reproductive hormone levels; UAS imagery allows us to quantify a whale’s body condition[4]; and photographs can be used to evaluate skin condition for abnormalities. By pulling together these multiple data streams, this project aims to establish a baseline understanding of the variability in stress and reproductive hormone levels, body condition, and skin condition for the population. Because our study period spans multiple years, we also have the ability to look at temporal patterns and individual changes over time. From our preliminary results, we have evidence for multiple pregnant females from elevated pregnancy and stress hormones, as well as apparent pregnancy from the body condition analysis. Additionally, a large proportion of the population appear to be affected by blistering and cookie cutter shark bites.

Figure 2. An example aerial drone image of a blue whale that will be used to asses body condition, i.e. how healthy or malnourished the whale is. (Drone piloted by Todd Chandler).
Figure 3. Images of blue whale skin condition, affected by A) blistering and B) cookie cutter shark bites.

Comparing body shape and morphology between species

The GEMM Lab uses UAS to quantitatively study behavior[5] and health of large whales. From various projects in different parts of the world we have now assimilated UAS data on blue, gray, and humpback whales. We will measure these images to investigate differences in body shape and morphology among these species. We plan to explore how form follows function across baleen whales, based on their different  life histories, foraging strategies, and ecological roles.

Figure 4 . Aerial images of A) a blue whale in New Zealand’s South Taranaki Bight, B) a gray whale off the coast of Oregon, and C) a humpback whale off the coast of Washington. Drone piloted by Todd Chandler (A and B) and Jason Miranda (C). 

So it goes—my dissertation will contain a series of chapters that build on one another to explore blue whale distribution patterns at increasing scales, as well as a growing number of appendices for these “side projects”. Explorations and collaborations like I’ve described here allow me to broaden my perspectives and diversify my analytical skills, as well as work with many excellent teams of scientists. The more data we collect, the more questions we are able to ask. The more questions we ask, the more we seem to uncover that is yet to be understood. So stay tuned for some exciting forthcoming results from all of these analyses, as well as plenty of new questions, waiting to be posed.

References

  1. Barlow DR et al. 2018 Documentation of a New Zealand blue whale population based on multiple lines of evidence. Endanger. Species Res. 36, 27–40. (doi:https://doi.org/10.3354/esr00891)
  2. Hazen EL, Friedlaender AS, Goldbogen JA. 2015 Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density. Sci. Adv. 1, e1500469–e1500469. (doi:10.1126/sciadv.1500469)
  3. Goldbogen JA, Calambokidis J, Oleson E, Potvin J, Pyenson ND, Schorr G, Shadwick RE. 2011 Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density. J. Exp. Biol. 214, 131–146. (doi:10.1242/jeb.048157)
  4. Burnett JD, Lemos L, Barlow DR, Wing MG, Chandler TE, Torres LG. 2018 Estimating morphometric attributes on baleen whales using small UAS photogrammetry: A case study with blue and gray whales. Mar. Mammal Sci. (doi:10.1111/mms.12527)
  5. Torres LG, Nieukirk SL, Lemos L, Chandler TE. 2018 Drone Up! Quantifying Whale Behavior From a New Perspective Improves Observational Capacity. Front. Mar. Sci. 5. (doi:10.3389/fmars.2018.00319)

Midway Atoll: the next two weeks at the largest albatross colony in the world (two years later)

By Rachael Orben, Assistant Professor (Senior Research), Seabird Oceanography Lab

This February I had the opportunity to spend two weeks at Midway Atoll National Wildlife Refuge in the Papahānaumokuākea Marine National Monument. I was there to GPS track black-footed and Laysan albatross during their short chick-brooding foraging trips. Two weeks is just enough time since the albatross are taking short trips (3-5 days) to feed their rapidly growing chicks.

My first visit to Midway (2016 blog post) occurred right as the black-footed albatross chicks were hatching (quickly followed by the Laysan albatross chicks). This time, we arrived almost exactly when I had left off. The oldest chicks were just about two weeks old. This shift in phenology meant that, though subtle, each day offered new insights for me as I watched chicks transform into large aware and semi-mobile birds. By the time we left, unattended chicks were rapidly multiplying as the adults shifted to the chick-rearing stage. During chick rearing, both parents leave the chick unattended and take longer foraging trips.

Our research goal was to collect tracking data from both species that can be used to address a couple of research questions. First of all, winds can aid, or hinder albatross foraging and flight efficiency (particularly during the short brooding trips). In the North Pacific, the strength and direction of the winds are influenced by the ENSO (El Niño Southern Oscillation) cycles. The day after we left Midway, NOAA issued an El Niño advisory indicating weak El Nino conditions. We know from previous work at Tern Island (farther east and farther south at 23.87 N, -166.28 W) that El Niño improves foraging for Laysan albatrosses during chick brooding, while during La Niña reproductive success is lower (Thorne et al., 2016). However, since Midway is farther north, and farther west the scenario might be different there. Multiple years of GPS tracking data are needed to address this question and we hope to return to collect more data next year (especially if  La Niña follows the El Niño as is often the case).

