The first voyage of the HALO project

Imogen Lucciano, Graduate Student, OSU Department of Fisheries, Wildlife, & Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab. Marissa Garcia, Graduate Student, Cornell Department of Ornithology Center for Conservation Bioacoustics.

There is nothing quite like the excitement of starting a fresh project, and the newly organized Holistic Assessment of Living marine resources off the Oregon coast (HALO) project team was alive with it on 8 October as we prepared our various elements of research gear aboard the R/V Pacific Storm in the Newport bayfront (Fig 1). The weather was predicted suitable enough for our 24-hour trip out along the Newport Hydrographic line (NHL; Fig 2), and so we focused on the questions of whether we had remembered to pack each necessary piece of equipment, whether we had sufficiently charged and calibrated each bit of gear, whether we had enough snacks, and the most looming question of all, what would we see and hear when we get out there? The species guessing game only enhanced the thrill of our departure.

Figure 1. The R/V Pacific Storm docked at the Newport bayfront. Photo: Rachel Kaplan.

The HALO project aims to fill gaps in knowledge on the abundance and distribution of cetaceans off the Oregon coast, and relative to ongoing climate change and marine renewable energy development projects along the Oregon coast. The core of the HALO project is deployment of three hydrophones to record year-round cetacean vocalizations in the same area where we will conduct visual line surveys for cetaceans monthly in addition to mapping prey. Needless to say, we (the grad student authors of this blog) feel humbled and grateful to be on the project – not to mention, eager to gain our sea legs like the rest of the pros on the team and boat crew (much sea sickness meds were at the ready!).

This HALO team is well stacked, engaging the expertise and specialties of researchers from three different schools of science. Leigh Torres of the Marine Mammal Institute (MMI)’s GEMM lab (assisted by newcomer graduate student, Miranda Mayhall/coauthor of this post) brings to the project the knowledge of visual survey distance sampling data collection and analysis and will work alongside Craig Hayslip of MMI who will serve as lead visual observer. The visual sightings will inform us on cetacean occurrence patterns in the region. Since cetaceans also spend a great deal of time underwater, Holger Klinck, an expert bioacoustician from Cornell University and affiliate MMI professor (with graduate student Marissa Garcia, also a coauthor of this blog) will oversee the deployment of specialized hydrophones along our research line to record acoustic data. After the hydrophones are deployed, and while we are on-survey looking for cetaceans, we will also run a EK60 transducer (A.K. echosounder) to record backscatter data on prey in the area. This aspect of HALO brings in the third element of research from OSU’s College of Earth, Ocean, and Atmospheric Sciences (CEOAS) Zooplankton Ecology Lab, Kim Bernard who is leading the effort to collect and analyze prey data. During this first voyage, Rachel Kaplan, a grad student of both the GEMM lab and Zooplankton Ecology Labs, came along to run the echosounder and ensure data quality.

Figure 2. HALO’s research track-line: a 40-mile stretch along the Newport Hydrographic Line (NHL) from NH65 to NH25. The three points indicate the locations of the three deployed hydrophones.

With the sun nearly set, the R/V Pacific Storm left the dock at 7pm, pushing from Yaquina Bay out to the Pacific along the NHL hopping over swells that rocked the boat. Despite our strong-willed confidence, it was tough then to focus on anything but maintaining personal physiological equilibrium. Darkness surrounded the vessel, and we wouldn’t be able to see much of the Pacific Ocean until morning. It would take us nearly eleven hours to reach our first destination, 65 miles offshore (NH65) at which point all the activities would begin. All we could do was brace through the evening and hope that by dawn the dizziness would subside. We had field work adventures ahead! So, the focus went from extreme high energy to tucking in and allowing the Storm’s highly experienced crew to maintain watch and bring us to our first destination.   

Figure 3. The research lab room on the R/V Pacific Storm with four eager scientists just as team HALO departed Yaquina Bay; from the left Holger Klinck, Marissa Garcia, Rachel Kaplan & Leigh Torres. Photo: Miranda Mayhall.

At sunrise, the team rose to their feet, and we (the grad students) did what we could to muster the energy to crawl up the stairs, snap on lifejackets and ample out on the boat deck. Despite our condition, we looked out to a sight unlike anything we had ever seen before. The ocean was a deep purple, with flecks of orange bordering the horizon behind fluffy, indigo clouds. We were at NH65, and at this point it was time to deploy the first Rockhopper, a specialized hydrophone developed at Cornell lab of Ornithology, with the capability of recording at a high sampling rate (394 kHz), which allows it to detect and record most marine mammal species. In this case, we were recording at 197 kHz, only leaving our porpoises from the recordings.

Although the acoustic team has extensively prepared the hydrophones for deployment, nothing quite prepared us for focusing on the final connections and tests on the back deck while the boat rocked back and forth. The team initiated the Rockhopper for recording, and then we proceeded with setting up the mooring — connecting the Rockhopper to the acoustic release, float, and weights. We then slowly slid it off the edge of the boat, and there it went into the ocean, where it will record for six months, approximately 3,000 meters under the surface.

Figure 4. The HALO team prepared the Rockhopper (the orange orb-like device) for deployment; from the left, Craig Hayslip, Holger Klinck, and Marissa Garcia. Photo: Rachel Kaplan.

 Once the first Rockhopper was deployed, making its way to the ocean floor, the “transducer pole” was deployed off the side of the vessel to collect echosounder data and the long endeavor of conducting visual survey for the length of the research line began. Observers were glued to binoculars, scouring the sea for the presence of cetaceans, as the ocean swell rocked the boat on our journey eastward. Those with an appetite nibbled on Tony’s Chocoloney chocolate bars (Thanks, Leigh!), breaking off pieces and passing around the bar to each visual observer — an optimal fuel for remaining attentive.

Figure 5. HALO team up on the flying bridge; Observers clockwise from the lower left: Leigh Torres, Marissa Garcia, Craig Hayslip, Miranda Mayhall, Holger Klinck.

During visual survey effort, we observe from the flying bridge the entire front 180 degrees of the vessel trackline, all the while recording data on where we do and don’t see cetaceans (presence and absence data). During this survey effort we record the sighting conditions (visibility, sea state, glare), and when we see cetaceans we record the distance to the marine mammals from the boat, the species identification, and the number of animals in the sighting. We use a program called SeaScribe to collect our data. As we use the data collection protocols on each of the 12 planned monthly surveys, we will obtain a valuable, standardized dataset that can be analyzed relative to environmental conditions and in comparison, to the acoustic data to understand cetacean distribution patterns. The survey pressed on, and all the while the echosounder was actively recording prey availability data, with Rachel Kaplan at the control. 

Figure 6. Rachel Kaplan monitoring the incoming data from the transducer on the SIMRAD EK60. Photo: Marissa Garcia.

Over the course of the survey, the visual team spotted northern right whale dolphins, a fin whale, a small group of killer whales and many scattered humpback whales. All three Rockhoppers were deployed at their intended locations at NH65, NH45, and then NH25. The echosounder successfully collected backscatter data for the duration of the survey, and interestingly we noticed increased prey on the echosounder at the same time as we observed the humpbacks. Already we are detecting connections between the environment and cetaceans!           

