Phases and Feelings of the Scientific Journey

Leigh Torres, Associate Professor, PI of the GEMM Lab

There are many phases of a scientific journey, which generally follows a linear path (although I recognize that the process is certainly iterative at times to improve and refine). The scientific journey typically starts with an idea or question, bred from curiosity and passion. The journey hopefully ends with new knowledge, a useful application (e.g., tool or management outcome), and more questions in need of answers, providing a sense of success and pride. But along this path, there are many more phases, with many more emotions. As we begin the four-year SAPPHIRE project, I have already experienced a range of emotions, and I am certain more will come my way as I again wander through the many phases and feeling of science:

PHASEFEELINGS
Generation of idea or questionCuriosity, passion, wonder
Build the team and develop the funding proposalDrive, dreaming big, team management, belief in the importance of your proposed work
Notice of funding proposal successDisbelief, excitement, and pride, followed quickly by feeling daunted, and self-doubt about the ability to pull off what you said you would do.
*Prep for fieldwork/experiment/data collectionFrantic and overwhelmed by the need to remember all the details that make or break the research; lists, lists, lists; pressure to get organized and stay within your budget. Anticipation, exhaustion.
*Outreach/Engagement/CommunicationEagerness to share and connect; Pressure to build relationships and trust; make sure the research is meaningful and accessible to local communities
*Fieldwork/experiment/data collection/data analysisSigh of relief to be underway, accompanied by big pressure to achieve: gotta do what you said you would do.
Preparation of scientific publications and reportsExcitement for data synthesis: What will the results say? What are the answers to your burning questions? Were your hypotheses correct? With a good dose of apprehension of peer feedback and critical reviews.
Publications and reportsSatisfaction to see outputs and results from hard work being broadly disseminated.
Project end with final reportFeeling of great accomplishment, but now need to develop the next project and get the funding… the cycle continues.

*After months of intense preparation for our field research component of the SAPPHIRE project in Aotearoa New Zealand (permits, equipment purchasing, community engagement, gathering supplies, learning how to use new equipment, vessel contracting, overseas shipping, travel arrangements, vessel mobilization, oh the list goes on!), we have just stepped off the vessel after 3 full days collecting data. I have cycled through all these emotions many times, and now I feel both exhausted and elated. We are implementing our plan, and we now have data in-hand. Worry creeps in all the time: we need to do more, do better. But I also know that our team is excellent and with patience, blessings from the weather gods, and our continued hard work, we will succeed, learn, and share. As SAPPHIRE chargers ahead to understand the impacts of climate change on marine prey (krill) and predators (blue whales), I am ready for the continued mix of emotions that comes with science.

Photo montage of our awesome SAPPHIRE team in prep mode and during data collection in the South Taranaki Bight within Aotearoa New Zealand.

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly alert when we make a new post! Just add your name into the subscribe box below!

Loading

Oceanographic Alchemy: How Winds Become Whale Food in Oregon

By Rachel Kaplan, PhD student, Oregon State University College of Earth, Ocean, and Atmospheric Sciences and Department of Fisheries, Wildlife, and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

Here in the GEMM lab, we love the Oregon coast for its amazing animals – the whales we all study, the seabirds we can sometimes spot from the lab, and the critters that come up in net tows when we’re out on the water. Oregonians owe the amazing biological productivity of the Oregon coast to the underlying atmospheric and oceanographic processes, which make our local Northern California Current (NCC) ecosystem one of the most productive places on earth.

While the topographical bumps of the Oregon coastline and vagaries of coastal weather do have a big impact on the physical and biological processes off the coast, the dominant forces shaping the NCC are large-scale, atmospheric heavy hitters. As the northeasterly trade winds blow across the globe, they set up the clockwise-rotating North Pacific Subtropical Gyre, a major feature covering about 20 million square kilometers of the Pacific Ocean. The equatorward-flowing part of the gyre is the California Current. It comprises an Eastern Boundary Upwelling Ecosystem, one of four such global systems that, while occupying only 1% of the global ocean, are responsible for a whopping 11% of its total primary productivity, and 17% of global fish catch.