We will also overlap the tracking data with fishing boat locations from the Global Fishing Watch database to assess the potential for birds from Midway to interact with high seas fisheries during this time of year (project description, associated blog post). Finally, many of the tags we deployed incorporated a barometric pressure sensor and the data can be used to estimate flight heights relative to environmental conditions such as wind strength. This type of data is key to assessing the impact of offshore wind energy (Kelsey et al., 2018).

How to track an albatross

To track an albatross we use small GPS tags that we tape to the back feathers. After the bird returns from a foraging trip, we remove the tape from the feathers and take the datalogger off. Then we recharge the battery and download the data!

This research is a collaboration between Lesley Thorne (Stony Brook University), Scott Shaffer (San Jose State University), myself (Oregon State University), and Melinda Conners (Washington State University). The field effort was generously supported by the Laurie Landeau Foundation via the Minghua Zhang Early Career Faculty Innovation Fund at Stoney Brook University to Lesley Thorne.

My previous visit to Midway occurred just after house mice were discovered attacking incubating adult albatrosses. Since then, a lot of thought and effort had gone into developing a plan to eradicate mice from Midway. You can find out more via Island Conservation’s Midway blogs and the USFWS.
References

Kelsey, E. C., Felis, J. J., Czapanskiy, M., Pereksta, D. M., & Adams, J. (2018). Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf. Journal of Environmental Management, 227, 229–247. http://doi.org/10.1016/j.jenvman.2018.08.051

Thorne, L. H., Conners, M. G., Hazen, E. L., Bograd, S. J., Antolos, M., Costa, D. P., & Shaffer, S. A. (2016). Effects of El Niño-driven changes in wind patterns on North Pacific albatrosses. Journal of the Royal Society Interface, 13(119), 20160196. http://doi.org/10.1098/rsif.2016.0196

Tricky fin

By Paul Lask

Paul Lask teaches writing at Oregon Coast Community College, and is a faculty fellow with Portland State University’s Institute for Sustainable Solutions. His writing can be found at prlask.com

I pulled my kayak down to the beach, where a woman stood pointing toward the ocean. A fin rose from the water about a hundred yards offshore.

“It’s an orca,” she said.

“Naw,” the man beside her said. “That’s a gray.”

I recalled a documentary scene of a group of orcas spy-hopping near a seal marooned on an ice chunk. After their pogoing taunts, they left it alone. Another clip showed the orcas band together and charge forward, pushing a big wave over the ice and knocking the seal in.

I brought myself back to the beach. I wanted it to be a gray. It was one of my first solo ocean paddles, and I stood in my dry suit, PFD and helmet, having checked my weather and swell apps, having spent many hours in pools and bays learning rolls and rescues, and many dollars on courses, gear and guidebooks, now arguing a dubious fin into goodness.

It had to be a gray.

I dragged my boat to the water. Small dumping waves sucked back dark gravelly sand. The fin flopped over.

Aspiring rough water sea kayakers are trained in safety and rescue. We learn about dealing with battering surf, longshore currents, T-rescues and re-entry rolls. We don’t learn about sea life. I grew up in northern Illinois, where the nearest sea animal was a river dragon fashioned out of a downed tree that got painted annually, and TV specials on Loch Ness.

Paddling around rock near Cape Meares, Oregon.

I stuffed myself into my boat, suddenly remembering the shark story an instructor told me: They were out near Pacific City when the bad fin emerged. My instructor had a Go Pro on his helmet. His buddy dared him to roll to get a shot of their follower. My instructor declined.

Sealing my spray skirt over the cockpit, I focused on launch prep. I checked my radio. Made sure my extra paddle was secure. Confirmed I hadn’t sealed the skirt over my skeg rope. Here at North Fogarty Creek beach there was a gap between where the fin had been and a rock the size of a two story house. I waited for a set of waves to pass, then pushed off.

I saw the gray whale’s back split the water, heard the great sigh. A misty rainbow evaporated. I darted past the whale into the open sea. Other puffs dotted the horizon.

In time I would learn the kelp forest I had just paddled through hosted galaxies of tiny shrimp-like zooplankton. The gray was “sharking,” a foraging behavior in shallow water wherein it lays on its side with half its tail sticking out. Of the 20,000 gray whales that annually migrate from Mexico to Alaska, about 200 mysteriously break away and feed nearshore in Oregon. Scientists don’t know[i] for sure why this occurs, but the abundance of those shrimp-like animals is one theory.

Gray whale landing after a breach off Newport, Oregon. Taken under NMFS permit 16111 by Leigh Torres.

The mavericks are good for the tourism industry. From late spring through summer Depoe Bay is a frenzy of camera clicks and selfie sticks. A gauntlet of vehicles cram both sides of Hwy 101. Whale watching boats enter and exit the “world’s smallest harbor” through a bottleneck I’ve heard can be sketchy for kayakers.

As I paddled I toyed with wishful thinking—because I was a non-motorized vessel, the whales might better appreciate my presence. I was not there to photograph them. I just liked being in the sway of the water. “No cradle is so comfortable,” Rudyard Kipling wrote, “as the long, rocking swell of the Pacific.”[ii] Especially on an uncharacteristically calm day like this.