Figure 8. Fin whale spotted while on our first HALO survey. Photo: Leigh Torres, NOAA/NMFS permit # 21678

After nearly twelve hours conducting field work, the shoreline was close in sight, and we stopped our survey effort. For the first time all day, we all collectively sat in the vessel’s laboratory, finally putting our feet up to rest. We pulled back into Newport harbor around 7:00 pm, with the first HALO cruise successfully in the books. And though we visually observed many cetaceans and collected prey data, we still couldn’t help wondering what the Rockhoppers were recording at the bottom of the ocean. The thought of getting back out there for more surveys and retrieving the sound data keeps our momentum in full swing. For the next 11 months (and hopefully longer!) we will conduct the same 24 hr. cruise. The future is exciting, and we can’t wait to report back on our future trips and research findings.

Figure 9. The HALO team walking along the dock to their cars in Newport, Oregon, heading home after cruise #1. Photo: Miranda Mayhall.

This project was funded by sales and renewals of the special Oregon whale license plate, which benefits MMI. We gratefully thank all the gray whale license plate holders, who made this research trip possible.

Scouting mission to Kodiak: Reconnaissance of potential gray whale research in Kodiak, Alaska.

Dr. KC Bierlich, Dr. Alejandro Fernández Ajó, and Dr. Leigh Torres, OSU Department of Fisheries, Wildlife, & Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

Eastern North Pacific (ENP) gray whales (Eschrichtius robustus) undertake one of the longest annual migrations of any mammal, traveling from their winter breeding grounds in the warm waters of Baja California, Mexico to their summer feeding grounds in the icy waters of the Bering and Chukchi Seas1,2. Yet, a distinct subgroup of this population, called the Pacific Coast Feeding Group (PCFG), instead shorten their migration farther south to spend the summer foraging along waters from northern California, USA to northern British Columbia, Canada1 (Figure 1). On these summer feeding grounds gray whales will forage almost continuously to increase their energy reserves to support migration and reproduction during the rest of the year.

The GEMM Lab has been studying the ecology and physiology of the PCFG gray whales in Oregon waters since 2015, combining traditional photo-ID and behavioral observation methods with fecal sample collection, drone flights, and prey assessment to integrate data on individual whale behavior, nutritional status, prey consumption, and hormone variation. These multidisciplinary methods have proven effective to obtain an improved understanding of PCFG gray whale body condition and hormone variation by demographic unit and over time3,4,5, as well as prey energetics and foraging ecology6.

Figure 1. Left: ENP Gray whale´s range from the breeding grounds in Baja California, Mexico to the northernmost feeding grounds in the Arctic. Right: Overview of Kodiak Island; the red square shows a zoom in image of the study area, including the shore – and boat-based data collection sites in yellow.

Since the PCFG remains a small proportion (~230 individuals) of the larger eastern ENP population (~20,000 individuals), the GEMM Lab and multiple collaborators are interested in extending the research design implemented by the GEMM Lab in Oregon to study gray whale ecology and physiology of whales feeding on the more northern foraging grounds. The goal would be to fill some of the many critical knowledge gaps including gray whale resilience and response to climate change, connectivity between foraging grounds, population dynamics of the PCFG and ENP, and physiological variation (body condition, hormones) as a function of habitat, prey, demography, and time of year.

Kodiak Island, Alaska is a middle distance between PCFG foraging grounds in Newport, Oregon and the traditional ENP foraging grounds in Chukchi and Beaufort Seas (Figure 1). Two studies documented high gray whale encounter rates in Ugak Bay in Kodiak Island, including during summer months when foraging behavior was observed7,8. Evidence from photo-ID matches in these studies indicated that some PCFG whales might also extends their feeding grounds further north to Kodiak Island7,8.

During August-September of this year, GEMM Lab postdocs KC Bierlich and Alejandro Fernández Ajó traveled to Kodiak Island to assess opportunities for researching gray whales in the area. The mission objectives included determining gray whale presence, assessing behavioral states and foraging areas, determining feasibility of drone operations and fecal sample collection, collecting photo ID images, assessing feasibility of boat and shore-based operations in Ugak Bay (Figure 1), and connecting with local scientists and stakeholders interested in collaborating.

We landed in Kodiak the evening of August 28 (Figure 2), with a beautiful sunset. The next morning, we met our captain, Alexus Kwachka, over breakfast to discuss a plan for going offshore to look for gray whales later in the week. Alexus is a local fisherman in Kodiak with over 30 years of experience fishing in Alaska and incredible knowledge on local wildlife and navigating the rough Alaskan seas. It was particularly interesting to hear his stories on the local changes he has noticed over the years, not just in weather and fishing, but also in the seals, birds, and whales.

Figure 2. Arriving to Kodiak after a long day of travel.

Next, we met with Sun’aq Tribe’s biologist Matthew Van Daele, who coordinates the marine mammal stranding network on Kodiak Island and has a deep knowledge of the locations to find whales. Matt showed us several great spots to scout for gray whales along the shore in the Pasagshak area (Figure 1), which overlooks Ugak Bay and is about 1 hour drive from Kodiak (Figure 3). Along the way, Matt discussed the high mortality rate of gray whales he has observed over the past two years and his concerns about some skinny whales in the area he recently observed during aerial surveys. Since 2019, an Unusual Mortality Event (UME) of gray whales along the whole North Pacific west coast (Mexico, USA, Canada) has impacted the ENP gray whales and while the exact cause(s) of these mortalities is largely unknown, evidence suggests reduced nutritional status may be a likely cause of death9. We learned from Matt that while gray whale strandings are decreasing compared to the previous two years, the numbers are still concerningly high. It was an absolute pleasure spending the day with Matt, as being born and raised in Kodiak he has such great knowledge of the area and the local wildlife. Together we saw Kodiak’s beautiful landscape with lots of different wildlife, which included some huge Kodiak brown bears a few hundred meters away from the road (Figure 4).

Figure 3. The views from Pasagshak Point that are good observation locations for gray whales. The gray arrows represent the view looking left (A) and right (C) from Pasagshak Point (B). A panorama of the view from left to right on the point is also shown (D). Photo: KC Bierlich.
Figure 4. Sighting of a Kodiak brown bear (Ursus arctos) off the roadside on our way to Pasagshak. The Kodiak brown bear is the largest recognized subspecies (or population) of the brown bear, and one of the largest bears alive today. Photo: Alejandro Fernández Ajó.

The next day, the weather was great, so we returned to the Pasagshak lookout points to spend the day looking for whales. We spotted several gray whales from the cliffs and shore. At Burton Beach, we spotted a gray whale very close to shore that first appeared to be traveling, but then changed direction and started moving closer inshore –less than 10 m from where we were standing on the beach! The whale then swam back and forth along the shore, providing an opportunity to collect photos of its right and left side to use for photo ID. KC flew the drone over the whale and recorded some amazing behavior of lateral swimming and great images for photogrammetry. Our excitement was sky high as within two days on the trip we had documented the presence of gray whales, recorded the best places to work from land, and even captured some interesting behavior, photo ID, and photogrammetry data from shore! (Figure 5).