Figure 1. Important features of the California Current System (Checkley and Barth, 2009).

At its core, this incredible ocean productivity is due to atmospheric pressure gradients. Every spring, an atmospheric system called the North Pacific High strengthens, loosening the hold of the stormy Aleutian Low. As a result, the winds begin to blow from the north, pushing the surface water in the NCC with them towards the equator.

This water is subject to the Coriolis effect – an inertial force that acts upon objects moving across a rotating frame of reference, and the same force that airplane pilots must account for in their flight trajectories. As friction transmits the stress of wind acting upon the ocean’s surface downward through the water column, the Coriolis effect deflects deeper layers of water successively further to the right, before the original wind stress finally peters out due to frictional losses.

This process creates an oceanographic feature called an Ekman spiral, and its net effect in the NCC is the offshore transport of surface water. Deep water flows up to replace it, bringing along nutrients that feed the photosynthesizers at the base of the food web. Upwelling ecosystems like the NCC tend to be dominated by food webs full of large organisms, in which energy flows from single-celled phytoplankton like diatoms, to grazers like copepods and krill, to predators like fish, seabirds, and our favorite, whales. These bountiful food webs keep us busy: GEMM Lab research has explored how upwelling dynamics impact gray whale prey off the Oregon coast, as well as parallel questions far from home about blue whale prey in New Zealand.

Figure 2. The Coriolis effect creates an oceanographic feature called an Ekman Spiral, resulting in water transport perpendicular to the wind direction (Source: NOAA).

Although the process of upwelling lies at the heart of the productive NCC ecosystem, it isn’t enough for it to simply happen – timing matters, too. The seasonality of ecological events, or phenology, can have dramatic consequences for the food web, and individual populations in it. When upwelling is initiated as normal by the “spring transition”, the delivery of freshly upwelled nutrients activates the food web, with reverberations all the way from phytoplankton to predators. When the spring transition is late, however, the surface ocean is warm, nutrients are depleted, primary productivity is low, and the life cycles and abundances of some species can change dramatically. In 2005, for example, the spring transition was delayed by a month, resulting in declines and spatial redistributions of the taxa typically found in the NCC, including hake, rockfish, albacore tuna, and squid. The Cassin’s auklet, which feeds on plankton, suffered its worst year on record, including reproductive failure that may have resulted from a lack of food.

Upwelling is alchemical in its power to transform, modulating physical and atmospheric processes and turning them into ecosystem gold – or trouble. As oceanographers and Oregonians alike wonder how climate change may reshape our coast, changes to upwelling will likely play a big role in determining the outcome. Some expect that upwelling-favorable winds will become more prevalent, potentially increasing primary productivity. Others suspect that the timing of upwelling will shift, and ecological mismatches like those that occurred in 2005 will be increasingly detrimental to the NCC ecosystem. Whatever the outcome, upwelling is inherent to the character of the Oregon coast, and will help shape its future.

Figure 3. The GEMM Lab is grateful that the biological productivity generated by upwelling draws humpback whales like this one to the Oregon coast! (photo: Dawn Barlow)
Loading

References

Chavez, Francisco & Messié, Monique. (2009). A comparison of Eastern Boundary Upwelling Ecosystems. Progress In Oceanography. 83. 80-96. 10.1016/j.pocean.2009.07.032.

Chavez, F P., and J R Toggweiler, 1995: Physical estimates of global new production: The upwelling contribution. In Dahlem Workshop on Upwelling in the Ocean: Modern Processes and Ancient Records, Chichester, UK, John Wiley & Sons, 313-320.

Checkley, David & Barth, John. (2009). Patterns and processes in the California Current System. Progress In Oceanography. 83. 49-64. 10.1016/j.pocean.2009.07.028.

