Dual cameras provide bigger picture

By Hunter Warick, Research Technician, Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute

When monitoring the health of a capital breeding species, such as whales that store energy to support reproduction costs, it is important to understand what processes and factors drive the status of their body condition. Information gained will allow for better insight into their cost of reproduction and overall life history strategies.

For the past four years the GEMM Lab has utilized the perspective that Unoccupied Aerial Systems (UAS; or ‘drones’) provide for observations of marine mammals. This aerial perspective has documented gray whale behavior such as jaw snapping, drooling mud, and headstands, all of which shows or suggest foraging (Torres et al. 2018). However, UAS is limited to a bird’s eye view, allowing us to see WHAT whales are doing, but limited information about the reasons WHY. To overcome this hurdle, Leigh Torres and team have equipped their marine mammal research utility belts with the use of GoPro cameras. They developed a technique known as the “GoPro drop” where a GoPro camera mounted to a weighted pole is lowered off the side of the research vessel in waters < 20 m deep via a line to record video data. This technique allows the team to obtain fine-scale habitat and prey variation information, like what the whale experiences. Along with the context provided by the UAS, this dual camera perspective allows for deeper insight into gray whale foraging strategies and efficiency. Torres’s GoPro data analysis protocol examines kelp density, kelp health, benthic substrate, rock fish density, and mysid density. These characteristics are graded along a scale (Figure 1), allowing for relative comparisons of habitat and prey availability between where whales spend time and forage. These GoPro drops will also help create a fine-scale benthic habitat map of the Newport field area. So, why are these data on gray whale habitat and prey important to understand?

Figure 1. The top row shows varying degrees of mysid density (low to high, left to right). Middle row illustrates different types of substrate you might encounter (reef, sandy, boulders; left to right). Bottom row shows the different levels of kelp health (poor, medium, good).

The foraging grounds are the first step in the life history domino chain reaction for many rorqual whales; if this step doesn’t go off cleanly then everything else fails to fall into place. Gray whales partake on a 15,000-20,000 km (round trip) migration, which is the longest of any known mammal (Swartz 1986). During this migration, whales spend around three months fasting in their breeding grounds (Highsmith & Coyle 1992), living only off the energy stores that they accumulated in their feeding grounds (Næss et al. 1998). These extreme conditions of existence for gray whales drive the need to be a successful forager and is why it is so crucial for them to forage in high prey density areas (Newell, C. 2009).

Mysids are a critical part of the gray whale diet in Oregon waters (Newell, C. 2009; Sullivan, F. 2017) and mysids have strong predator-prey relationships with both top-down and bottom-up control (Dunham & Duffus 2001; Newell & Cowles 2006). This unique tie illustrates the great dependency that gray whales have on mysids, further showing the benefit to looking at the density of mysids where gray whales are seen foraging. The quality of mysids may also be as important as quantity; with higher water temperatures resulting in lower lipid content in mysids (Mauchline 1980), suggesting density might not be the only factor for determining efficient whale foraging. The overall goal of gray whales on their foraging grounds is to get as fat as possible in order to reproduce as often as possible. But, this isn’t always as easy as it sounds. Gray whales typically have a two-year breeding interval but can be anywhere from 1-4 years (Blokhin 1984). The longer time it takes to build up adequate energy stores to support reproduction costs, the longer it will take to breed successfully. Building back up these energy stores can prove to be difficult, especially for lactating females (Figure 2).

Being able to track the health and behavior of gray whales on an individual level, including comparisons between variation in body condition, foraging behavior, and fine scale information on benthic communities gained through the use of GoPros, can provide a better understanding of the driving factors and impacts on their health and population trends (Figure 3).


Figure 3. A compilation of video clips captured by the GEMM Lab during their research on gray whale ecology and physiology off Newport, Oregon using Unoccupied Aerial Systems (UAS, or “drones”) and GoPro cameras. UAS are used to observe gray whale behavior and conduct photogrammetry assessment of body condition. GoPro camera drops assess the benthic habitat and prey density across the study region, with a couple chance encounters of whales. Research is conducted under NOAA/NMFS permit # 21678.

Milling around in definitions

Clara Bird, Masters Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

A big part of graduate school involves extensive reading to learn about the previous research conducted in the field you are joining and the embedded foundational theories. A firm understanding of this background literature is needed in order to establish where your research fits. Science is a constructive process; to advance our disciplines we must recognize and build upon previous work. Hence, I’ve been reading up on the central topic of my thesis: behavioral ecology. It is equally important to study the methods used in these studies as to understand the findings. As discussed in a previous blog, ethograms are a central component of the methodology for studying behavior. Ethograms are lists of defined behaviors that help us properly and consistently collect data in a standardized approach. It is especially important in a project that spans years to know that the data collected at the beginning was collected in the same way as the data collected at the end of the project.

While ethograms and standardized methods are commonly used within a study, I’ve noticed from reading through studies on cetaceans, a lack of standardization across studies. Not all behaviors that are named the same way have matching definitions, and not all behaviors with similar definitions have matching names. Of all the behaviors, “milling” may be the least standardized.

While milling is not in our ethogram (Leigh believes this term is a “cheat” for when behavior is actually “unknown”), we occasionally use “milling” in the field to describe when the gray whales are swimming around in an area, not foraging, but not in any other primary behavior state (travel, social, or rest). Sometimes we use when we think the whale may be searching, but we aren’t 100% sure yet. A recent conversation during a lab meeting on the confusing nature of the term “milling” inspired me to dig into the literature for this blog. I searched through the papers I’ve saved for my literature review and found 18 papers that used the term milling. It was fascinating to read how variably the term has been defined and used.

When milling was defined in these papers, it was most commonly described as numerous directional changes in movement within a restricted area 1–8. Milling often co-occurred with other behavior states. Five of these eight studies described milling as co-occurring with foraging behavior 3–6,8. In one case, milling was associated with foraging and slow movement 8. While another study described milling as passive, slow, nondirectional movement 9.

Eight studies used the term milling without defining the behavior 10–17. Of these, five described milling as being associated with other behavior states. Three studies described milling as co-occurring with foraging 10,14,16, one said that it co-occurred with social behavior 13, and another described milling as being associated with resting/slow movement 12.

In addition to this variety of definitions and behavior associations, there were also inconsistencies with the placement of “milling” within ethograms. In nine studies, milling was listed as a primary state 1,2,4,7–9,15,17,18. But, in two studies that mentioned milling and used an ethogram, milling was not included in the ethogram 6,14.

Diving into the associations between milling and foraging reveal how varied the use of milling has been within the cetacean literature. For example, two studies simply described milling as occurring near foraging in time 10,16. While another two studies explained that milling was applied in situations where there was evidence of feeding without feeding being directly observed 8,14. Bobkov et al. (2019) described milling as occurring between feeding cycles along with breathing. Lastly, two studies describe milling as a behavior within the foraging primary state 3,5, while another study described feeding as a behavior within milling 4.

It’s all rather confusing, huh? Across these studies, milling has been defined, mentioned without being defined, included in ethograms as a primary state, included in ethograms as a sub-behavior, and excluded from ethograms. Milling has also been associated with multiple primary behavior states (foraging, resting, and socializing). It has been described as both passive 9 and slow 12, and strong 16 and active 5.