Figure 5. Gray whale feeding off Burton Beach, Kodiak Island. This photo was taken from the shore, as the whale swam back and forth amazingly close to the shoreline. In this picture you can see the whale´s head from a ventral perspective. Photo: Alejandro Fernández Ajó / GEMM Lab. Photograph captured under NOAA/NMFS permit #21678.

The weather deteriorated over the next couple days, bringing foggy and rainy conditions. We used this time to process data and meet with some of the local researchers. When the weather conditions improved, we met back up with Alexus and boarded his fishing vessel, “No Point”, and headed off to Ugak Bay to look for gray whales. During transit we encountered a humpback whale mother-calf pair lunge feeding and breaching (Figure 6). As we approached Pasagshak we sighted a gray whale diving and benthic feeding in 60 m water depth, and then 2-3 other individual whales exhibiting the same behavior close by. We collected photo ID data, but high wind conditions hindered drone operations, so we continued surveying further into Ugak Bay and turned around following the coast towards Gull Point (Figure 7).

Figure 6. A breaching humpback whale on the way to Ugak Bay from Kodiak. Photo: Alejandro Fernández Ajó / GEMM Lab. Photograph captured under NOAA/NMFS permit #21678.
Figure 7. Track line (shown in blue) of boat-based operations. White circles represent the locations for sightings of gray whales.

During our survey effort we spotted a gray whale foraging on a shallow rocky, kelp reef (12 m depth) along the northwest point of Ugak Bay. This sighting was similar to behavior we often observe in Oregon, with whales feeding in near shore shallow, reef habitats. Conditions for flying the drone were still too windy, but we observed the whale defecate and collected a fecal sample! For us, fecal samples are like “biological gold”, as we can study hormones (which include assessments of their reproductive status, nutritional condition, sex determination, and stress levels), genetics, prey, and much more! We were so excited to collect this sample because it provides the chance to start looking at the physiological parameters of these Alaskan whales and compare findings to what we observe in samples collected from whales in Oregon (Figure 8).

Figure 8. A gray whale fecal sample right after being scooped from the water using nets attached long aluminum poles. Photo: KC Bierlich.

After a beautiful night anchored in a sheltered bay near Gull Point (Figure 9) we continued west to scan for whales. Back in Ugak Bay, we found six more gray whales diving and feeding in 50-60 m depth near the same location as the previous day off Pasagshak point. Weather conditions had finally improved, allowing us to fly the drone. We flew over four whales and collected video for behavior and photogrammetry analysis, which allows us to measure the body condition of the whales to assess how healthy it is (Figure 10).

Figure 9. “Home sweet home” for the night where our vessel “No point” anchored in a sheltered bay. Photo: Alejandro Fernández Ajó.
Figure 10. Drone image of two gray whales feeding near each other. Note the trailing sediment plume from the whale’s mouth and body indicating it was bottom feeding in a muddy benthic habitat. Photo: KC Bierlich. Photograph captured under NOAA/NMFS permit #21678.

Another highlight of our field work was the collection of a benthic prey sample using a Ponar grab sampler at this location in Pasagshak Bay where the whales were foraging. The bottom was muddy and rich with invertebrates; the sample literally looked like it was boiling from the amount of prey in it (Figure 11). From this sample, we will determine the invertebrate species and caloric content of these prey for comparison to the prey found in Oregon waters.

Figure 11. The Ponar bottom grab sample, full of invertebrate prey, taken near whales feeding in ~50-60 m depth. Photo: CK Bierlich.

Overall, this scouting mission to Kodiak was a great success! Through boat surveys, shore-based observations, and the conversations with locals, we determined the best areas and timing to effectively work from boats and shore to expand our gray whale research to Kodiak. Moreover, our scouting mission resulted in the collection of relevant pilot data including fecal samples for hormonal analyses, drone images for body condition and behavioral assessments, prey samples, and photo-ID images. This scouting mission identified several knowledge gaps regarding gray whale ecology, physiology, and population connectivity that can be feasibly addressed through expansion of GEMM Lab research efforts to the Alaskan region. Importantly, the trip facilitated important networking with locals to establish potential collaborations for future work. We are optimistic and excited to grow our collaborative research in Kodiak.

This pilot project was funded by sales and renewals of the special Oregon whale license plate, which benefits MMI. We gratefully thank all the gray whale license plate holders, who made this scouting trip possible.

References:

1 Calambokidis J, Darling JD, Deecke V, Gearin P, Gosho M, Megill W, et al. Abundance, range and movements of a feeding aggregation of gray whales (Eschrichtius robustus) from California to south- eastern Alaska in 1998. J Cetacean Res Manag 2002; 4:267–76.

2Stewart JD, Weller DW. Abundance of eastern North Pacific gray whales 2019/2020. 2021. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-639. https://doi.org/10. 25923/bmam-pemorandum NMFS-SWFSC-639. https://doi.org/10. 25923/bmam-pe91.

3Lemos, L. S. et al. Assessment of fecal steroid and thyroid hormone metabolites in eastern North Pacific gray whales. Conserv. Physiol. 8, (2020).

4Lemos, L. S. et al. Stressed and slim or relaxed and chubby? A simultaneous assessment of gray whale body condition and hormone variability. Mar. Mammal Sci. 1–11 (2021). doi:10.1111/mms.12877

5Soledade Lemos, L., Burnett, J. D., Chandler, T. E., Sumich, J. L. & Torres, L. G. Intra‐ and inter‐annual variation in gray whale body condition on a foraging ground. Ecosphere 11, (2020).

6Hildebrand, L., Bernard, K. S. & Torres, L. G. (2021). Do Gray Whales Count Calories? Comparing Energetic Values of Gray Whale Prey Across Two Different Feeding Grounds in the Eastern North Pacific. Frontiers in Marine Science, 8(July), 1–13. https://doi.org/10.3389/fmars.2021.683634

7Gosho Merrill, Patrick Gearin, Ryan Jenkinson, Jeff Laake, Lori Mazzuca, David Kubiak, John Calambokidis, Will Megill, Brian Gisborne, Dawn Goley, Christina Tombach, James Darling, V. D. gosho_et_al._2011_-_sc-m11-awmp2.pdf. (2011).

8Moore, S. E., Wynne, K. M., Kinney, J. C. & Grebmeier, J. M. GRAY WHALE OCCURRENCE AND FORAGE SOUTHEAST OF KODIAK, ISLAND, ALASKA. Mar. Mammal Sci. 23, 419–428 (2007).

9Christiansen F, Rodríguez-González F, Martínez-Aguilar S, Urbán J and others (2021) Poor body condition associated with an unusual mortality event in gray whales. Mar Ecol Prog Ser 658:237-252. https://doi.org/10.3354/meps13585


 [TL1]Add this link here:

https://mmi.oregonstate.edu/thank-you

Learning the right stuff – examining social transmission in humans, monkeys, and cetaceans

Clara Bird, PhD Student, OSU Department of Fisheries, Wildlife, and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

The start of a new school year is always an exciting time. Like high school, it means seeing friends again and the anticipation of preparing to learn something new. Even now, as a grad student less focused on coursework, the start of the academic year involves setting project timelines and goals, most of which include learning. As I’ve been reflecting on these goals, one of my dad’s favorite sayings has been at the forefront of my mind. As an overachieving and perfectionist kid, I often got caught up in the pursuit of perfect grades, so the phrase “just learn the stuff” was my dad’s reminder to focus on what matters. Getting good grades didn’t matter if I wasn’t learning. While my younger self found the phrase rather frustrating, I have come to appreciate and find comfort in it. 