When do male whales get randy? Exploring the seasonal testosterone patters in the PCFG gray whale

Dr. Alejandro A. Fernández Ajó, Postdoctoral Scholar, Marine Mammal Institute – OSU Department of Fisheries, Wildlife, & Conservation Sciences, Geospatial Ecology of Marine Megafauna (GEMM) Lab. 

A year in a baleen whale life typically involves migrating between polar or subpolar “feeding grounds” in summer and subtropical “breeding grounds” in winter. Calves are typically born during a specific portion of the winter months (Lockyer and Brown, 1981), suggesting a regular alternation between reproductively active and inactive states (Bronson, 1991). Seasonal reproduction in mammals often includes pronounced annual cycles in reproductive hormones triggered by changes in the photoperiod or other environmental cues, along with endogenous circannual cycles (Hau 2007).

Testosterone (T), a key reproductive hormone, is crucial for male spermatogenesis (development of sperm) and influences behaviors such as courtship, mating, and male to male competition. Seasonally breeding mammals exhibit an annual peak in T. The amplitude of T can be influenced by age, with immature males having low T levels that rise sharply at sexual maturity (Beehner et al. 2009; Chen et al. 2009) and then, in some species, declines in the older males (i.e., reproductive senescence; Hunt et al. 2020; Chen et al. 2009). This variability, combined with social cues and exposure to stressors, contributes to individual differences in hormone patterns.

Seasonal testosterone patterns are well-documented in many vertebrate males, including terrestrial mammals, pinnipeds, and odontocetes (Wells, 1984; Kellar et al., 2009; Funasaka et al., 2011, 2018; O’Brien et al., 2016; Richard et al., 2017). However, our understanding of seasonal patterns of testosterone in large whales, especially baleen whales, remains incomplete due to their cryptic nature. Improved understanding of cyclic changes in male reproductive hormones could enhance population management and conservation of whale species. For instance, a clear comprehension of male testosterone cycling in a species can potentially improve the accuracy of sex identification for unknown individuals through hormone ratios. It can also aid in better discriminating sexually active adults from juveniles, understanding the age of sexual maturity (often challenging to determine in males), the potential occurrence of reproductive senescence in older males, and determining the month and location of the conceptive season—which, in turn, may inform estimates of gestation length in females. Insight into these aspects of baleen whale reproductive biology would enhance our ability to understand variation in population abundance and vital rates.

Recent advancements in hormone extraction from non-plasma (blood) samples, such as blow, fecal, blubber, earplugs, and baleen, offer new avenues for studying baleen whale physiology (Hunt et al., 2013). However, obtaining repeated samples from an individual, and over an extended period, from whales to assess hormone patterns is challenging. In this context, earplug endocrine analyses, focusing on cerumen layers (ear wax), have provided insights into sexual maturity in male blue whales (Trumble et al., 2013). However, the temporal resolution (e.g., years) in this sample type limits the detection of seasonal patterns. On the other hand, baleen data provides longitudinal information with sufficient resolution for understanding male reproductive biology and it has been successfully applied to the study of whale species with longer baleen plates (over a decade of an individual’s life), such as the bowhead whale, North Atlantic right whale, and a blue whale (Hunt et al., 2018; Hunt et al., 2020). Additionally, seasonal trends in testosterone have been documented in male humpback whales through blubber biopsy analyses (Cates et al. 2019).

Photos: This is Orange Knuckles (AKA OK). He is one of the males that regularly visit the Oregon coast. He was first observed in 2005, which means he is an adult male and is at least 19 years old (as of 2024). Do you want to learn more about him and other PCFG whales that frequent the Oregon coast? Visit IndividuWhale. Credit: GEMM Lab.