It appears that milling is often used to describe behaviors that the observer cannot distinctly classify or describe its function. I have also struggled to define these times when a whale is in between behavior states; I often end up calling it “just being a whale”, which includes time spent breathing at the surface, or just swimming around.

As I’ve said above, Leigh thinks that this term is a “cheat” for when a behavior is actually “unknown”. I think we have trouble equating “milling” with “unknown” because it seems like “unknown” should refer to a behavior where we can’t quite tell what the whale is doing. However, during milling, we can see that the whale is swimming at the surface. But here’s the thing, while we can see what the whale is doing, the function of the behavior is still unknown. Instead of using an indistinct term, we should use a term that better describes the behavior.  If it’s swimming at the surface, name the behavior “swimming at the surface”. If we can’t tell what the whale is doing because we can’t quite see what it’s doing, then name the behavior “unknown-partially visible”. Instead of using vague terminology, we should use clear names for behaviors and embrace using the term “unknown”.

I am most certainly not criticizing these studies as they all provided valuable contributions and interesting results. The studies that asked questions about behavioral ecology defined milling. The term was mentioned without being defined in studies focused on other topics. So, defining behaviors mentioned was less important.

With this exploration into the use of “milling” in studies, I am not implying that all behavioral ecologists need to agree on the use of the same behavior terms. However, I have learned clear definitions are critical. This lesson is also important outside of behavioral ecology. Different labs, and different people, use different terms for the same things. As I dig into my thesis, I am keeping a list of terminology I use and how I define those terms, because as I learn more, my terminology evolves and changes. For example, at the beginning of my thesis I used “sub-behavior” to refer to behaviors within the primary state categories. But, now after chatting with Leigh and learning more, I’ve decided to use the term “tactic” instead as these are often processes or events that contribute to the broader behavior state. My running list of terminology helps me remember what I meant when I used a certain word, so that when I read my notes from three months ago, I can know what I meant.  Digging into the literature for this blog reminded me of the importance of clearly defining all terminology and never assuming that everyone uses the same term in the same way.

Check out these videos to see some of the behaviors we observe:

References

1.        Mallonee, J. S. Behaviour of gray whales (Eschrichtius robustus) summering off the northern California coast, from Patrick’s Point to Crescent City. Can. J. Zool. 69, 681–690 (1991).

2.        Clarke, J. T., Moore, S. E. & Ljungblad, D. K. Observations on gray whale (Eschrichtius robustus) utilization patterns in the northeastern Chukchi Sea. Can. J. Zool 67, (1988).

3.        Ingram, S. N., Walshe, L., Johnston, D. & Rogan, E. Habitat partitioning and the influence of benthic topography and oceanography on the distribution of fin and minke whales in the Bay of Fundy, Canada. J. Mar. Biol. Assoc. United Kingdom 87, 149–156 (2007).

4.        Lomac-MacNair, K. & Smultea, M. A. Blue Whale (Balaenoptera musculus) Behavior and Group Dynamics as Observed from an Aircraft off Southern California. Anim. Behav. Cogn. 3, 1–21 (2016).

5.        Lusseau, D., Bain, D. E., Williams, R. & Smith, J. C. Vessel traffic disrupts the foraging behavior of southern resident killer whales Orcinus orca. Endanger. Species Res. 6, 211–221 (2009).

6.        Bobkov, A. V., Vladimirov, V. A. & Vertyankin, V. V. Some features of the bottom activity of gray whales (Eschrichtius robustus) off the northeastern coast of Sakhalin Island. 1, 46–58 (2019).

7.        Howe, M. et al. Beluga, Delphinapterus leucas, ethogram: A tool for cook inlet beluga conservation? Mar. Fish. Rev. 77, 32–40 (2015).

8.        Clarke, J. T., Christman, C. L., Brower, A. A. & Ferguson, M. C. Distribution and Relative Abundance of Marine Mammals in the northeastern Chukchi and western Beaufort Seas, 2012. Annu. Report, OCS Study BOEM 117, 96349–98115 (2013).

9.        Barendse, J. & Best, P. B. Shore-based observations of seasonality, movements, and group behavior of southern right whales in a nonnursery area on the South African west coast. Mar. Mammal Sci. 30, 1358–1382 (2014).

10.      Le Boeuf, B. J., M., H. P.-C., R., J. U. & U., B. R. M. and F. O. High gray whale mortality and low recruitment in 1999: Potential causes and implications. (Eschrichtius robustus). J. Cetacean Res. Manag. 2, 85–99 (2000).

11.      Calambokidis, J. et al. Abundance, range and movements of a feeding aggregation of gray whales (Eschrictius robustus) from California to southeastern Alaska in 1998. J. Cetacean Res. Manag. 4, 267–276 (2002).

12.      Harvey, J. T. & Mate, B. R. Dive Characteristics and Movements of Radio-Tagged Gray Whales in San Ignacio Lagoon, Baja California Sur, Mexico. in The Gray Whale: Eschrichtius Robustus (eds. Jones, M. Lou, Folkens, P. A., Leatherwood, S. & Swartz, S. L.) 561–575 (Academic Press, 1984).

13.      Lagerquist, B. A. et al. Feeding home ranges of pacific coast feeding group gray whales. J. Wildl. Manage. 83, 925–937 (2019).

14.      Barrett-Lennard, L. G., Matkin, C. O., Durban, J. W., Saulitis, E. L. & Ellifrit, D. Predation on gray whales and prolonged feeding on submerged carcasses by transient killer whales at Unimak Island, Alaska. Mar. Ecol. Prog. Ser. 421, 229–241 (2011).

15.      Luksenburg, J. A. Prevalence of External Injuries in Small Cetaceans in Aruban Waters, Southern Caribbean. PLoS One 9, e88988 (2014).

16.      Findlay, K. P. et al. Humpback whale “super-groups” – A novel low-latitude feeding behaviour of Southern Hemisphere humpback whales (Megaptera novaeangliae) in the Benguela Upwelling System. PLoS One 12, e0172002 (2017).

17.      Villegas-Amtmann, S., Schwarz, L. K., Gailey, G., Sychenko, O. & Costa, D. P. East or west: The energetic cost of being a gray whale and the consequence of losing energy to disturbance. Endanger. Species Res. 34, 167–183 (2017).

18.      Brower, A. A., Ferguson, M. C., Schonberg, S. V., Jewett, S. C. & Clarke, J. T. Gray whale distribution relative to benthic invertebrate biomass and abundance: Northeastern Chukchi Sea 2009–2012. Deep. Res. Part II Top. Stud. Oceanogr. 144, 156–174 (2017).

Whale blow: good for more than spotting whales

Clara Bird, Masters Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

Whale blow, the puff of air mixed with moisture that a whale releases when it comes to the surface, is a famously thrilling indicator of the presence of a whale. From shore, spotting whale blow brings the excitement of knowing that there are whales nearby. During boat-based field work, seeing or hearing blow brings the rush of adrenaline meaning that it’s game time. Whale blow can also be used to identify different species of whales, for example gray whale blow is heart shaped (Figure 1). However, whale blow can be used for more than just spotting and identifying whales. We can use the time between blows to study energetics.