Given that my research is focused on behavioral ecology, I’ve also spent a lot of time thinking about how gray whales learn. Learning is important, but also costly. It involves an investment of energy (a physiological cost, Christie & Schrater, 2015; Jaumann et al., 2013), and an investment of time (an opportunity cost). Understanding the costs and benefits of learning can help inform conservation efforts because how an individual learns today affects the knowledge and tactics that the individual will use in the future. 

Like humans, individual animals can learn a variety of tactics in a variety of ways. In behavioral ecology we classify the different types of learning based on the teacher’s role (even though they may not be consciously teaching). For example, vertical transmission is a calf learning from its mom, and horizontal transmission is an individual learning from other conspecifics (individuals of the same species) (Sargeant & Mann, 2009). An individual must be careful when choosing who to learn from because not all strategies will be equally efficient. So, it stands to reason than an individual should choose to learn from a successful individual. Signals of success can include factors such as size and age. An individual’s parent is an example of success because they were able to reproduce (Barrett et al., 2017). Learning in a population can be studied by assessing which individuals are learning, who they are learning from, and which learned behaviors become the most common.

An example of such a study is Barrett et al. (2017) where researchers conducted an experiment on capuchin monkeys in Costa Rica. This study centered around the Panama ́fruit, which is extremely difficult to open and there are several documented capuchin foraging tactics for processing and consuming the fruit (Figure 1). For this study, the researchers worked with a group of monkeys who lived in a habitat where the fruit was not found, but the group included several older members who had learned Panamá fruit foraging tactics prior to joining this group. During a 75-day experiment, the researchers placed fruits near the group (while they weren’t looking) and then recorded the tactics used to process the fruit and who used each tactic. Their results showed that the most efficient tactic became the most common tactic over time, and that age-bias was a contributing factor, meaning that individuals were more like to copy older members of the group. 

Figure 1. Figure from Barrett et al. (2017) showing a capuchin monkey eating a Panamá fruit using the canine seam technique.

Social learning has also been documented in dolphin societies. A long-term study on wild bottlenose dolphins in Shark Bay, Australia assessed how habitat characteristics and the foraging behaviors used by moms and other conspecifics affected the foraging tactics used by calves (Sargeant & Mann, 2009). Interestingly, although various factors predicted what foraging tactic was used, the dominant factor was vertical transmission where the calf used the tactic learned from its mom (Figure 2). Overall, this study highlights the importance of considering a variety of factors because behavioral diversity and learning are context dependent.

Figure 2. Figure from Sargeant & Mann (2009) showing that the probability of a calf using a tactic was higher if the mother used that tactic.

Social learning is something that I am extremely interested in studying in our study population of gray whales in Oregon. While studies on social learning for such long-lived animals require a longer study period than of the span of our current dataset, I still find it important to consider the role learning may play. One day I would love to delve into the different factors of learning by these gray whales and answer questions such as those addressed in the studies I described above. Which foraging tactics are learned? How much of a factor is vertical transmission? Considering that gray whale calves spend the first few months of the foraging season with their mothers I would expect that there is at least some degree of vertical transmission present. Furthermore, how do environmental conditions affect learning? What tactics are learned in good vs. poor years of prey availability? Does it matter which tactic is learned first? While the chances that I’ll get to address these questions in the next few years are low, I do think that investigating how tactic diversity changes across age groups could be a good place to start. As I’ve discussed in a previous blog, my first dissertation chapter will focus on quantifying the degree of individual specialization present in my study group. After reading about age-biased learning, I am curious to see if older whales, as a group, use fewer tactics and if those tactics are the most energetically efficient.

The importance of understanding learning is related to that of studying individual specialization, which can allows us to estimate how behavioral tactics might change in popularity over time and space. We could then combine this with knowledge of how tactics are related to morphology and habitat and the associated energetic costs of each tactic. This knowledge would allow us to estimate the impacts of environmental change on individuals and the population. While my dissertation research only aims to provide a few puzzle pieces in this very large and complicated gray whale ecology puzzle, I am excited to see what I find. Writing this blog has both inspired new questions and served as a good reminder to be more patient with myself because I am still, “just learning the stuff”.

Let me introduce you to… dugongs!

By Solène Derville, Postdoc, OSU Department of Fisheries, Wildlife, and Conservation Science, Geospatial Ecology of Marine Megafauna Lab

Today let me take you on a journey into the tropical waters of the Indo-Pacific Ocean, far from Oregon’s beautiful coasts. Although I have been working as a postdoc on the OPAL project for a year, the pandemic has prevented me from moving to the US as planned. Like so many around the globe, I have been working remotely from my study area (Oregon coastal waters), imagining my study species (blue, fin and humpback whales) gently swimming and feeding along the productive California Current system. One day, I’ll get to see these amazing animals for real, that’s for sure.

But in the meantime, I have taken this year as an opportunity to work with the GEMM lab, while continuing to enjoy the marvels of New Caledonia, a French overseas territory where I have lived for more than 6 years now. Among the animals that I get to approach and observe regularly in the coral reef lagoons that surround the island, the dugong (Dugon dugon) is perhaps the most emblematic and intriguing. This marine mammal is listed as vulnerable in the IUCN Red list of threatened species and has been the focus of important research and conservation efforts in New Caledonia over the last two decades1–3. During my previous post-doctoral position at the French Institute of Research for Sustainable Development, I contributed to some recent research involving satellite tracking of dugongs in the region. This work has led to a publication, now in review4, and will be the topic of my oral presentation at the 7th International Bio-Logging Science Symposium hosted in Hawaii in a couple weeks.

While I was analyzing dugong satellite tracks, writing this paper with my colleagues and preparing for the symposium, I learned a lot about these strange “sea cows”. Dugongs belong to the Sirenian marine mammal order, just like manatees (West Indian, Amazonian and West African species), which they are often mistaken for (watch out: Google Images will misleadingly suggest hundreds of manatee pictures if you make a “dugong” keyword search). The physiology and anatomy of dugongs is actually quite different from that of manatees (Figure 1). They also live in a different part of the world as they are broadly distributed in the Indo-Pacific coastal and island waters. Dugongs form separate populations, some of which are very isolated and at high risk of extirpation. They are found in 37 different countries, with Australia being home to the largest populations by far (exceeding 70,000 individuals5).

Figure 1: Manatee vs Dugong, can you tell them apart? Among other things, dugongs and manatees have a very different body shape. As the famous Sirenian specialist Helene Marsh said, a dugong essentially looks like “a manatee that goes to the gym”5! Illustration by S. Derville.

Sea cow or sea elephant?