With the GEMM Lab’s GRANITE project, we are delving into an eight-year dataset of individual gray whale morphometrics and fecal hormone data to investigate important aspects of male reproduction in detail. Our non-invasive data collection methods (fecal samples and drone overflights) allow important repeated measurements of the same individual throughout and between foraging seasons. Preliminary results from our analysis reveal a significant association of the day of the year with elevation in T, suggesting that in the late summer the Oregon Coast could be an important area for gray whale social behavior in preparation for reproduction. Furthermore, we are uncovering an association between age and T levels, highlighting the potential for us to identify the age for onset of sexual maturity in males. Additionally, we are exploring the relationship between T levels, exposure to stressors, body condition, and other factors that might influence male reproductive attempts. These data will provide valuable information for conservation and management efforts, aiding in critical habitat identification and reproductive timing for gray whales. Stay tuned for the new results to come!

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly message when we post a new blog. Just add your name and email into the subscribe box below.

Loading

References

  1. Beehner JC, Gesquiere L, Seyfarth RM, Cheney DL, Alberts SC, Altmann J. 2009. Testosterone related to age and life-history stages in male baboons and geladas. Horm Behav 56:472-80.
  2. Bronson FH (1991) Mammalian Reproductive Biology. University of Chicago Press, Chicago, IL.
  3. Buck CL, Barnes BM. 2003. Androgen in free-living arctic ground squirrels: seasonal changes and influence of staged male-male aggressive encounters. Horm Behav 43:318-26.
  4. Cates KA, Atkinson S, Gabriele CM, Pack AA, Straley JM, Yin S. 2019. Testosterone trends within and across seasons in male humpback whales (Megaptera novaeangliae) from Hawaii and Alaska. Gen Comp Endocrinol 279:164-73.
  5. Chen H, Ge R-S, Zirkin BR. 2009. Leydig cells: from stem cells to aging. Mol Cell Endocrinol 306:9-16.
  6. Funasaka N, Yoshioka M, Suzuki M, Ueda K, Miyahara H, Uchida S (2011) Seasonal difference of diurnal variations in serum melatonin, cortisol, testosterone, and rectal temperature in Indo-Pacific bottlenose dolphins (Tursiops aduncus). Aquatic Mamm 37: 433–443.
  7. Hau M. 2007. Regulation of male traits by testosterone: implications for the evolution of vertebrate life histories. BioEssays 29:133-44.
  8. Hunt KE, Moore MJ, Rolland RM, Kellar NM, Hall AJ, Kershaw J, Raverty SA, Davis CE, Yeates LC, Fauquier DA. 2013. Overcoming the challenges of studying conservation physiology in large whales: a review of available methods. Cons Physiol 1:cot006.
  9. Hunt KE, Buck CL, Ferguson S, Fernández Ajo A., Heide-Jørgensen MP, Matthews CJD, Male Bowhead Whale Reproductive Histories Inferred from Baleen Testosterone and Stable Isotopes, Integrative Organismal Biology, Volume 4, Issue 1, 2022, obac014 https://doi.org/10.1093/iob/obac014
  10. Kellar N, Trego M, Marks C, Chivers S, Danil K (2009) Blubber testosterone: a potential marker of male reproductive status in shortbeaked common dolphins. Mar Mamm Sci 25: 507–522
  11. Lockyer C, Brown S (1981) The migration of whales. In Aldley D, ed. Animal Migration Society for Experimental Biology Seminar Series, Book 13. Cambridge University Press, Cambridge, England.
  12. O’Brien JK, Steinman KJ, Fetter GA, Robeck TR (2016) Androgen and glucocorticoid production in the male killer whale (Orcinus orca): influence of age, maturity, and environmental factors. Andrology 5: 180–190.
  13. Richard JT, Robeck TR, Osborn SD, Naples L, McDermott A, LaForge R, Romano TA, Sartini BL (2017) Testosterone and progesterone concentrations in blow samples are biologically relevant in belugas (Delphinapterus leucas). Gen Comp Endocrinol 246: 183–193.
  14. Trumble S, Robinson E, Berman-Kowalewski M, Potter C, Usenko S (2013) Blue whale earplug reveals lifetime contaminant exposure and hormone profiles. Proc Nat Acad Sci 110: 16922–16926.
  15. Wells RS (1984) Reproductive behavior and hormonal correlates in Hawaiian spinner dolphins (Stenella longirostris). In Perrin WR, Brownell RL Jr, DeMaster DP, eds. Reproduction in Whales, Dolphins, and Porpoises. Cambridge: Reports of the International Whaling Commission, pp 465–472.