I have met paddlers who are indifferent to our resident grays. One referred to them as squirrels. Another claimed he got too near a spout, and was covered in the slime geyser, which he’d found disgusting. Others want to get close. A friend is interested in bringing snorkeling gear out next season, and a non-paddling acquaintance wants to get a kayak so he can sneak up and swim with one.

Dr. Roger Payne, the biologist famous for discovering that humpbacks sing, discusses Baja’s “‘friendly gray whale phenomenon’, wherein gray whales come so close to whale-watching boats that the tourists can reach out and pat them.”[iii] Grays weren’t always treated like housecats. When whaling was in full swing, Dr. Payne continues, they were referred to as “devil fish” by whalers in Scammon’s Lagoon in Baja. The whales were being routinely harpooned, so they fought back, earning a fierce reputation. Their numbers plummeted. Federal protections helped them recover, and in 1994 eastern Pacific gray whales were removed from the U.S. Endangered Species List.

Paddling under arch at Three Arch Rocks.

U.S. federal law requires people keep a hundred yards away from whales. Natural law supports this precaution. Once paddling through my shark and orca anxiety, I developed an ambivalence about my proximity to the grays. It was not fear of aggression, but indifference. I was sneaking around the living room of 35-ton animals. Despite their boxcar bulk, they moved with quick snaky grace; regardless of my attempts at putting a football field between us, what was to keep one from accidentally rolling over me or smashing me with its tail?

With shipwrecks in mind, Herman Melville pondered the power of a whale fluke: “But as if this vast local power in the tendinous tail were not enough, the whole bulk of the leviathan is knit over with a warp and woof of muscular fibers and filaments, which passing on either side of the loins and running down into the flukes, insensibly blend with them, and largely contribute to their might; so that in the tail the confluent measureless force of the whole whale seems concentrated to a point. Could annihilation occur to matter, this were the thing to do it.”[iv]

Whale-caused shipwrecks didn’t end in the nineteenth century. Contemplating how his sloop went down, Steven Callahan, a sailor lost at sea for 76 days, recalls how his nineteen-ton, forty-three-foot schooner and a heavy cruiser were both sunk by whales in the 1970s.[v] Dr. Payne also has boat breaching stories. “There’s a woman who works in my laboratory who had a whale breach directly on top of her boat. Not a glancing blow, but a direct hit across the bow. The boat was totaled…”

In 2015, a 33-ton humpback breached onto a tandem kayak in Monterey Bay, California. Reanalyzing video footage, Tom Mustill, one of the struck kayakers, believes he can see the whale “sticking its eyes out and taking a look at us while he’s in the air.” He speculates that the whale may have calculated its landing so as to avoid full body impact. Mustill is currently making a BBC2 documentary about the incident titled “Humpback Whales: A Detective Story.”

How whales behave around vessels is still an open scientific question. OSU whale mammologist Dr. Leigh Torres asks: “Are there behavior differences based on boat traffic and composition? Whales might react to some boats, but perhaps not others based on speed, approach, motor type, etc.”[vi] The ocean is also getting noisier. One study shows that over the last sixty years ambient noise in the ocean has increased about three to five decibels per decade.[vii] To what extent is this noise stressing out whales, and what kind of reactions will we begin to see?

***

            Dr. Torres told me whales were like a gateway drug for getting people hooked on marine ecology. Since that tricky fin at Fogarty Creek I’ve given them a good amount of thought. It’s partially their size that inspires awe and reflection. Writer Julia Whitty gets at their enormity by thinking about their deaths, comparing whales to old growth trees. She describes whalefall beautifully:

“…the downward journey takes place in the slow motion of the underwater world, as the processes of decomposition produce buoyant gases that duel with the force of gravity in such a way that the carcass rides a gentle elevator up and down on its way down” (178). Once the body hits the ocean floor it provides a “nutritional bonanza of a magnitude that might otherwise take thousands of years to accumulate from the background flow of small detritus from the surface.” A gray takes a year and a half to be “stripped to the bone by the scalpels and stomachs of the deep.” A blue whale can take as long as eleven years. [viii]

But I don’t think it’s just their size that hooks us. They’re mammals, nurse their young, sing to one another. “Flowing like breathing planets,” Gary Snyder writes,[ix] we can only wonder what a whale might know.

As I continue exploring our coast by kayak, I occasionally talk to whales. It no longer seems strange to want to hug one. I attempt to maintain the lawful distance, though now and then one rises close enough to see the individual barnacles studded among old scratches and scribbles. This wordless poetry is like a map into deep time. I realize I want to keep being humbled and a little afraid. I realize I’m hooked.

Author paddling near Three Arch Rocks. Photo by Bruce Moreira.

 

References

[i] Oregon State University. (2015, August 4). Researchers studying Oregon’s “resident population” of gray whales. Retrieved from                 https://today.oregonstate.edu/archives/2015/aug/researchers-studying-oregon’s-“resident-population”-gray-whales

[ii] Kipling, R. (1914). The Jungle Book (p. 145). New York, NY: Double Day. Retrieved from          https://play.google.com/store/books/details?id=LO88AQAAIAAJ&rdid=book-LO88AQAAIAAJ&rdot=1

[iii] White, J. (2016). Talking on the Water (pp. 25-26). San Antonio, TX: Trinity University Press.