Figure 1. Gray whale blow is often heart shaped (when there is very little wind). Source: https://www.lajollalight.com/sdljl-natural-la-jolla-winter-wildlife-2015jan08-story.html

A blow interval is the time between consecutive blows when a whale is at the surface (Stelle, Megill, and Kinzel 2008). These are also known as short breath holds, whereas long breath holds are times between surfacings (Sumich 1983).  Sumich (1983) hypothesized that short breath holds lead to efficient rates of oxygen use. The body uses oxygen to create energy, so “efficient rate of oxygen use” means that longer breath holds do not use much more oxygen and subsequently do not produce more energy.  Surfacings, during which short blow intervals occur, are often thought of as recovery periods for whales. Think of it this way, when you sprint, immediately afterwards you typically need to take a break to just breathe and recover.

We hypothesize that we can use blow intervals as a measure of how strenuous an activity is; shorter blow intervals may indicate that an activity is more energetically demanding (Wursig, Wells, and Croll 1986). Let’s go back to the sprinting analogy and compare the energetic demands of walking and running. Imagine I asked you to walk for five minutes, stop and measure the time between each breath, and then run for five minutes and do the same; after running, you would likely breathe more heavily and take more breaths with less time between them. This result indicates that running is more demanding, which we already know because we can do other experiments with humans to study metabolic rate and related metrics. In the case of gray whales, we cannot do experiments in the same way, but we can use the same analogy. Several studies have examined how blow intervals differ between travelling and foraging.

Wursig, Wells, and Croll (1986) measured blow interval, surfacing time, and estimated dive depth and duration of gray whales in Alaska from a boat during the foraging season. They found that blow intervals were shorter during feeding. They also found that the number of blows per surfacing increased with increasing depth. Overall these findings suggest that during the foraging season, feeding is more strenuous than other behaviors and that deeper dives may be more physiologically stressful.

Stelle, Megill, and Kinzel (2008) studied gray whales foraging off of British Columbia, Canada. They found shorter blow intervals during foraging, intermediate blow intervals during searching, and longer blow intervals during travelling. Interestingly, within feeding behaviors, they found a difference between whales feeding on mysids (krill-like animals that swim in the water column) and whales feeding benthically on amphipods. They found that whales feeding on mysids made more frequent but shorter dives with short blow intervals at surface, while whales feeding benthically had longer dives with longer blow intervals. They hypothesized that this difference in surfacing pattern is because mysids might scatter when disturbed, so gray whales surface more often to allow the mysids swarm to reform. These studies inspired me to start investigating these same questions with my drone video data.

As I review the drone footage and code the behaviors I also mark the time of each blow. I’ve done some initial video coding and using this data I have started to look into differences in blow intervals. As it turns out, we see a similar difference in blow interval relative to behavior state in our data: whales that are foraging have shorter blow intervals than when traveling (Figure 2). It is encouraging to see that our data shows similar patterns.

Figure 2. Boxplot of mean blow interval per sighting of foraging whales and travelling whales.

Next, I would like to examine how blow intervals differ between foraging tactics. A significant part of my thesis is dedicated to studying specific foraging tactics. The perspective from the drone allows us to identify behaviors in greater detail than studies from shore or boat (Torres et al. 2018), allowing us to dig into the differences between the different foraging behaviors. The purpose of foraging is to gain energy. However, this gain is a net gain. To understand the different energetic “values” of each tactic we need to understand the cost of each behavior, i.e. how much energy is required to perform the behavior. Given previous studies, maybe blow intervals could help us measure this cost or at least compare the energetic demands of the behaviors relative to each other. Furthermore, because different behaviors are likely associated with different prey types (Dunham and Duffus 2001), we also need to understand the different energetic gains of each prey type (this is something that Lisa is studying right now, check out the COZI project to learn more). By understanding both of these components – the gains and costs – we can understand the energetic tradeoffs of the different foraging tactics.

Another interesting component to this energetic balance is a whale’s health and body condition. If a whale is in poor health, can it afford the energetic costs of certain behaviors? If whales in poor body condition engage in different behavior patterns than whales in good body condition, are these patterns explained by the energetic costs of the different foraging behaviors? All together this line of investigation is leading to an understanding of why a whale may choose to use different foraging behaviors in different situations. We may never get the full picture; however, I find it really exciting that something as simple and non-invasive as measuring the time between breaths can contribute such a valuable data stream to this project.

References

Dunham, Jason S., and David A. Duffus. 2001. “Foraging Patterns of Gray Whales in Central Clayoquot Sound, British Columbia, Canada.” Marine Ecology Progress Series 223 (November): 299–310. https://doi.org/10.3354/meps223299.

Stelle, Lei Lani, William M. Megill, and Michelle R. Kinzel. 2008. “Activity Budget and Diving Behavior of Gray Whales (Eschrichtius Robustus) in Feeding Grounds off Coastal British Columbia.” Marine Mammal Science 24 (3): 462–78. https://doi.org/10.1111/j.1748-7692.2008.00205.x.

Sumich, James L. 1983. “Swimming Velocities, Breathing Patterns, and Estimated Costs of Locomotion in Migrating Gray Whales, Eschrichtius Robustus.” Canadian Journal of Zoology 61 (3): 647–52. https://doi.org/10.1139/z83-086.

Torres, Leigh G., Sharon L. Nieukirk, Leila Lemos, and Todd E. Chandler. 2018. “Drone up! Quantifying Whale Behavior from a New Perspective Improves Observational Capacity.” Frontiers in Marine Science 5 (SEP). https://doi.org/10.3389/fmars.2018.00319.

Wursig, B., R. S. Wells, and D. A. Croll. 1986. “Behavior of Gray Whales Summering near St. Lawrence Island, Bering Sea.” Canadian Journal of Zoology 64 (3): 611–21. https://doi.org/10.1139/z86-091.

The complex relationship between behavior and body condition

Clara Bird, Masters Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

Imagine that you are a wild foraging animal: In order to forage enough food to survive and be healthy you need to be healthy enough to move around to find and eat your food. Do you see the paradox? You need to be in good condition to forage, and you need to forage to be in good condition. This complex relationship between body condition and behavior is a central aspect of my thesis.

One of the great benefits of having drone data is that we can simultaneously collect data on the body condition of the whale and on its behavior. The GEMM lab has been measuring and monitoring the body condition of gray whales for several years (check out Leila’s blog on photogrammetry for a refresher on her research). However, there is not much research linking the body condition of whales to their behavior. Hence, I have expanded my background research beyond the marine world to looked for papers that tried to understand this connection between the two factors in non-cetaceans. The literature shows that there are examples of both, so let’s go through some case studies.

Ransom et al. (2010) studied the effect of a specific type of contraception on the behavior of a population of feral horses using a mixed model. Aside from looking at the effect of the treatment (a type of contraception), they also considered the effect of body condition. There was no difference in body condition between the treatment and control groups, however, they found that body condition was a strong predictor of feeding, resting, maintenance, and social behaviors. Females with better body condition spent less time foraging than females with poorer body condition. While it was not the main question of the study, these results provide a great example of taking into account the relationship between body condition and behavior when researching any disturbance effect.