Through the tree of evolution, the dugong and manatee’s closest relative is not the one you would think… other marine mammals like cetaceans or pinnipeds. Indeed, molecular genetic analyses have placed the Sirenians in the Afrotheria Superorder of mammals. Therefore, it appears that dugongs are more closely related to elephant and golden moles than to whales and dolphins!

As a memory aid to help remember this ancient origin, we may notice that both elephants and dugongs have tusks. Mature male and female dugongs have erupted tusks, although the females’ only erupt rarely and at a very old age. Interestingly, tusks are used by scientists to determine age. Analyses of growth layers in bisected dugong tusks have revealed that dugongs are long-lived, with a maximum longevity record of 73 years (estimated from a female individual found in Western Australia5).

An (almost) vegetarian marine mammal

Dugongs and manatees are the only predominantly herbivorous aquatic mammals. Given that manatees use both marine and fresh water ecosystems they tend to have a broader diet, eating many kinds of submerged, floating or emergent algae and seagrass (even bank growth!). On the other hand, dugongs are a strictly marine species and primarily feed on seagrass, which may look very similar to seaweeds, but are in fact marine flowering plants. Seagrass tend to form underwater shallow meadows that are among the most productive ecosystems in the world6. In fact, dugong grazing influences the biomass, species composition and nutritional quality of seagrass meadows7,8. Just like we take care of our gardens, dugongs regulate seagrass ecosystems. But there is more. Recent research conducted in the Great Barrier Reef indicates that seagrass seeds that have been digested by dugongs germinate at a faster rate9. As well as playing a role in dispersal10, it appears that dugongs are pooping seeds with enhanced germination potential, hence participating to seagrass meadow resilience.

Figure 2: Dugong mother and calf feeding on a dense seagrass bed (a) and solitary adult foraging in a very sparce seagrass bed (b). Seagrass grows in many different types of meadows, which may vary in density, species composition and substrate. For instance, seagrass species of the Halophila genus are among the preferred dugong’s meals although may be very thinly distributed (c). Photo credit: Serge Andréfouët, New Caledonia.

Unlike manatees, dugongs cannot feed over the whole water column and are strictly bottom feeders. They use their deflected snout (Figure 1) to search the seabed for their favorite food (Figure 2). The feeding trails left by dugongs in dense seagrass meadows are easily detectable from above, just like the sediment clouds that they generate when searching muddy bottoms. Although seagrass is undoubtedly the main component of the dugong’s diet, they may incidentally (or not) ingest algae and invertebrates5.

A legendary animal

The etymology for the word Sirenian comes from the mermaids, or “sirens” of the Greek mythology. These aquatic creatures with the upper body of a female human would sing to lure sailors towards the shore… and towards a certain death. The morphology of dugongs and manatees shares some resemblance with mermaids, at least enough for desperate and lonely sailors to think so!

In addition to having a scientific name rooted in legends, dugongs are also important to contemporary human cultures. In tropical islands and coastal communities, marine megafauna species such as dugongs are considered heritage, due to the strong bond that their people have forged with the ocean5. Dugongs may play an important cultural role because they can be part of the socio-symbolic organization of societies, associated with the imaginary world, or simply because they are seen as companions of the sea, which people frequently encounter. For New Caledonia’s indigenous people, the Kanaks, dugongs can be totem to tribes. Like other large marine species (whales, sharks), the dugong is also considered as an embodiment of ancestors11.

Dugongs have been hunted throughout their range since prehistoric times. Archaeological excavations such as those conducted on the island of Akab in the United Arab Emirates12, indicate that dugong hunting played a role in ancient rituals, in addition to providing a large quantity of meat. The cultural value of dugongs is recognized by multiple countries, which have therefore authorized indigenous dugong hunting, sometimes under quotas. For instance, in Australia, dugongs may be legally hunted by Aboriginal and Torres Strait Islander people (Figure 3) under section 211 of the Native Title Act 1993.

In New Caledonia, the dugong has been protected since 1962 and its hunting is only authorized in one province, with a dispensation for traditional Kanak celebrations13. However, in view of the critical situation in which the New Caledonian dugong population finds itself, estimated at around 700 individuals in 2008-201214, no hunting exemptions have been issued since 2004.

Figure 3: “Naath” (dugong hunting platform), hand colored linocut by Torres Strait Islander artist Dennis Nona. The art piece represents traditional dugong hunting where the hunter is guided by the phosphorescent glow the dugong would leave in the water at night.

What future for dugongs?

Despite legislations to forbid dugong meat consumption outside specific traditional permits, poaching persists, in New Caledonia and in many of the “low-income” countries that are home to dugongs. As climate change and demography intensifies risks to food security, scientists and stakeholders fear for dugongs. Moreover, dugongs entirely rely on seagrass ecosystems that are also disappearing at an alarming rate (7% per year6) as a result of coastal development, pollution and overfishing.

Can we preserve dugongs in regions of high climate vulnerability and where people still have low levels of access to basic needs? Can dugongs play the role of “umbrellas” for the conservation of the ecosystem they live in? I do not have the answer to these questions but I certainly believe that people’s well-being and environmental conservation are tightly intertwined. I hope that rising transdisciplinary approaches such as those supported by the “One Health” framework will help reconnect human populations to their environment, and achieve the goal of optimal health for everyone, humans and animals.

References

1.        Garrigue, C., Patenaude, N. & Marsh, H. Distribution and abundance of the dugong in New Caledonia, southwest Pacific. Mar. Mammal Sci. 24, 81–90 (2008).

2.        Cleguer, C., Grech, A., Garrigue, C. & Marsh, H. Spatial mismatch between marine protected areas and dugongs in New Caledonia. Biol. Conserv. 184, 154–162 (2015).

3.        Cleguer, C., Garrigue, C. & Marsh, H. Dugong (Dugong dugon) movements and habitat use in a coral reef lagoonal ecosystem. Endanger. Species Res. 43, 167–181 (2020).

4.        Derville, S., Cleguer, C. & Garrigue, C. Ecoregional and temporal dynamics of dugong habitat use in a complex coral reef lagoon ecosystem. Sci. Rep. (In review)

5.        Marsh, H., O’Shea, T. J. & Reynolds, J. E. I. Ecology and conservation of the Sirenia: dugongs and manatees, Vol 18. (Cambridge University Press, Cambridge, 2011).

6.        Unsworth, R. K. F. & Cullen-Unsworth, L. C. Seagrass meadows. Curr. Biol. 27, R443–R445 (2017).

7.        Aragones, L. V., Lawler, I. R., Foley, W. J. & Marsh, H. Dugong grazing and turtle cropping: Grazing optimization in tropical seagrass systems? Oecologia 149, 635–647 (2006).

8.        Preen, A. Impacts of dugong foraging on seagrass habitats: observational and experimental evidence for cultivation grazing. Mar. Ecol. Prog. Ser. 124, 201–213 (1995).

9.        Tol, S. J., Jarvis, J. C., York, P. H., Congdon, B. C. & Coles, R. G. Mutualistic relationships in marine angiosperms: Enhanced germination of seeds by mega-herbivores. Biotropica (2021) doi:10.1111/btp.13001.