[iv] Friends of the Earth. (1970). Wake of the Whale (p. 71). San Francisco, CA: Friends of the Earth, Inc.

[v] Steven, C. (2002). Adrift (p. 37). New York, NY: First Mariner Books.

[vi]Oregon State University. (2015, August 4). Researchers studying Oregon’s “resident population” of gray whales. Retrieved from

https://today.oregonstate.edu/archives/2015/aug/researchers-studying-oregon’s-“resident-population”-gray-whales

[vii] Lemos, L. (2016, April 6). Does ocean noise stress-out whales?. In Geospatial Ecology of Marine Megafauna Laboratory.       Retrieved from http://blogs.oregonstate.edu/gemmlab/2016/04/06/does-ocean-noise-stress-out-whales/

[viii] Whitty, J. (2010). Deep Blue Home (pp. 178-181). New York, NY: Houghton Mifflin Harcourt.

[ix] Snyder, G. (1974). Turtle Island. New York, NY: New Directions Publishing Group. Retrieved from                 https://www.poets.org/poetsorg/poem/mother-earth-her-whales-0

 

Understanding sea otter effects through complexity

By Dominique Kone, Masters Student in Marine Resource Management

Species reintroductions are a management strategy to augment the reestablishment or recovery of a locally-extinct or extirpated species into once native habitat. The potential for reestablishment success often depends on the species’ ecological characteristics, habitat requirements, and relationship and effects to other species in the environment[1]. While the science behind species reintroductions is continuously evolving and improving, reintroductions are still inherently risky and uncertain in nature. Therefore, every effort should be made to fully assess ecological factors before a reintroduction takes place. As Oregon considers a potential sea otter reintroduction, understanding these ecological factors is an important piece of my own graduate research.

Sea otters are oftentimes referred to as keystone species because they can have wide-reaching effects on the community structure and function of nearshore marine environments. Furthermore, relative to other marine mammals or top predators, several papers have documented these effects – partially due to the ease in observing their foraging and social behaviors, which typically take place close to shore. In many of these studies, a classic paradigm repeatedly appears: when sea otters are present, prey densities (e.g., sea urchins) are significantly reduced, while macroalgae (e.g., kelp, seagrass) densities are high.

Source: Belleza.

While this paradigm is widely-accepted amongst researchers, a few key studies have also demonstrated that the effects of sea otters may be more variable than we once thought. The paradigm does not necessarily hold true everywhere sea otters exist, or at least not to the same degree. For example, after observing benthic communities along islands with varying sea otter densities in the Aleutian archipelago, Alaska, researchers found that islands with abundant otter populations consistently supported low sea urchin densities and high, yet variable, kelp densities. In contrast, islands without otters consistently had low kelp densities and high, yet variable, urchin densities[2]. This study demonstrates that while the classic paradigm generally held true, the degree to which the ecosystem belonged to one of two dominant states (sea otters, low urchins, and high kelp or no sea otters, high urchins, and low kelp) was less obvious.

This example demonstrates the danger in applying this one-size-fits-all paradigm to sea otter effects. Hence, we want to achieve a better understanding of potential sea otter effects so that managers may anticipate how Oregon’s nearshore environments may be affected if sea otters were to be reintroduced. Yet, how can we accurately anticipate these effects given these potential variations and deviations from the paradigm? Interestingly, if we look to other fields outside ecology, we find a possible solution and tool for tackling these uncertainties: a systematic review of available literature.

Two ecosystem states as predicted by the classic paradigm (left: kelp-dominated; right: urchin-dominated). Source: SeaOtters.com.

For decades, medical researchers have been conducting systematic reviews to assess the efficacy of treatments and drugs by combining several studies to find common findings[3]. These findings can then be used to determine any potential variation between studies (i.e. instances where the results may conflict or differ from one another) and even test the influence and importance of key factors that may be driving that variation[4]. While systematic reviews are quite popular within the medical research field, they have not been applied regularly in ecology, but recognition of their application to ecological questions is growing[5]. In our case of achieving a better understanding of the drivers of ecological impacts of sea otter, a systematic literature review is an ideal tool to assess variable effects. This review will be the focus of my second thesis chapter.

In conducting my review, there will be three distinct phases: (1) review design and study collection, (2) meta-analysis, and (3) factor testing. In the first phase (review design and study collection), I will search the existing literature to collect studies that explicitly compare the availability of key ecosystem components (i.e. prey species, non-prey species, and macroalgae species) when sea otters are absent and present in the environment. By only including studies that make this comparison, I will define effects as the proportional change in each species’ or organism group’s availability (e.g. abundance, biomass, density, etc.) with and without sea otters. In determining these effects, it’s important to recognize that sea otters alter ecosystems via both direct and indirect pathways. Direct effects can be thought of as any change to prey availability via sea otter predation directly, while indirect effects can be thought of an any alteration to the broader ecosystem (i.e. non-prey species, macroalgae, habitat features) as an indirect result from sea otter predation on prey species. I will record both types of effects.