While Ransom et al. (2010) did not find that body condition affected response to treatment, Beale and Monaghan (2004) found that body condition affected the response of seabirds to human disturbance. They altered the body condition of birds at different sites by providing extra food for several days leading up to a standardized disturbance. Then the authors recorded a set of response variables to a disturbance event, such as flush distance (the distance from the disturbance when the birds leave their location). Interestingly, they found that birds with better body condition responded earlier to the disturbance (i.e., when the disturbance was farther away) than birds with poorer body condition (Figure 1). The authors suggest that this was because individuals with better body condition could afford to respond sooner to a disturbance, while individuals with poorer body condition could not afford to stop foraging and move away, and therefore did not show a behavioral response. I emphasize behavioral response because it would have been interesting to monitor the vital rates of the birds during the experiment; maybe the birds’ heart rates increased even though they did not move away. This finding is important when evaluating disturbance effects and management approaches because it demonstrates the importance of considering body condition when evaluating impacts: animals that are in the worst condition, and therefore the individuals that are most vulnerable, may appear to be undisturbed when in reality they tolerate the disturbance because they cannot afford the energy or time to move away.

Figure 1.  Figure showing flush distance of birds that were fed (good body condition) and unfed (poor body condition).

These two studies are examples of body condition affecting behavior. However, a study on the effect of habitat deterioration on lizards showed that behavior can also affect body condition. To study this effect, Amo et al. (2007) compared the behavior and body condition of lizards in ski slopes to those in natural areas. They found that habitat deterioration led to an increased perceived risk of predation, which led to an increase in movement speed when crossing these deteriorated, “risky”, areas. In turn, this elevated movement cost led to a decrease in body condition (Figure 2). Hence, the lizard’s behavior affected their body condition.


Figure 2. Figure showing the difference in body condition of lizards in natural and deteriorated habitats.

Together, these case studies provide an interesting overview of the potential answers to the question: does body condition affect behavior or does behavior affect body condition? The answer is that the relationship can go both ways. Ransom et al. (2004) showed that regardless of the treatment, behavior of female horses differed between body conditions, indicating that regardless of a disturbance, body condition affects behavior. Beale and Monaghan (2004) demonstrated that seabird reactions to disturbance differed between body conditions, indicating that disturbance studies should take body condition into account. And, Amo et al. (2007) showed that disturbance affects behavior, which consequently affects body condition.

Looking at the results from these three studies, I can envision finding similar results in my gray whale research. I hypothesize that gray whale behavior varies by body condition in everyday circumstances and when the whale is disturbed. Yet, I also hypothesize that being disturbed will affect gray whale behavior and subsequently their body condition. Therefore, what I anticipate based on these studies is a circular relationship between behavior and body condition of gray whales: if an increase in perceived risk affects behavior and then body condition, maybe those affected individuals with poor body condition will respond differently to the disturbance. It is yet to be determined if a sequence like this could ever be detected, but I think that it is important to investigate.

Reading through these studies, I am ready and eager to start digging into these hypotheses with our data. I am especially excited that I will be able to perform this investigation on an individual level because we have identified the whales in each drone video. I am confident that this work will lead to some interesting and important results connecting behavior and health, thus opening avenues for further investigations to improve conservation studies.

References

Beale, Colin M, and Pat Monaghan. 2004. “Behavioural Responses to Human Disturbance: A Matter of Choice?” Animal Behaviour 68 (5): 1065–69. https://doi.org/10.1016/j.anbehav.2004.07.002.

Ransom, Jason I, Brian S Cade, and N. Thompson Hobbs. 2010. “Influences of Immunocontraception on Time Budgets, Social Behavior, and Body Condition in Feral Horses.” Applied Animal Behaviour Science 124 (1–2): 51–60. https://doi.org/10.1016/j.applanim.2010.01.015.

Amo, Luisa, Pilar López, and José Martín. 2007. “Habitat Deterioration Affects Body Condition of Lizards: A Behavioral Approach with Iberolacerta Cyreni Lizards Inhabiting Ski Resorts.” Biological Conservation 135 (1): 77–85. https://doi.org/10.1016/j.biocon.2006.09.020.

Classifying cetacean behavior

Clara Bird, Masters Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

The GEMM lab recently completed its fourth field season studying gray whales along the Oregon coast. The 2019 field season was an especially exciting one, we collected rare footage of several interesting gray whale behaviors including GoPro footage of a gray whale feeding on the seafloor, drone footage of a gray whale breaching, and drone footage of surface feeding (check out our recently released highlight video here). For my master’s thesis, I’ll use the drone footage to analyze gray whale behavior and how it varies across space, time, and individual. But before I ask how behavior is related to other variables, I need to understand how to best classify the behaviors.

How do we collect data on behavior?

One of the most important tools in behavioral ecology is an ‘ethogram’. An ethogram is a list of defined behaviors that the researcher expects to see based on prior knowledge. It is important because it provides a standardized list of behaviors so the data can be properly analyzed. For example, without an ethogram, someone observing human behavior could say that their subject was walking on one occasion, but then say strolling on a different occasion when they actually meant walking. It is important to pre-determine how behaviors will be recorded so that data classification is consistent throughout the study. Table 1 provides a sample from the ethogram I use to analyze gray whale behavior. The specificity of the behaviors depends on how the data is collected.

Table 1. Sample from gray whale ethogram. Based on ethogram from Torres et al. (2018).

In marine mammal ecology, it is challenging to define specific behaviors because from the traditional viewpoint of a boat, we can only see what the individuals are doing at the surface. The most common method of collecting behavioral data is called a ‘focal follow’. In focal follows an individual, or group, is followed for a set period of time and its behavioral state is recorded at set intervals.  For example, a researcher might decide to follow an animal for an hour and record its behavioral state at each minute (Mann 1999). In some studies, they also recorded the location of the whale at each time point. When we use drones our methods are a little different; we collect behavioral data in the form of continuous 15-minute videos of the whale. While we collect data for a shorter amount of time than a typical focal follow, we can analyze the whole video and record what the whale was doing at each second with the added benefit of being able to review the video to ensure accuracy. Additionally, from the drone’s perspective, we can see what the whales are doing below the surface, which can dramatically improve our ability to identify and describe behaviors (Torres et al. 2018).

Categorizing Behaviors

In our ethogram, the behaviors are already categorized into primary states. Primary states are the broadest behavioral states, and in my study, they are foraging, traveling, socializing, and resting. We categorize the specific behaviors we observe in the drone videos into these categories because they are associated with the function of a behavior. While our categorization is based on prior knowledge and critical evaluation, this process can still be somewhat subjective.  Quantitative methods provide an objective interpretation of the behaviors that can confirm our broad categorization and provide insight into relationships between categories.  These methods include path characterization, cluster analysis, and sequence analysis.

Path characterization classifies behaviors using characteristics of their track line, this method is similar to the RST method that fellow GEMM lab graduate student Lisa Hildebrand described in a recent blog. Mayo and Marx (1990) analyzed the paths of surface foraging North Atlantic Right Whales and were able to classify the paths into primary states; they found that the path of a traveling whale was more linear and then paths of foraging or socializing whales that were more convoluted (Fig 1). I plan to analyze the drone GPS track line as a proxy for the whale’s track line to help distinguish between traveling and foraging in the cases where the 15-minute snapshot does not provide enough context.

Figure 1. Figure from Mayo and Marx (1990) showing different track lines symbolized by behavior category.

Cluster analysis looks for natural groupings in behavior. For example, Hastie et al. (2004) used cluster analysis to find that there were four natural groupings of bottlenose dolphin surface behaviors (Fig. 2). I am considering using this method to see if there are natural groupings of behaviors within the foraging primary state that might relate to different prey types or habitat. This process is analogous to breaking human foraging down into sub-categories like fishing or farming by looking for different foraging behaviors that typically occur together.