10.      Tol, S. J. et al. Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores. Sci. Rep. 7, 1–8 (2017).

11.      Dupont, A. Évaluation de la place du dugong dans la société néo-calédonienne. (Mémoire Master. Encadré par L. Gardes (Agence des Aires Marines Protégées) et C. Sabinot (IRD), 2015).

12.      Méry, S., Charpentier, V., Auxiette, G. & Pelle, E. A dugong bone mound: The Neolithic ritual site on Akab in Umm al-Quwain, United Arab Emirates. Antiquity 83, 696–708 (2009).

13.      Leblic, I. Vivre de la mer, vivre de la terre… en pays kanak. Savoirs et techniques des pêcheurs kanak du sud de la Nouvelle-Calédonie. (Société des Océanistes, 2008).

14.      Hagihara, R. et al. Compensating for geographic variation in detection probability with water depth improves abundance estimates of coastal marine megafauna. PLoS One 13, e0191476 (2018).

Coming full circle

By Rachel Kaplan, PhD student, OSU College of Earth, Ocean, and Atmospheric Sciences and Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

Returning to a place you once lived always shows how much you and the world around you have changed, offering a new perspective on the time away and where you are now. I’m writing this from my old office at Bigelow Laboratory for Ocean Sciences in East Boothbay, Maine, where I worked before moving out to Oregon to join the GEMM Lab and start graduate school at OSU. Being back in Maine has made me reflect on how much I’ve learned over the last year, and given me the opportunity to think about what’s ahead.

As a science communications specialist at Bigelow for three years, much of my work involved quickly getting up to speed on new research and writing articles for a general audience about important ocean processes. My first year of grad school has both deepened and broadened my perspective on the ocean, prodding me to think at telescoping temporal and spatial scales. I can tell that I think about the ocean differently now.

In 2019, writing this feature-length article about impacts of changing climate on North Atlantic right whales and their prey was my first introduction to research using environmental models to help mitigate entanglement issues. Now, I’m excited to be pursuing research with these themes as part of the GEMM Lab’s Project OPAL.

Over the last year, my coursework in ocean ecology and biogeochemistry surveyed the physical and chemical workings of the ocean, marine ecosystem dynamics, and the global cycles that control much of life on earth. Through lab activities and fieldwork, I began learning about whales and the marine system off the coast of Oregon, and how to ask questions that occupy the intersection between whales and their environment.

This work and learning have made me think in a new way about whales as agents of biogeochemical cycling: how do they shuttle nutrients across large distances and affect global cycles? In what ways is the biogeography of whales an expression of the global patterns of light availability and nutrient fluxes that support their prey? How is it possible to detangle and encapsulate all of the relevant variability of a natural system into a mathematical model?

All these questions were churning in my mind at the start of this trip, as I spent the bus ride from Boston to Maine reading papers for our monthly GEMM lab meeting. I also remembered the first meeting that I joined, when I was so intimidated that I couldn’t imagine discussing research with this impressive group. This time, I was just as in awe as ever of the lab, but a bit more confident in wielding acronyms and sharing ideas.

I actually attended my first GEMM Lab meeting while still working in Maine, in July 2020. I was joined by my friends’ one-year-old daughter, who alternately tried to chime in on the meeting and shut my laptop. Now, she is a chatty two-year-old kid and newly a big sister. The new baby became part of my PhD this week too, snoozing in my lap as I edited an abstract.

Only 16 days old and already helping write an abstract!

Often, it’s only seeing my friends’ children grow that shows me how much time has passed. This time, I can feel it in myself, as well. I’m excited to have made it through the first year of coursework and to be learning to formulate research questions and think about ocean systems in new ways. I’m happy to be back in this place that inspired me to pursue a PhD, and to be able to share my own work and knowledge with former colleagues.

I gained so much during my time here at Bigelow: the communication and outreach skills in my job, inspiration from the scientific curiosity and passion of my colleagues, and the support of all these people who reassured me that I would get into grad school and that doing a PhD is a good idea. I’m so happy to be able to carry this support and momentum forward with me through the rest of grad school, and excited to return to Oregon and keep going.

Where will the whales be? Ecological forecast models present new tools for conservation

By Dawn Barlow, PhD Candidate, OSU Department of Fisheries, Wildlife and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

Dynamic forecast models predict environmental conditions and blue whale distribution up to three weeks into the future, with applications for spatial management. Founded on a robust understanding of ecological links and lags, a recent study by Barlow & Torres presents new tools for proactive conservation.

The ocean is dynamic. Resources are patchy, and animals move in response to the shifting and fluid marine environment. Therefore, protected areas bounded by rigid lines may not always be the most effective way to conserve marine biodiversity. If the animals we wish to protect are not within protected area boundaries, then ocean users pay a price without the conservation benefit. Management that is adaptive to current conditions may more effectively match the dynamic nature of the species and places of concern, but this approach is only feasible if we have the relevant ecological knowledge to implement it.

The South Taranaki Bight region of New Zealand is home to a foraging ground for a unique population of blue whales that are genetically distinct and present year-round. The area also sustains New Zealand’s most industrial marine region, including active petroleum exploration and extraction, and vessel traffic between ports.

To minimize overlap between blue whale habitat and human use of the area, we develop and test forecasts of oceanographic conditions and blue whale habitat. These tools enable managers to make decisions with up to three weeks lead time in order to minimize potential overlap between blue whales and other ocean users.

Overlap between blue whale habitat and industry presence in the South Taranaki Bight region. A blue whale surfaces in front of a floating production storage and offloading (FPSO) vessel, servicing the oil rigs in the area. Photo by Dawn Barlow.

Predicting the future

Knowing where animals were yesterday may not create effective management boundaries for tomorrow. Like the weather, our expectation of when and where to find species may be based on long-term averages of previous patterns, real-time descriptions based on recent data, and forecasts that predict the future using current conditions. Forecasts allow us to plan ahead and make informed decisions needed to produce effective management strategies for dynamic systems.

Just as weather forecasts help us make decisions about whether to wear a raincoat or pack sunscreen before leaving the house, ecological forecasts can enable managers to anticipate environmental conditions and species distribution patterns in advance of industrial activity that may pose risk in certain scenarios.

In our recent study, we develop and test models that do just that: forecast where blue whales are most likely to be, allowing informed decision making with up to three weeks lead time.

Harnessing accessible data for an applicable tool

We use readily accessible data gathered by satellites and shore-based weather stations and made publicly available online. While our understanding of the ecosystem dynamics in the South Taranaki Bight is founded on years of collecting data at-sea and ecological analyses, using remotely gathered data for our forecasting tool is critical for making this approach operational, sustainable, and useful both now and into the future.

Measurements of conditions such as wind speed and ocean temperature anomaly are paired with known measurements of the lag times between wind input, upwelling, productivity, and blue whale foraging opportunities to produce forecasted environmental conditions.

Example environmental forecast maps, illustrating the predicted sea surface temperature and productivity in the South Taranaki Bight region, which can be forecasted by the models with up to three weeks lead time.

The forecasted environmental layers are then implemented in species distribution models to predict suitable blue whale habitat in the region, generating a blue whale forecast map. This map can be used to evaluate overlap between blue whale habitat and human uses, guiding management decisions regarding potential threats to the whales.