General schematic of a meta-analysis in a systematic review. A meta-analysis is the process of taking multiple datasets (i.e. Data 1, Data 2 etc.) from literature sources, calculating summary statistics or effects (i.e. Summary 1, Summary 2, etc.) for each dataset, running statistical procedures (e.g. SMA = sequential meta-analysis) to relate summary effects and investigate between study variation, and identifying important features driving variation. Source: MediCeption.

In phase two, I will use meta-analytical procedures (i.e. statistical analyses specific to systematic reviews) to calculate one standardized metric to represent sea otter effects. These effects will be calculated and averaged across all collected studies. As previously discussed, there may be key factors – such as sea otter density – that influence these effects. Therefore, in phase three (factor testing), effects will also be calculated separately for each a priori factor to test their influence on the effects. Such factors may include habitat type (i.e. hard or soft sediment), prey species (i.e. sea urchins, crabs, clams, etc.), otter density, depth, or time after otter recolonization.

In statistical terms, the goal of testing factors is to see if the variation between studies is impacted by calculating sea otter effects separately for each factor versus across all studies. In other words, if we find high variation in effects between studies, there may be important factors driving that variation. Therefore, in systematic reviews, we recalculate effects separately for each factor to try to explain that variation. If, however, after testing these factors, variation remains high, there may be other factors that we didn’t test that could be driving that remaining variation. Yet, without a priori knowledge on what those factors could be, such variation should be reported as a major source of uncertainty.

Source: Giancarlo Thomae.

Predicting or anticipating the effects of reintroduced species is no easy feat. In instances where the ecological role of a species is well known – and there is adequate data – researchers can develop and use ecosystem models to predict with some certainty what these effects may be. Yet, in other cases where the species’ role is less studied, has less data, or is more variable, researchers must look to other tools – such as systematic reviews – to gain a better understanding of these potential effects. In this case, a systematic review on sea otter effects may prove particularly useful in helping managers understand what types of ecological effects of sea otters in Oregon are most likely, what the important factors are, and, after such review, what we still don’t know about these effects.

References:

[1] Seddon, P. J., Armstrong, D. P., and R. F. Maloney. 2007. Developing the science of reintroduction biology. Conservation Biology. 21(2): 303-312.

[2] Estes, J. A., Tinker, M. T., and J. L. Bodkin. 2009. Using ecological function to develop recovery criteria for depleted species: sea otters and kelp forests in the Aleutian Archipelago. Conservation Biology. 24(3): 852-860.

[3] Sutton, A. J., and J. P. T. Higgins. 2008. Recent developments in meta-analysis. Statistics in Medicine. 27: 625-650.

[4] Arnqvist, G., and D. Wooster. 1995. Meta-analysis: synthesizing research findings in ecology and evolution. TREE. 10(6): 236-240.

[5] Vetter, D., Rucker, G., and I. Storch. 2013. Meta-analysis: a need for well-defined usage in ecology and conservation biology. Ecosphere. 4(6): 1-13.

Ocean Jail

a captive marine mammal in an unknown location
Source: Snopes, 2018.

 

By Leila Lemos

PhD candidate, Fisheries and Wildlife Department, OSU

 

This past November, headlines were made when a drone captured images of over 100 dolphins confined in Srednyaya Bay, Russia, for commercial reasons.

Figure 01: Location of the “whale jail” in Srednyaya Bay, near Nakhodka, Russia.
Source: Big Think, 2018.

 

This “whale jail” was installed in Srednyaya Bay to receive “prisoners” last July. The Russian newspaper Novaya Gazeta originally reported the story on 30 October 2018 and stated that 11 killer whales and 90 beluga whales [both actually dolphin species] were being held in captivity. These prisoners represent a record catch for the four companies believed to be responsiblefor the captures: LLC Oceanarium DV, LLC Afalina, LLC Bely Kit and LLC Sochi Dolphinarium.

These 101 black-market dolphins are jammed into tiny offshore pensmade ofnetting and are believed to be illegally up for sale to one of China’s 60 marine parks and aquariums, as told by the British journal The Telegraph. With this entertainment business booming in China and a dozen more venues reportedly under construction, there is a demand for these intelligent, social, wild animals.

Figure 02: Twitter post by the Russian government-controlled news outlet RT showing the tiny pens where the cetaceans are being held in captivity in Srednyaya Bay, Russia.
Source: Snopes, 2018.

 

The full drone footage can be seen here:

https://www.youtube.com/watch?v=SlyD6ox9iSo

 

The prosecutor investigating the case is assessing all documents in order to find out if the animals were captured for scientific or educational purposes, or if they were actually detained with an illegal purpose. Greenpeace Russia and other activists are also closely following the case.

The Novaya Gazetta has also reported that the four companies (LLC Oceanarium DV, LLC Afalina, LLC Bely Kit and LLC Sochi Dolphinarium) that own these containers previously exported 13 killer whales to China between 2013 and 2016. These companies were supposedly granted permission to capture ten killer whales in the wild for educational purposes. However, seven of those killer whales were exported to China. Russian authorities are now investigating this case as a possible fraud.

It is important to remember that in 1982, the International Whaling Commission (IWC) adopted a moratorium on commercial whaling, prohibiting participant countries of this international agreement to capture wild whales, except for a specific set of scientific, educational, and cultural purposes. Currently, the quota for capturing whales varies with purpose, country and species, in accordance with the method adopted by the IWC to avoid negative impact on cetacean populations. However, commercial whaling quota is currently zero (IWC 2019a) and there are now 101 individuals being held in captivity in Srednyaya Bay.