Wandering whales: what are Pacific gray whales doing in Atlantic?

Clara Bird, PhD Candidate, OSU Department of Fisheries, Wildlife, and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

Happy 2024 everyone! The holiday season usually involves a lot of travelling to visit friends and family, but we’re not the only ones. While most gray whales migrate long distances to their wintering grounds in the Pacific Ocean along the Baja Mexico peninsula, a few whales have made even longer journeys. In the past 13 years, there have been four reported observations of gray whales in the Atlantic and Mediterranean. Most recently, a gray whale was seen off south Florida in December 2023. While these reports always inspire some awe for the ability of a whale to travel such an incredible distance, they also inspire questions as to why and how these whales end up so far from home.

While there used to be a population of gray whales in the Atlantic, it was eradicated by whaling in the mid-nineteenth century (Alter et al., 2015), which made the first observation of a gray whale in the Mediterranean in 2010 especially incredible. This whale was first observed in May off the coast of Israel and then Spain (Scheinin et al., 2011). It was estimated to be about 13 m long (a rough visual estimate made through comparison with a boat) and in poor, but not critical, body condition. Scheinin et al. (2011) proposed that the whale likely crossed from the Bering Sea to the North Atlantic and followed the coasts of either North America or Eurasia (Figure 1).

Figure 1. Figure from Schenin et al. (2011) showing the possible routes the 2010 whale took to reach the Mediterranean and the path it took within.

A few years later, another gray whale was spotted in the Southern Atlantic, in Namibia’s Walvis Bay in May 2013. The observation report from the Namibian Dolphin Project proposes that the whale could have crossed through the Arctic or swum around the southern tip of South America (Peterson 2013).  While they did not estimate the size or condition of whale, the photos in the report indicate that the whale was not in good condition (Figure 2).

The most covered sighting was in 2021, when a gray whale was repeatedly seen in Mediterranean in May of 2021. This whale was estimated to be about two years old and skinny. Furthermore, it’s body condition continued to decline with each sighting (“Lost in the Mediterranean, a Starving Grey Whale Must Find His Way Home Soon,” 2021). The whale was first spotted off the coast of Morocco, then it appears to have crossed the Mediterranean to the coast of Italy and then traveled to the coast of France. Like the 2010 sighting, it is hypothesized that this whale crossed through the Arctic and then crossed the North Atlantic to the enter the Mediterranean through the Gibraltar Strait.

Image of the 2021 whale in the Mediterranean. Source: REUTERS/Alexandre Minguez, https://www.reuters.com/business/environment/lost-mediterranean-starving-grey-whale-must-find-his-way-home-soon-2021-05-07/

Most recently, a gray whale was seen off the coast of Miami in December 2023 (Rodriguez, 2023). While there is no information on its estimated size or condition, it does not appear to be in critical condition from the video (Video 1). This sighting is interesting because it breaks from the pattern that was forming with all the previous sightings occurring in late spring on the western side of the Atlantic. This recent gray whale was seen in winter on the eastern side of the Atlantic. The May timing suggests that those whales crossed into the Atlantic during the spring migration when leaving the wintering grounds and heading to summer foraging grounds. However, this December sighting indicates that this whale ‘got lost’ on its way to the wintering grounds after a foraging season. Another interesting pattern is the body condition, while condition was not always reported, the spring whales all seemed to be in poor condition, likely due to the long journey and/or the lack of suitable food. The Miami whale is the only one that appeared to be in decent condition, but this arrived just after the foraging season and travelled a shorter distance. Finally, it’s also interesting that there is no clear pattern of age, these sightings are of a mixture of adult (2010), juvenile (2021), and unknown (2013, 2023) age classes.