Figure 2. Figure from Hastie et al. (2004) showing the results of a hierarchical cluster analysis.

Lastly, sequence analysis also looks for groupings of behaviors but, unlike cluster analysis, it also uses the order in which behaviors occur. Slooten (1994) used this method to classify Hector’s dolphin surface behaviors and found that there were five classes of behaviors and certain behaviors connected the different categories (Fig. 3). This method is interesting because if there are certain behaviors that are consistently in the same order then that indicates that the order of events is important. What function does a specific sequence of behaviors provide that the behaviors out of that order do not?

Figure 3. Figure from Slooten (1994) showing the results of sequence analysis.

Think about harvesting fruits and vegetables from a garden: the order of how things are done matters and you might use different methods to harvest different kinds of produce. Without knowing what food was being harvested, these methods could detect that there were different harvesting methods for different fruits or veggies. By then studying when and where the different methods were used and by whom, we could gain insight into the different functions and patterns associated with the different behaviors. We might be able to detect that some methods were always used in certain habitat types or that different methods were consistently used at different times of the year.

Behavior classification methods such as these described provide a more refined and detailed analysis of categories that can then be used to identify patterns of gray whale behaviors. While our ultimate goal is to understand how gray whales will be affected by a changing environment, a comprehensive understanding of their current behavior serves as a baseline for that future study.

References

Burnett, J. D., Lemos, L., Barlow, D., Wing, M. G., Chandler, T., & Torres, L. G. (2019). Estimating morphometric attributes of baleen whales with photogrammetry from small UASs: A case study with blue and gray whales. Marine Mammal Science, 35(1), 108–139. https://doi.org/10.1111/mms.12527

Darling, J. D., Keogh, K. E., & Steeves, T. E. (1998). Gray whale (Eschrichtius robustus) habitat utilization and prey species off Vancouver Island, B.C. Marine Mammal Science, 14(4), 692–720. https://doi.org/10.1111/j.1748-7692.1998.tb00757.x

Hastie, G. D., Wilson, B., Wilson, L. J., Parsons, K. M., & Thompson, P. M. (2004). Functional mechanisms underlying cetacean distribution patterns: Hotspots for bottlenose dolphins are linked to foraging. Marine Biology, 144(2), 397–403. https://doi.org/10.1007/s00227-003-1195-4

Mann, J. (1999). Behavioral sampling methods for cetaceans: A review and critique. Marine Mammal Science, 15(1), 102–122. https://doi.org/10.1111/j.1748-7692.1999.tb00784.x

Slooten, E. (1994). Behavior of Hector’s Dolphin: Classifying Behavior by Sequence Analysis. Journal of Mammalogy, 75(4), 956–964. https://doi.org/10.2307/1382477

Torres, L. G., Nieukirk, S. L., Lemos, L., & Chandler, T. E. (2018). Drone up! Quantifying whale behavior from a new perspective improves observational capacity. Frontiers in Marine Science, 5(SEP). https://doi.org/10.3389/fmars.2018.00319

Mayo, C. A., & Marx, M. K. (1990). Surface foraging behaviour of the North Atlantic right whale, Eubalaena glacialis, and associated zooplankton characteristics. Canadian Journal of Zoology, 68(10), 2214–2220. https://doi.org/10.1139/z90-308

Remote Sensing Applications

By Leila Lemos, PhD candidate

Fisheries and Wildlife Department, OSU

 

I am finally starting my 3rd and last year of my PhD. Just a year left and yet so many things to do. As per department requirements, I still need to take some class credits, but what classes could I take? In this short amount of time it is important to focus on my research project and on what could help me better understand the many branches of the project and what could improve my analyses. Thinking of that, both my advisor (Dr. Leigh G. Torres) and I agreed that it would be useful for me to take a class on remote sensing. So, I could learn more about this field, as well as try to include some remote sensing analyses in my project, such as sea surface temperature (SST) and chlorophyll (i.e., as a productivity indicator) conditions over the years we have collected data on gray whales off the Oregon coast.

 

Our photogrammetry data indicates that whales gradually increased their body condition over the feeding seasons of 2016 and 2018, while 2017 is different. Whales were still looking skinny in the middle of the season, and we were not collecting many fecal samples up to that point (indicating not much feeding). These findings made us wonder if this was related to delayed seasonal upwelling events and consequently low prey availability. These questions are what motivated me the most to join this class so that we might be able to link environmental correlates with our observations of gray whale body condition.

Figure 01: Skinny body condition state of the gray whale “Pancake” in August 2017.
Source: Leila S. Lemos

 

If we stop to think about what remote sensing is, we have already been implementing this method in our project since the beginning, as my favorite definition for remote sensing is “the art of collecting information of objects or phenomenon without touching it”. So, yes, the drone is a type of sensor that remotely collects information of objects (in this case, whales).

Figure 02: Drone remotely collecting information of a whale in September 2018. Drone in detail. Collected under NOAA/NMFS permit #16111.
Source: Leila Lemos

 

However, satellites, all the way up in the space, are also remotely sensing the Earth and its objects and phenomena. Even from thousands of km above Earth, these sensors are capable of generating a great amount of detailed data that is easily and freely accessible (i.e., NASA, NOAA), and can be used for multiple applications in different fields of study. Satellites are also able to collect data from remote areas like the Antarctica and the Arctic, as well as other areas that are not easily reached by humans. One important application of the use of satellite imagery is wildlife monitoring.

For example, satellite data was used to detect variation in the abundance of Weddell seals (Leptonychotes weddellii) in Erebus Bay, Antarctica (LaRue et al., 2011). Because this is a well-studied seal population, the object of this study was to test if satellite imagery could produce reliable abundance estimates. The authors used high-resolution (0.6 m) satellite imagery (from satellites Quick-Bird-2 and WorldView-1) to compare counts from the ground with counts from satellite images in the same locations at the same time. This study demonstrated a reliable methodology for further studies to replicate.

Figure 03: WorldView-1 image (0.6 m resolution) of Weddell seals hauled out east of Inaccessible Island, Erebus Bay, Antarctica.
Source: LaRue et al. (2011).

 

Satellite imagery was also applied to estimate colony sizes of Adélie penguins in Antarctica (LaRue et al., 2014). High-resolution (0.6 m) satellite imagery combined with spectral analysiswas used to estimate the sizes of the penguin breeding colonies. Ground counts were also used in order to check the reliability of the applied method. The authors then created a model to predict the abundance of breeding pairs as a function of the habitat, which was identified terrain slope as an important component of nesting density.

The identification of whales using satellite imagery is also possible. Fretwell et al. (2014)pioneered this method by successfully identifing Southern Right Whales (Eubalaena australis) in the Golfo Nuevo, Península Valdés, in Argentina in satellite images. By using very high-resolution satellite imagery (50 cm resolution) and a water penetrating coastal band that was able to see deeper into the water column, the researchers were able to successfully identify and count the whales (Fig. 04). The importance of this study was very significant, since this species was extensively hunted from the 17ththrough to the 20thcentury. Since then, the species has shown a strong recovery, but population estimates are still at <15% of historical estimates. Thus, being able to use new tools to identify, count and monitor individuals in this recovering population is a great development, especially in remote and hard to reach areas.

Figure 04: Identification of Southern Right Whales by using imagery from the WorldView2 satellite in the Golfo Nuevo Bay, Península Valdés, Argentina.
Source: Fretwell et al. (2014).