Unfortunately, not all countries participate and engage in this agreement. The map below shows the IWC member countries and when they joined the IWC. Surprisingly, both Russia and China are both IWC members despite their purported activities capturing, holding and selling cetaceans for profit.

Figure 03: IWC member countries and when they joined the IWC.
Source: IWC, 2019b.

 

Also, members can withdraw from the IWC. This past December there was another shocking news regarding Japan’s decision to withdraw from the IWC to recommence commercial whaling for the first time in 30 years (Japan Times 2018). This news has led to concerns that this whale market will further diminish the already declining dolphin populations in the region but may also improve whale populations in the Southern Oceans where Japan has whaled illegally previously (Nature 2019).

 

References:

Big Think 2018. Available at: https://bigthink.com/politics-current-affairs/endangered-whales-black-market-russia?rebelltitem=1#rebelltitem1

IWC 2019a. Available at:https://iwc.int/index.php?cID=html_76#permit

IWC 2019b. Available at:https://iwc.int/members

Japan Times 2018. Available at: https://www.japantimes.co.jp/news/2018/12/20/national/japan-withdraw-international-whaling-commission-bid-resume-commercial-whaling-sources/#.XDT3di3MyfU

Nature 2019. Nature 565, 133 (2019). Available at: https://www.nature.com/articles/d41586-019-00076-2 

Snopes 2018. Available at: https://www.snopes.com/fact-check/whales-in-jails/

Inter- and Transdisciplinary Sea Otter Research

By Dominique Kone, Masters Student, Marine Resource Management

As the human population continues to grow, so does our impact on marine environments. In many cases, these problems – such as microplastics, vessel noise, or depleted fisheries – are far too grand for any one person to tackle on their own and it takes a team effort to find adequate solutions. Experts within a single field (e.g. ecology, economics, genetics) have been collaborating to tackle these issues for decades, but there is an increasing interest and recognition of the importance in working with others outside one’s own discipline.

It’s not surprising that most collaborative efforts are between experts from the same field. It’s easier to converse with those with similar vocabulary, we often enjoy learning from our peers, and our thought-processes and problem-solving skills are typically very similar. However, as issues become more complex and stretch across disciplines, the need for interdisciplinary collaboration becomes more and more imperative. As a graduate student studying marine resource management, I’ve learned the great value in conducting interdisciplinary work. Yet, I still have much to learn if I want to continue to help find solutions to the many complex marine issues. Therefore, over the next year, I’ve committed to joining a interdisciplinary team of graduate students, as part of an NSF-funded fellowship program at Oregon State University (OSU), to further investigate a potential sea otter reintroduction to Oregon. Here, I provide a brief overview of the program and my team’s goals for the coming year.

Source: Hakai Magazine.

The fellowship program emphasizes both interdisciplinary and transdisciplinary approaches, so before I explain the program, it’s important to first understand these terms. In short, interdisciplinarity typically relates to experts from different fields analyzing, synthesizing, and coordinating their work as a whole (Choi & Pak 2006). Another way to think about this, in more practical terms, is if two or more experts share information and learn from one another; each expert can then individually apply that information or lessons-learned to their own line of work. In contrast, transdisciplinary work is slightly more collaborative, where experts work more hand-in-hand to develop a product or solution that transcends their disciplines’ traditional boundaries. The experts essentially create a product that would not have been possible working in isolation. In practice, the product(s) that stems from inter- and transdisciplinary work – if they truly are inter- or transdisciplinary by definition – is potentially very different.

Source: Dr. Shoshanah Jacobs.

With an increasing interest in interdisciplinary work, the National Science Foundation (NSF) developed the National Research Traineeship (NRT) program to encourage select universities to develop and implement innovative and transformative models for training graduate students in STEM disciplines. After soliciting proposals, the NSF awarded OSU one of these NRT projects to support OSU’s Risk and Uncertainty Quantification in Marine Science NRT Program. OSU’s NRT program was born out of the recognition that much of the complexity of marine issues is largely due to the uncertainty of natural and human systems. Therefore, the primary purpose of this program is to train the next generation of natural resource scientists and managers to be better equipped to study and manage complex marine systems, especially under extreme uncertainty and potential risk.

Source: Oregon State University.

This NRT program trains graduate students in three core concept areas: coupled natural human systems, big data, and risk and uncertainty analyses and communications. To learn these core concepts, students fulfil a minor that includes coursework in statistical inference, uncertainty quantification, risk analyses, earth system science, and social systems. In addition to the minor, students also conduct collaborative research in small (3-5 students) cross-disciplinary teams to address specific issues in marine resource management. Within each team, students come from different disciplines and fields, and must learn to work together to produce a transdisciplinary research product. Throughout the year, each team will develop a set of research questions to address their issue at hand, conduct research which links all their fields, and produce a transdisciplinary report summarizing the process they undertook and the end product. Most students who are accepted into the NRT program are awarded one-year fellowships, funded by the NSF.