Example forecast of suitable blue whale habitat, with areas of higher probability of blue whale occurrence shown by the warmer colors and the area classified as “suitable habitat” denoted by the white boundaries. This habitat suitability map can be produced for any day in the past 10 years or for any day up to three weeks in the future.

Dynamic ecosystems, dynamic management

These forecasts of whale distribution can be effectively applied for dynamic spatial management because our models are founded on carefully measured links and lags between physical forcing (e.g., wind drives cold water upwelling) and biological responses (e.g., krill aggregations create feeding opportunities for blue whales). The models produce outputs that are dynamic and update as conditions change, matching the dynamic nature of the ecosystem.

A blue whale raises its majestic fluke on a deep foraging dive in the South Taranaki Bight. Photo by Leigh Torres.

Engagement with stakeholders—including managers, scientists, industry representatives, and environmental organizations—has been critical through the creation and implementation of this forecasting tool, which is currently in development as a user-friendly desktop application.

Our forecast tool provides managers with lead time for decision making and allows flexibility based on management objectives. Through trial, error, success, and feedback, these tools will continue to improve as new knowledge and feedback are received.

The people behind the science, from data collection to conservation application. Left: Dawn Barlow and Dr. Leigh Torres aboard a research vessel in New Zealand in 2017, collecting data on blue whale distribution patterns that contributed to the findings in this study. Right: Dr. Leigh Torres and Dawn Barlow at the Parliament buildings in Wellington, New Zealand, where they discussed research findings with politicians and managers, gathered feedback on barriers to implementation, and subsequently incorporated feedback into the development and implementation of the forecasting tools.

Reference: Barlow, D. R., & Torres, L. G. (2021). Planning ahead: Dynamic models forecast blue whale distribution with applications for spatial management. Journal of Applied Ecology, 00, 1–12. https://doi.org/10.1111/1365-2664.13992

This post was written for The Applied Ecologist Blog and the Geospatial Ecology of Marine Megafauna Lab Blog

Supporting marine life conservation as an outsider: Blue whales and earthquakes

By Mateo Estrada Jorge, Oregon State University undergraduate student, GEMM Lab REU Intern

Introduction

My name is Mateo Estrada and this past summer I had the pleasure of working with Dawn Barlow and Dr. Leigh Torres as a National Science Foundation (NSF) Research Experience for Undergraduates (REU) intern. I had the chance to proactively learn about the scientific method in the marine sciences by studying the acoustic behaviors of pygmy blue whales (Balaenoptera musculus brevicauda) that are documented residents of the South Taranaki Bight region in New Zealand (Torres 2013, Barlow et al. 2018). I’ve been interested in conducting scientific research since I began my undergraduate education at Oregon State University in 2015. Having the opportunity to apply the skills I gained through my education in this REU has been a blessing. I’m a physics and computer science major, but more than anything I’m a scientist and my passion has taken me in new, unexpected directions that I’m going to share in this blog post. My message for any students who feel like they haven’t found their path yet is: hang in there, sometimes it takes time for things to take shape. That has been my experience and I’m sure it’s been the experience of many people interested in the sciences. I’m a Physics and Computer Science student, so why am I studying blue whales, and more specifically, how can I be doing marine science research having only taken intro to biology 101?

My background

I decided to apply for the REU in the Spring 2021 because it was a chance to use my programming skills in the marine sciences. I’m also passionate about conservation and protecting the environment in a pragmatic way, so I decided to find a niche where I could put my technical skills to good use. Finally, I wanted to explore a scientific field outside of my area of expertise to grow as a student and to learn from other researchers. I was mostly inspired by anecdotal tales of Physicist Richard Feynman who would venture out of the physics department at Caltech and into other departments to learn about what other scientists were investigating to inspire his own work. This summer, I ventured into the world of marine science, and what I found in my project was fascinating.

Whale watching tour

Figure 1. Me standing on a boat on the Pacific Ocean off Long Beach, CA.

To get into the research mode, I decided to go on a whale watching tour with the Aquarium of the Pacific. The tour was two hours long and the sunburn was worth it because we got to see four blue whales off the Long Beach coast in California. I got to see the famous blue whale blow and their splashes. It was the first time I was on a big boat in the ocean, so naturally I got seasick (Fig 1). But it was exciting to get a chance to see blue whales in action (luckily, I didn’t actually hurl). The marine biologist onboard also gave a quick lecture on the relative size of blue whales and some of their behaviors. She also pointed out that they don’t use Sonar to locate whales as this has been shown to disturb their calling behaviors. Instead, we looked for a blow and splashing. The tour was a wonderful experience and I’m glad I got to see some whales out in nature. This experience also served as a reminder of the beauty of marine life and the responsibility I feel for trying to understand and help conserving it.

Context of blue whale calling

Sound plays a significant role in the marine environment and is a critical mode of communication for many marine animals including baleen whales. Blue whales produce different vocalizations, otherwise known as calls.  Blue whale song is theorized to be produced by males of the species as a form of reproductive behavior, similar to how male peacocks engage females by displaying their elongated upper tail covert feathers in iridescent colors as a courtship mechanism. Then there are “D calls” that are associated with social mechanisms while foraging, and these calls are made by both female and male blue whales (Lewis et al. 2018) (Fig. 2).

Figure 2. Spectrogram of Pygmy blue whale D calls manually (and automatically) selected, frequency 0-150 Hz.

Understanding research on blue whales

The most difficult part about coming into a project as an outsider is catching up. I learned how anthropogenetic (human made) noise affects blue whale communication. For example, it has been showing that Mid Frequency Active Sonar signals employed by the U.S. Navy affect blue whale D calling patterns (Melcón 2012). Furthermore, noise from seismic airguns used for oil and gas exploration has also impact blue whale calling behavior (Di Lorio, 2010). Understanding the environmental context in which the pygmy blue whales live and the anthropogenic pressures they face is essential in marine conservation. Protecting the areas in which they live is important so they can feed, reproduce and thrive effectively. What began as a slowly falling snowflake at the start of a snowstorm turned into a cascading avalanche of knowledge pouring into my mind in just two weeks.

Figure 3. The white stars show the hydrophone locations (n = 5). A bathymetric scale of the depth is also given.

The research question I set out to tackle in my internship was: do blue whales change their calling behavior in response to natural noise events from earthquake activity? To do this, I used acoustic recordings from five hydrophones deployed in the South Taranaki Bight (Fig. 3), paired with an existing dataset of all recorded earthquakes in New Zealand (GeoNet). I identified known earthquakes in our acoustic recordings, and then examined the blue whale D calls during 4 hours before and after each earthquake event to look for any change in the number of calls, call energy, entropy, or bandwidth.

A great mentor and lab team

The days kept passing and blending into each other, as they often do with remote work. I began to feel isolated from the people I was working with and the blue whales I was studying. The zoom calls, group chats, and working alongside other remote interns kept me afloat as I adapted to a work world fully online. Nevertheless, I was happy to continue working on this project because I felt like I was slowly becoming part of the GEMM Lab. I would meet with my mentor Dawn Barlow at least once a week and we would spend time talking about the project and sorting out the difficult details of data processing. She always encouraged my curiosity to ask questions. Even if they were silly questions, she was happy to ponder them because she is a curious scientist like myself.