Video 1: NBC6 news report on the sighting

Another common theme across these sightings, is the proposed passage of the whale across the Arctic. Prior to dramatic declines in ice cover in the Arctic due to climate change which made this  an unfeasible route, reduced ice cover in the Arctic over the past couple of decades means that this is now possible (Alter et al., 2015). While these recent sightings could be random, they could also indicate that Pacific gray whales may be exploring the Atlantic more, prey availability in the arctic has been declining (Stewart et al., 2023) in recent years meaning that gray whales may be exploring new areas to find alternative food sources. Interestingly, a study by Alter et al. (2015) used genetic analysis to compare the DNA from Atlantic gray whale fossils and Pacific gray whale samples and found evidence that gray whales have moved between the Atlantic and Pacific several times in the last 1000 years when sea level and climate conditions (including ice cover) allowed them to. Meaning, that we could be seeing a pattern of mixing of whale populations between the two oceans repeating itself.

The possibility that we are observing the very early stages of a new population or group forming is particularly interesting to me in the context of how we think about the Pacific Coast Feeding Group (PCFG) of gray whales. If you’ve read our previous blogs, you know that the GEMM lab spends a lot of time studying this sub-group of the Eastern North Pacific (ENP) population. The PCFG feeds along the coast of the Pacific Northwest, which is different from the typical foraging habitat of the ENP in the Bering Sea. We in the GEMM lab often wonder how this subgroup formed (listen to postdoc KC Bierlich’s recent podcast here to learn more). Did it start like these recent observations? With a few whales leaving the typical feeding grounds in the Arctic in search for alternative prey sources and ending up in the Pacific Northwest? Did those whales also struggle to successfully feed at first but then develop new strategies to target new prey items? While whales may be making it through the Arctic now, there is no evidence that these whales have successfully found enough food to thrive. So, these sightings could be random or failed attempts at finding better foraging areas. Afterall, there have only been four reported gray whale sightings in the Atlantic in 13 years. But these are only the observed sightings, and maybe it’s only a matter of time and multiple tries before enough gray whales find each other and an alternative foraging ground in the Atlantic so that a new population is established. Nonetheless, it’s exciting and fun to think about the parallels between these sightings and the PCFG. As we start our ninth year of PCFG research, we hope to continue learning about the origins of this unique and special group. Stay tuned!

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly alert when we make a new post! Just add your name into the subscribe box below!

Loading

References

Alter, S. E., Meyer, M., Post, K., Czechowski, P., Gravlund, P., Gaines, C., Rosenbaum, H. C., Kaschner, K., Turvey, S. T., van der Plicht, J., Shapiro, B., & Hofreiter, M. (2015). Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100. Molecular Ecology24(7), 1510–1522. https://doi.org/10.1111/mec.13121

Lost in the Mediterranean, a starving grey whale must find his way home soon. (2021, May 7). Reuters. https://www.reuters.com/business/environment/lost-mediterranean-starving-grey-whale-must-find-his-way-home-soon-2021-05-07/

Rodriguez, G. (2023, December 19). Extremely rare and ‘special’ whale sighting near South Florida coast. NBC 6 South Florida. https://www.nbcmiami.com/news/local/extremely-rare-and-special-whale-sighting-near-south-florida-coast/3187746/

Scheinin, A. P., Kerem, D., MacLeod, C. D., Gazo, M., Chicote, C. A., & Castellote, M. (2011). Gray whale ( Eschrichtius robustus) in the Mediterranean Sea: Anomalous event or early sign of climate-driven distribution change? Marine Biodiversity Records4, e28. https://doi.org/10.1017/S1755267211000042

Stewart, J. D., Joyce, T. W., Durban, J. W., Calambokidis, J., Fauquier, D., Fearnbach, H., Grebmeier, J. M., Lynn, M., Manizza, M., Perryman, W. L., Tinker, M. T., & Weller, D. W. (2023). Boom-bust cycles in gray whales associated with dynamic and changing Arctic conditions. Science382(6667), 207–211. https://doi.org/10.1126/science.adi1847