At the start of this academic year, I was awarded one of these NRT fellowships to address the many issues and implications of a potential sea otter reintroduction to Oregon. Over the next year, I will be working with two other OSU graduate students with backgrounds in genetics and social sciences. Our task is to not only investigate the ecological implications – which I am currently doing for my own thesis – but we are to expand this investigation to also address many of the genetic, political, and social factors, as well. While each of us is capable of addressing one of these factors individually, the real test will be in finding linkages between each of our disciplines to make this project truly transdisciplinary.

Structure and vision of OSU’s NRT program. Source: Oregon State University.

Since our project started, we have worked to better understand each another’s expertise, interests, and the general need for a transdisciplinary project of this sort. After acquiring this base understanding, we spent a considerable amount of time developing research questions and potential methods for addressing our issue. Throughout this process, it’s already become apparent that each of us is starting to learn important teamwork and collaboration skills, including effective communication and explanation of complicated concepts, active listening, critical thinking, and constructive feedback.  While these skills are imperative for our research over the next year, they are also life-long skills that we’ll continue to use in our careers beyond graduate school.

As I’ve stated previously, learning to be an effective collaborator is extremely important to me. Getting the opportunity to work interdisciplinarily is what attracted me to my thesis, the marine resource management program, and the NRT program. By choosing to take my graduate education down this path, I’ve been fortunate to obtain important skills in collaboration, as well as work on a project that allows me to tackle real-world issues and creatively develop scientifically-based solutions. I have high hopes for this NRT project, and I’m excited to continue to conduct meaningful and targeted research over the next year with my new team.

2018-19 OSU NRT Cohort. Source: Oregon State University.

References:

Choi, B. C., and A. W. Pak. Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, service, education and policy: 1. Definitions, objectives, and evidence of effectiveness. Clinical and Investigative Medicine. 29(6): 351-64.

Moving from overlap to interaction in seabird-fishery analysis

By Dr. Leigh Torres, Director of the GEMM Lab

In our modern world we often share space with people, but never really interact with them. Like right now, I am on a train in France with a bunch of people but I’m not interacting with any of them (maybe because I don’t speak French…). This situation extends to our efforts to understand the bycatch of marine predators in fisheries.

Productivity in the ocean is patchy, so both fishing vessels and marine predators, like seabirds and dolphins, may target the same areas to get their prey. This scenario can be considered spatial overlap, but not necessarily interaction because the two entities (predator and vessel) can independently chose to be in the same place at the same time. Also, overlap can happen at larger spatial and temporal scales than interaction events, which typically must occur at small scales. Again, consider me on this train: all my fellow passengers and I are overlapping on a 500 m long train for 2.5 hours (larger scale) but I only interact with the passenger in the seat 1 m across from me for a minute (smaller scale) while I explain that I don’t understand what they are saying.

Distinguishing overlap from interaction between seabirds and fishing vessels is important to help managers determine how to best direct their efforts to reduce bycatch. Different management approaches can be applied depending on whether seabirds are using the same habitat as fishing vessels (overlap) or are attracted to vessels for feeding opportunities (interaction) and then incidentally caught/injured in the fishing gear. Furthermore, if we can describe discrete interaction events we may also be able to identify the individual fishing vessel, fishing gear used, country of origin, and other such specific information that can help direct bycatch reduction efforts.

However, studying the spatial and temporal relationships between seabirds and fishing vessels is challenging, and highly dependent on the quality of data we have, or can collect, about the movements of birds and boats at-sea. Tracking the movements of seabirds has evolved rapidly with the development of tagging technology and miniaturization, so that over the past 10 years seabird ecologists have collected a large amount of high-resolution GPS data of seabird foraging. While these data reveal fascinating patterns of seabird ecology, our ability to relate these seabird distribution data to fishing vessels has remained limited due to limited access to fishing vessel location data. Historically, fishermen have not wanted to divulge their fishing locations for fear of losing their ‘secret sweet spot’ or regulatory infractions. So, where fishing vessels fish has often been a mystery, at least fine scales. For a long time fishing effort data was only released at scales of 5 x 5 degree grid cells and monthly scales (Fig. 1) (Phillips et al. 2006), which is only broadly useful for assessment of overlap and not useful for assessing interaction events. The situation has improved in some countries where Vessel Monitoring Systems (VMS) data are available but even these GPS data are often too coarse to reveal interaction events (although it’s much better than what was previously available!). In fact, I wrote a paper about this topic in 2013 called “Scaling down the analysis of seabird-fisheries analysis” that called for higher resolution vessel position data to better evaluate and manage seabird and fishing vessel interactions (Torres et al. 2013).

Figure 1. Taken from Phillips et al 2006, this example shows overlap between fishing effort and seabird distribution at a large-scale.

Progress was made in 2016 with the release of Global Fishing Watch (globalfishingwatch.org) that has significantly increased transparency in the fishing industry and revolutionized our ability to monitor fishing vessel activities (Robards et al. 2016). Almost every fishing vessel in the world is required to use the Automated Identification System (AIS) that pings GPS quality position data to satellite and shore receiving stations around the world. AIS was originally developed to increase maritime safety by reducing collision risk, but Global Fishing Watch has developed methods to acquire these AIS data globally, distinguish fishing vessels (from cargo ships or sailing vessels), classify fishing vessels by fishing method, and disseminate these data in an accessible and visually understandable able format (de Souza et al. 2016; Kroodsma et al. 2018). When I saw the Global Fishing Watch website for the first time I actually let out a ‘Woohoo!’ because I knew this was the missing piece I needed to move from overlap to interaction.