 

Polar bears (Ursus maritimus) have also been studied in the Foxe Basin, in Nunavut and Quebec, Canada (LaRue et al., 2015). Researchers used high-resolution satellite imagery in an attempt to identify and count the bears, but spectral signature differences between bears and other objects were insufficient to yield useful results. Therefore, researchers developed an automated image differencing, also known as change detection, that identifies differences between remotely sensed images collected at different times and “subtract of one image from another”. This method correctly identified nearly 90% of the bears. The technique also generated false positives, but this problem can be corrected by a manual review.

Figure 05 shows the difference in resolution of two types of satellite imagery, the panchromatic (0.6 m resolution) and the multispectral (2.4 m resolution). LaRue et al. (2015)decided not to use the multispectral imagery due to resolution constraints.

Figure 05: Polar Bears on panchromatic (0.6 m resolution) and multispectral (2.4 m resolution) imagery.
Source: LaRue et al. (2015).

 

A more recent study is being conducted by my fellow OSU Fisheries and Wildlife graduate student, Jane Dolliveron breeding colonies of three species of North Pacific albatrosses (Phoebastria immutabilis, Phoebastria nigripes, and Phoebastria albatrus)(Dolliver et al., 2017). Jane is using high-resolution multispectral satellite imagery (DigitalGlobe WorldView-2 and -3) and image processing techniques to enumerate the albatrosses. They are also using albatross species at multiple reference colonies in Hawaii and Japan (Fig. 06) to determine species identification accuracy and required correction factor(s). This will allow scientists to accurately count unknown populations on the Senkakus, which are uninhabited islands controlled by Japan in the East China Sea.

Figure 06: Satellite image of a colony of short-tailed albatrosses (Phoebastria albatrus) in Torishima, Japan, 2016.
Source: Satellite image provided by Jane Dolliver.

 

Using satellite imagery to count seals, penguins, whales, bears and albatrosses is just the start of this rapidly advancing technology. Techniques and resolutions are continuously improving. Methods can also be applied to many other endangered species, especially in remote areas, providing data on presence, abundance, annual productivity, population estimates and trends, changes in distribution, and breeding ground usage.

Other than directly monitoring wildlife, satellite images can also provide information on the environmental variables that can be related to wildlife presence, abundance, productivity and distribution.

Gentemann et al. (2017), for example, used satellite data from NASA to analyze SST variations along the west coast of the United States from 2002 to 2016. The NASA Jet Propulsion Laboratory produces global, daily, 1 km, multiscale ultra-high resolution, motion-compensated analysis of SST, and incorporates SSTs from eight different satellites. Researchers were able to identify warmer than usual SSTs (also called anomalies) along the Washington, Oregon, and California coasts from January 2014 to August 2016 (Fig.07) relative to previous years. This marine heat wave started in the Gulf of Alaska and ended in Southern California, where SST reached a maximum temperature anomaly of 6.2°C, causing major disturbances and substantial economic impacts.

Figure 07: Monthly SST anomalies in the West Coast of United States, from January 2014 to August 2016.
Source: Gentemann et al. (2017).

 

Changes in SST and winds may alter events such as the coastal upwelling that supplies nutrients to sustain a whole food chain. A marine heat-wave event as described by Gentemann et al. (2017)could have significant impacts on the health of the marine ecosystem in the subsequent season (Gentemann et al., 2017).

These findings may even relate to our questions regarding the poor gray whale body condition we noticed in 2017: this marine heat wave that lasted until August 2016 along the US west coast could have impacted the ecosystem in the subsequent season. However, I must conduct a more detailed study to determine if this heat wave was related or if another oceanographic process was involved.

So, whether remotely sensed data is generated by satellites, drones, thermal imagery, robots (as I previously wrote about), or another type of technology, it can have important  and informative applications to monitor wildlife or environmental variables associated with their ecology and biology. We can take advantage of remotely sensed technology to aid wildlife conservation efforts.

 

References

Dolliver, J., et al., Multispectral processing of high resolution satellite imagery to determine the abundance of nesting albatross. Ecological Society of America, Portland, OR, United States., 2017.

Fretwell, P. T., et al., 2014. Whales from Space: Counting Southern Right Whales by Satellite. Plos One. 9,e88655.

Gentemann, C. L., et al., 2017. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophysical Research Letters. 44,312-319.

LaRue, M. A., et al., 2014. A method for estimating colony sizes of Adélie penguins using remote sensing imagery. Polar Biology. 37,507-517.

LaRue, M. A., et al., 2011. Satellite imagery can be used to detect variation in abundance of Weddell seals (Leptonychotes weddellii) in Erebus Bay, Antarctica. Polar Biology. 34,1727–1737.

LaRue, M. A., et al., 2015. Testing Methods for Using High-Resolution Satellite Imagery to Monitor Polar Bear Abundance and Distribution. Wildlife Society Bulletin. 39,772-779.

 

 

 

 

 

Robots are taking over the oceans

By Leila Lemos, PhD Student

In the past few weeks I read an article on the use of aquatic robots in the ocean for research. Since my PhD project uses technology, such as drones and GoPros, to monitor body condition of gray whales and availability of prey along the Oregon coast, I became really interested by the new perspective these robots could provide. Drones produce aerial images while GoPros generate an underwater-scape snapshot. The possible new perspective provided by a robot under the water could be amazing and potentially be used in many different applications.

The article was published on March 21st by The New York Times, and described a new finned robot named “SoFi” or “Sophie”, short for Soft Robotic Fish (Figure 1; The New York Times 2018). The aquatic robot was designed by scientists at the Massachusetts Institute of Technology (MIT) Computer Science and Artificial Intelligence Lab, with the purpose of studying marine life in their natural habitats.

Figure 1: “SoFi”, a robotic fish designed by MIT scientists.
Source: The New York Times 2018.

 

SoFi’s  first swim trial occurred in a coral reef in Fiji, and the footage recorded can be seen in the following video:

 

SoFi can swim at depths up to 18 meters and at speeds up to half-its-body-length a second (average of 23.5 cm/s in a straight path; Katzschmann et al. 2018). Sofi can swim for up to ~40 minutes, as limited by battery time. The robot is also well-equipped (Figure 2). It has a compact buoyancy control mechanism and includes a wide-view video camera, a hydrophone, a battery, environmental sensors, and operating and communication systems. The operating and communication systems allow a diver to issue commands by using a controller that operates through sound waves.

Figure 2: “SoFi” system subcomponents overview.
Source: Katzschmann et al. 2018.

 

The robot designers highlight that while SoFi was swimming, fish didn’t seem to be bothered or get scared by SoFi’s presence. Some fish were seen swimming nearby the robot, suggesting that SoFi has the potential to integrate into the natural underwater environment and therefore record undisturbed behaviors. However, a limitation of this invention is that SoFi needs a diver on scene to control the robot. Therefore, SoFi’s study of marine life without human interference may be compromised until technology develops further.

Another potential impact of SoFi we might be concerned about is noise. Does this device produce noise levels that marine fauna can sense or maybe be stress by? Unfortunately, the answer is yes. Even if fish don’t seem to be bothered by SoFi’s presence, it might bother other animals with hearing sensitivity in the same frequency range of SoFi. Katzschmann and colleagues (2018) explained that they chose a frequency to operate SoFi that would minimally impact marine fauna. They studied the frequencies used by the aquatic animals and, since the hearing ranges of most aquatic species decays significantly above 10 KHz, they selected a frequency above this range (i.e., 36 KHz). However, this high frequency range can be sensed by some species of cetaceans and pinnipeds, but negative affects on these animals will be dependent on the sound amplitude that is produced.

Although not perfect (but what tool is?), SoFi can be seen as a great first step toward a future of underwater robots to assist research efforts.  Battery life, human disturbance, and noise disturbance are limitations, but through thoughtful application and continued innovation this fishy tool can be the start of something great.

The use of aquatic robots, such as SoFi, can help us advance our knowledge in underwater ecosystems. These robots could promote a better understanding of marine life in their natural habitat by studying behaviors, interactions and responses to threats. These robots may offer important new tools in the protection of animals against the effects caused by anthropogenic activities. Additionally, the use of aquatic robots in scientific research may substitute remote operated vehicles and submersibles in some circumstances, such as how drones are substituting for airplanes sometimes, thus providing a less expensive and better-tolerated way of monitoring wildlife.

Through continued multidisciplinary collaboration by robot designers, biologists, meteorologists, and more, innovation will continue allowing data collection with minimal to non-disturbance to the wildlife, providing lower costs and higher safety for the researchers.

It is impressive to see how technology efforts are expanding into the oceans. As drones are conquering our skies today and bringing so much valuable information on wildlife monitoring, I believe that the same will occur in our oceans in a near future, assisting in marine life conservation.

 

 

References:

Katzschmann RK, DelPreto J, MacCurdy R, Rus D. 2018. Exploration of Underwater Life with an Acoustically Controlled Soft Robotic Fish. Sci. Robot. 3, eaar3449. DOI: 10.1126/scirobotics.aar3449.

The New York Times. 2018. Robotic Fish to Keep a Fishy Eye on the Health of the Oceans. Available at: https://www.nytimes.com/2018/03/21/science/robot-fish.html.

Observing humpback whales through the clear New Caledonian waters

Solène Derville, Entropie Lab, French National Institute for Sustainable Development (IRD – UMR Entropie), Nouméa, New Caledonia

Ph.D. student under the co-supervision of Dr. Leigh Torres

Drone technology has illustrated itself as particularly useful to the study of cetacean in the GEMM Lab (see previous post by Dawn and Leila) and in the marine mammal research community in general. The last Conference on the Biology of Marine Mammals in Halifax staged several talks and posters describing the great potential of drones for observing animal behaviors, collecting blow samples, estimating the size and health of animals, or estimating densities. The GEMM Lab has been conducting leading research in this field, from capturing exceptional footages of lunge feeding blue whales in New Zealand, to measuring gray whale health on the Oregon coast.

Using drones in New Caledonia

In September 2017 I participated in a scientific cruise undertaken by Opération Cétacés /IRD to study New Caledonian humpback whales, and we were lucky to be joined by Nicolas Job, a professional diver, photographer and drone pilot. It was one of those last minute decisions: one of our crewmates canceled the week before the survey and we thought “who could we bring on instead?”. We barely knew the man but figured it would be good to get a few humpback whale drone images… We invited him to join us on the research expedition only a few days before the trip but this is not the kind of opportunity that a photographer would pass on!

Far from trying to acquire scientific data in the way the GEMM Lab does with blue whales and gray whales, we were only hoping to take “pretty pictures”… we were not disappointed.

Once we got past a few unexpected issues (YES you need to wear gloves to protect your fingers when trying to catch a flying drone (Fig 1), and NO frigate birds will not attack drones as long as they don’t smell like fish), Nicolas managed to fly the drone above our small research boat and capture footage of several humpback whale groups, including mothers with calf and competitive groups.

Figure 1: Frigate birds are known to attack birds in flight to steal their meal straight from their beak…luckily they did not attack our drone! On the contrary, it seems like they could help scientists one day as it has been suggested that UAV builders could learn from their exceptional soaring behavior that allows months-long transoceanic flights (photo credit: Henri Zemerskirch CEBC CNRS) .

As I said, no groundbreaking science here, but this experience convinced me that drones can bring a new perspective to the way we observe and interpret animal behavior. As a known statistics/R-lover in the lab, I often get so excited by the intricacies of data analysis that I forget I am studying these giant, elegant, agile, and intelligent sea creatures (Fig 2). And the video clips that Nicolas put together just reminded me of that.

The clear waters of the Natural Park of the Coral Sea allowed us to see whales as far as 30 meters deep in some areas! This perspective turned our usual surface observations into 3D. We could see escorts guarding maternal females and preventing other males from approaching by producing bubble trails. Escorts also extended their pectoral fins on either side of their body, a behavior supposed to make them look more imposing in the presence of a challenger. Competitive groups were also very impressive from above. During the breeding season, competitive groups form when several males aggregate around a female and compete for it. These groups typically travel at high speed and are characterized by active surface behaviors such as tail slaps, head lunges, and bubble trails.

Figure 2: This female humpback whale was encountered in 2016 and 2017. Her white flanks make her particularly easy to recognize. On both occasions it put on a show and kept circling the Amborella oceanographic vessel for more than an hour. To provide a sense of scale, the vessel on this drone footage is 24 m long (photo credit: Nicolas Job).

Drones and seamounts

Since the discovery of humpback whale offshore breeding areas in Antigonia seamount in 2007 and Orne bank in 2016, a lot of research has been conducted to better understand habitat preferences, distributions and connectivity in oceanic waters of New Caledonia (see previous post). Surveys have always been strongly multidisciplinary, including boat-based observation, biopsy sampling, and photo-identification, satellite tracking, in situ oceanographic measurements and acoustics. Will drones soon become an essential component of this toolbox?

One potential application I could imagine for my personal research questions would be to use aerial photogrammetry to measure the size of newborn calves. Indeed, we have found that offshore seamounts are used by a relatively great number of mothers with calf (Derville, Torres & Garrigue, In Press JMAMM). This finding is counter intuitive to the paradigm that maternal females prefer sheltered, shallow and coastal waters as shown in many breeding grounds around the world. Yet, we believe unsheltered oceanic areas might become more attractive to maternal females as the calf grows bigger and more robust to harsh sea states and encounters with competitive adult males. Drone photogrammetry of calves could likely help us confirm this hypothesis.

But for now, I will leave the science behind for a bit and let you enjoy the sheer beauty of this footage!

Film directed by Nicolas Job (Heos Marine) with images collected during the MARACAS3 survey (Marine Mammals of the Coral Sea: IRD/ UMR Entropie/Opération Cétacés/ Gouv.nc/ WWF/ Ministère de la Transition écologique et solidaire).

How Unmanned Aircraft Systems (UAS, aka “drones”) are being applied in conservation research

By Leila Lemos, Ph.D. Student, Department of Fisheries and Wildlife, OSU

 

Unmanned Aircraft Systems (UAS), also known as “drones”, have been increasingly used in many diverse areas. Concerning field research, the use of drones has brought about reduced errors, increased safety and survey efforts, among other benefits, as described in a previous blog post of mine.

Several study groups around the world have been applying this new technology to a great variety of research applications, aiding in the conservation of certain areas and their respective fauna and flora. Examples of these studies include forest monitoring and tree cover analyses, .