So, I assembled a great team of collaborators including Dr. Rachael Orben – seabird movement ecologist extraordinaire – and colleagues who have collected GPS tracking data from three species of albatross in the North Pacific Ocean. Another important step was acquiring funding to support the research effort from the NOAA Bycatch Reduction Engineering Program, and to establish a collaboration with Global Fishing Watch.  Fast forward a year and through many data analysis and R coding puzzles, and we have made the jump from overlap to interaction, with some preliminary results to share.

We compiled GPS tracks representing foraging trips conducted by Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses breeding in the Hawaiian islands, and juvenile short-tailed albatross (P. albatrus) from Japan. First we identified overlap between bird and boat at daily and 80 km scales. Next, we quantified encounter events at scales of 10 minutes and between 30 and 3 km, which was the assumed distance at which birds are able to perceive a boat. Finally, interaction events were identified when birds and boats were within 3 km and 10 minutes of each other.

At an absolute level, short-tailed albatross overlapped, encountered and interacted with many more fishing vessels than black-footed and Laysan albatross. However, it is important to point out that these results may be biased by the temporal sampling resolution of the GPS tracking data (how often a location was recorded), which we have not accounted for yet. Nevertheless, what is interesting is that when the percent of interaction events that derived from encounter events is assessed, black-footed and Laysan albatross demonstrate much higher rates of fisheries interactions. These results indicate that when a black-footed albatross encountered a fishing vessel engaged in fishing, nearly 50% of these opportunities turned into an interaction event. This rate was 39 and 26 percent for Laysan and short-tailed albatross respectively. This species-level difference between absolute and relative (percentage) interaction with fisheries may be due to the overall distribution patterns of the different albatross species, with short-tailed albatross using areas that overlap with fishing activity more frequently (coastal margins). Furthermore, these results indicate that short-tailed albatross may be more ‘vessel-shy’ than black-footed and Laysan albatross. The high black-footed albatross percent interaction rate aligns with the high by-catch rate of this species, and emphasizes the need to better understand and manage their interactions with fishing vessels.

While these results from our novel analysis are an interesting start to helping inform bycatch mitigation efforts, perhaps the most illustrative (and coolest!) output so far are the below animations that show the fine-scale movement tracks of an albatross and fishing vessel (Fig. 2 and 3). Both animations are a 24 hour period and show an albatross (red dot) and a fishing vessel (yellow dot). But, Figure 2 illustrates an overlap event, where the bird and boat clearly overlap spatially and temporally but do not interact. However, in Figure 3 we see how the albatross flies directly to the vessel and the bird and vessel remain spatially and temporally linked, demonstrating an interaction event. Our next steps are to improve our ability to distinguish these interaction events (assessment of duration and trajectory correspondence) and to describe the driving factors (e.g., albatross species, fishing vessel method and flag nation, environmental variables) that lead an albatross to move from overlap to interaction.

Figure 2. Fine-scale animation of overlap between the movement path of a Laysan albatross GPS track and the AIS track of a fishing vessel, overlaid on bathymetry. While the bird and boat overlap at this scale, the animation illustrates how the bird and boat do not interact with each other.

 

Figure 3. Fine-scale animation of overlap between the movement path of a Laysan albatross GPS track and the AIS track of a fishing vessel, overlaid on bathymetry. This animation illustrates how the bird and boat act independently at the start, and then the bird travels directly to the vessel’s location and the movements of the two entities corresponded spatially and temporally, demonstrating a clear interaction event.

 

 

References

de Souza, Erico N., Kristina Boerder, Stan Matwin, and Boris Worm. 2016. ‘Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning’, PLoS ONE, 11: e0158248.

Kroodsma, David A., Juan Mayorga, Timothy Hochberg, Nathan A. Miller, Kristina Boerder, Francesco Ferretti, Alex Wilson, Bjorn Bergman, Timothy D. White, Barbara A. Block, Paul Woods, Brian Sullivan, Christopher Costello, and Boris Worm. 2018. ‘Tracking the global footprint of fisheries’, Science, 359: 904-08.

Phillips, R. A., J. R. D. Silk, J. P. Croxall, and V. Afanasyev. 2006. ‘Year-round distribution of white-chinned petrels from South Georgia: Relationships with oceanography and fisheries’, Biological Conservation, 129: 336-47.

Robards, MD, GK Silber, JD Adams, J Arroyo, D Lorenzini, K Schwehr, and J Amos. 2016. ‘Conservation science and policy applications of the marine vessel Automatic Identification System (AIS)—a review’, Bulletin of Marine Science, 92: 75-103.

Torres, Leigh G., P. M. Sagar, D. R. Thompson, and R. A. Phillips. 2013. ‘Scaling-down the analysis of seabird-fishery interactions’, Marine Ecology Progress Series, 473.