Using drones for forest monitoring and tree cover analyses allows for many applications, such as biodiversity and tree height monitoring, forest classification and inventory, and plant disease and detection. The Ugalla Primate Project, for example, performed an interesting study on tree coverage mapping in western Tanzania (Figure 1).

Figure 1: Tree coverage analyses in Tanzania.
Source: Conservation Drones, 2016.

 

The access to this data (not possible before from the ground) and the acquired knowledge on tree density and structure were important to better understand how wild primates exploit a mosaic landscape. Here is a video about this project:

 

Forest restoration activities can also be monitored by drones. Rainforests around the world have been depleted through deforestation, partly to open up space for agriculture. To meet conservation goals, large areas are being restored to rainforests today (Elsevier 2015). It is important to monitor the success of the forest regeneration and to ensure that the inspected area is being replenished with the right vegetation. Since inspection events can be costly, labor intensive and time consuming, drones can facilitate these procedures, making the monitoring process more feasible.

Zahawi et al. (2015) conducted an interesting study in Costa Rica, being able to keep up with the success of the forest regeneration. They were also able to spot many fruit-eating birds important for forest regeneration (eg. mountain thrush, black guan and sooty-capped bush tanager). Researchers concluded that the automation of the process lead to equally accurate results.

Drones can also be used to inspect areas for illegal logging and habitat destruction. Conservationists have struggled to identify illegal activities, and the use of drones can accelerate the identification process of these activities and help to monitor their spread and ensure that they do not intersect with protected areas.

The Amazon Basin Conservation Association Los Amigos conservancy concession (LACC) has been monitoring 145,000 hectars of the local conservation area. Illegal gold mining and logging activities were identified (Figure 2) and drones have aided in tracking the spread of these activities and the progress of reforestation efforts.

Figure 2: Identification of illegal activities in the Amazon Basin.
Source: NPR, 2015.

 

Another remarkable project was held in Mexico, in one of the most important sites for monarch butterflies in the country: the Monarch Butterfly Biosphere Reserve. Around 10 hectars of vital trees were cut down in the reserve during 2013-2015, and a great decrease of the monarch population was perceived. The reserve did not allow researchers to enter in the area for inspection due to safety concerns. Therefore, drones were used and were able to reveal the illegal logging activity (Figure 3).

Figure 3: Identification of illegal logging at the Monarch Butterfly Biosphere Reserve, Mexico.
Source: Take Part, 2016.

 

Regarding the use of drones for mapping vulnerable areas, this new technology can be used to map potential exposed areas to avoid catastrophes. Concerning responses to fires or other natural disasters, drones can fly immediately, while planes and helicopters require a certain time. The drone material also allows for operating successfully under challenging conditions such as rain, snow and high temperatures, as in the case of fires. Data can be assessed in real time, with no need to have firefighters or other personnel at a dangerous location anymore. Drones can now fulfill this role. Examples of drone applications in this regard are the detection, monitoring and support for catastrophes such as landslides, tsunamis, ship collisions, volcanic eruptions, nuclear accidents, fire scenes, flooding, storms and hurricanes, and rescue of people and wildlife at risk. In addition, the use of a thermal image camera can better assist in rescue operations.

Researchers from the Universidad Politécnica de Madrid (UPM) are developing a system to detect forest fires by using a color index (Cruz et al. 2016). This index is based on vegetation classification techniques that have been adapted to detect different tonalities for flames and smoke (Figure 4). This new technique would result in more cost-effective outcomes than conventional systems (eg. helicopters, satellites) and in reaching inaccessible locations.

Figure 4: Fire detection with Forest Fire Detection Index (FFDI) in different scenes.
Source: UPM, 2016.

 

Marine debris detection by drones is another great functionality. The right localization and the extent of the problem can be detected through drone footage, and action plans for clean-ups can be developed.

A research conducted by the Duke University Marine Lab has been detecting marine debris on beaches around the world. They indicate that marine debris impacts water quality, and harms wildlife (eg. whales, sea birds, seals and sea turtles) that might confuse floating plastic with food. You can read a bit more about their research and its importance for conservation ends here.

Drones are also being extensively used for wildlife monitoring. Through drone footage, researchers around the world have been able to detect and map wildlife and habitat use, estimate densities and evaluate population status, detect rare behaviors, combat poaching, among others. One of the main benefits of using a drone instead of using helicopters or airplanes, or having researchers in the area, is the lower disturbance it may cause on wildlife.

A research team from Monash University is using drones for seabird monitoring in remote islands in northwestern Australia (Figure 5). After some tests, researchers were able to detect which altitude (~75 meters) the drone would not cause any disturbances to the birds. Results achieved by projects like this should be used in the future for approaching the species safely.

Figure 5: Photograph taken by a drone of a crested tern colony on a remote island in Australia.
Source: Conservation Drones, 2014.

 

Drones are also being used to combat elephant and rhino poaching in Africa. They are being implemented to predict, trace, track and catch suspects of poaching. The aim is to reduce the number of animals being killed for the detusking and dehorning practices and the illegal trade. You can read more about this theme here. The drone application on combating one of these illegal practices is also shown here in this video.

As if the innovation of this device alone was not enough, drones are also being used to load other tools. A good example is the collection of whale breath samples by attaching Petri dishes or sterile sponges in the basal part of the drones.

The collection of lung samples allows many health-monitoring applications, such as the analysis of virus and bacteria loads, DNA, hormones, and the detection of environmental toxins in their organisms. This non-invasive physiological tool, known as “Snotbot”, allows sampling collection without approaching closely the individuals and with minimal or no disturbance of the animals. The following video better describes about this amazing project:

It is inspiring to look at all of these wonderful applications of drones in conservation research. Our GEMM Lab team is already applying this great tool in the field and is hoping to support the conservation of wildlife.

 

 

References

Conservation Drones. 2014. Conservation Drones for Seabird Monitoring. Available at: https://conservationdrones.org/2014/05/05/conservation-drones-for-seabird-monitoring/

Conservation Drones. 2016. Tree cover analyses in Tanzania in collaboration with Envirodrone. Available at: https://conservationdrones.org/2016/09/17/tree-cover-analyses-in-tanzania-in-collaboration-with-envirodrone/

Cruz H, Eckert M, Meneses J and Martínez JF. 2016. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs). Sensors 16(893):1-16.

Elsevier. 2015. Drones Could Make Forest Conservation Monitoring Significantly Cheaper: new study published in the Biological Conservation wins Elsevier’s Atlas award for September 2015. Available at: https://www.elsevier.com/about/press-releases/research-and-journals/drones-could-make-forest-conservation-monitoring significantly-cheaper

NPR. 2015. Eyes In The Sky: Foam Drones Keep Watch On Rain Forest Trees. Available at: http://www.npr.org/sections/goatsandsoda/2015/05/19/398765759/eyes-in-the-sky-styrofoam-drones-keep-watch-on-rainforest-trees

Take Part. 2016. Drones Uncover Illegal Logging in Critical Monarch Butterfly Reserve. Available at: http://www.takepart.com/article/2016/06/22/drones-uncover-illegal-logging-monarch-butterfly-habitat

UPM. 2016. New automatic forest fire detection system by using surveillance drones. Available at: http://www.upm.es/internacional/UPM/UPM_Channel/News/dc52fff26abf7510VgnVCM10000009c7648aRCRD

Zahawi RA, Dandois JP, Holl KD, Nadwodny D, Reid JL and Ellis EC. 2015. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biological Conservation 186:287–295.