What we learned

Pygmy blue whales from the South Taranaki Bight region do not change their acoustic behavior in response to earthquake activity. The energy of the earthquake, magnitude, depth, and distance to the origin all had no influence on the number of blue whale D calls, the energy of their calling, the entropy, and the bandwidth. A likely reason for why the blue whales would have no acoustic response to earthquakes (magnitude < 5) is that the STB region is a seismically active region due to the nearby interface of the Australian and Pacific plates. Because of the plate tectonics, the region averages about 20,000 recorded earthquakes per year (GeoNet: Earthquake Statistics). Given that pygmy blue whales are present in the STB region year-round (Barlow et al. 2018), the blue whales may have adapted to tolerate the earthquake activity (Fig 4).

Figure 4. Earthquake signal from MARU (1, 2, 3, 4, 5) and blue whale D calls, Frequency 0-150 Hz.

Looking at the future

I presented my work at the end of my REU internship program, which was a difficult challenge for me because I am often intimidated by public speaking (who isn’t?). Communicating science has always been a big interest of me. I love reading news articles about new breakthroughs and being a small part of that is a huge privilege for me. Finding my own voice and having new insights to contribute to the scientific world has always been my main objective. Now I will get to deliver a poster presentation of my REU work at the Association for the Sciences of Limnology and Oceanography (ASLO) Conference in March 2022. I am both excited and nervous to take on this new adventure of meeting seasoned professionals, communicating my results, and learning about the ocean sciences. I hope to gain new inspirations for my future academic and professional work.

References:

About Earthquake Drums – GeoNet. geonet.Org. Retrieved June 23, 2021, from https://www.geonet.org.nz/about/earthquake/drums

Barlow, D. R., Torres, L. G., Hodge, K. B., Steel, D., Scott Baker, C., Chandler, T. E., Bott, N., Constantine, R., Double, M. C., Gill, P., Glasgow, D., Hamner, R. M., Lilley, C., Ogle, M., Olson, P. A., Peters, C., Stockin, K. A., Tessaglia-Hymes, C. T., & Klinck, H. (2018). Documentation of a New Zealand blue whale population based on multiple lines of evidence. Endangered Species Research, 36, 27–40. https://doi.org/10.3354/esr00891

Di Iorio, L., & Clark, C. W. (2010). Exposure to seismic survey alters blue whale acoustic communication. Biology Letters, 6(3), 334–335. https://doi.org/10.1098/rsbl.2009.0967

Lewis, L. A., Calambokidis, J., Stimpert, A. K., Fahlbusch, J., Friedlaender, A. S., McKenna, M. F., Mesnick, S. L., Oleson, E. M., Southall, B. L., Szesciorka, A. R., & Sirović, A. (2018). Context-dependent variability in blue whale acoustic behaviour. Royal Society Open Science, 5(8). https://doi.org/10.1098/rsos.180241

Melcón, M. L., Cummins, A. J., Kerosky, S. M., Roche, L. K., Wiggins, S. M., & Hildebrand, J. A. (2012). Blue whales respond to anthropogenic noise. PLoS ONE, 7(2), 1–6. https://doi.org/10.1371/journal.pone.0032681

Torres LG. 2013 Evidence for an unrecognised blue whale foraging ground in New Zealand. NZ J. Mar. Freshwater Res. 47, 235–248. (doi:10. 1080/00288330.2013.773919)

A little help from my friends to study gray whales in Port Orford

By Lisa Hildebrand, PhD student, OSU Department of Fisheries, Wildlife, & Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

The 2021 TOPAZ (Theodolite Overlooking Predators And Zooplankton) field season in Port Orford has come to a close. Its close also signals the end of my tenure as field project lead, after I took over from my predecessor Florence Sullivan (OSU/GEMM Lab MSc grad) in the summer of 2018. Allison Dawn, incoming GEMM Lab Master’s student, is my successor and I am excited to pass the torch to her and see what new directions she will take the project. In today’s post, I will not recap the field season as I often do at the end of August. However, I strongly encourage you to read the blog posts written by the JASPER (Journey for Aspiring Scientists Pursuing Ecological Research) interns that made up Team “Heck Yeah”, Nadia Leal, Damian Amerman-Smith, and Jasen White, as they did an excellent job summarizing what we saw and experienced over the last six weeks. Instead, I want to take this opportunity to highlight a few people in Port Orford (and their most memorable gray whale encounters) who created a home away from home for me in Port Orford and played a large part in creating rich and meaningful experiences during my time as field project lead.

Tom Calvanese. Source: WildHuman.

Up first is Tom Calvanese, the OSU Port Orford Field Station manager. The field station can be an extremely busy place, especially during the summer when ideal weather conditions allow many marine scientists to conduct their research. There can be a lot of comings and goings at the field station, with swift turnarounds between groups and individuals from different departments and projects; some staying just one night, while others (such as the TOPAZ field teams) stay for several weeks. Leigh and I like to call Tom “the man behind the machine” because he manages to keep this busy field station running smoothly. From the get go, Tom has been a solid rock for me in Port Orford and he has never hesitated to give me the time and attention I needed, be it because I was seeking him out for advice about how to handle a personnel issue, a lesson in how to tie strong knots, or just a friendly conversation at the end of a long field day. I know that I have found a life-long friend and colleague in Tom through this project and for this I am very grateful.

One of Tom’s most iconic gray whale encounters happened when he was kayak fishing with a few friends in Tichenor Cove (coincidentally one of the two TOPAZ study sites). The individual kayakers were scattered throughout the cove, all in search of a good spot to hook some rockfish or lingcod. The group had not been out on the water for very long, which likely plays a large part in the shock and surprise that comes next, when Tom suddenly heard the blow of whale. He looked up from his fishing in the direction of the blow, only to see that a gray whale was surfacing right underneath one of his kayak fishing friends. Said friend could do nothing as he sat paralyzed in his kayak which slowly slid off the back of the gray whale as it dove once again. Neither whale nor human was harmed in this encounter, as the whale went back to foraging in the area, and the human (after several minutes of incredulity) went back to fishing. Every year, Tom has warned me of this location where this interaction happened (an uncharacteristically deep spot in Tichenor Cove compared to the rest of the area), though his warning is always accompanied with a twinkle in his eye.

An image captured by 2018’s Team “Whale Storm” aboard the kayak while sampling in Tichenor Cove, Port Orford. Source: GEMM Lab.
Dave Lacey. Source: L Hildebrand.

Dave Lacey owns South Coast Tours (SCT), a tour operating business that offers boat, kayak, and snorkeling tours, as well as surf lessons. Dave has been one of the most generous individuals to the TOPAZ/JASPER projects, never hesitating to loan us wetsuits and/or kayaks and allowing us to use his office and storage areas every day. He has also delivered excellent kayak paddle & safety instruction to the field teams over the last two years. Dave has truly become a vital partner during the Port Orford field seasons. It has been such a pleasure to be able to learn from and work with him, as well as see his business grow each year. Even though I will not be leading the project in Port Orford anymore, I am excited to continue my working relationship with Dave through obtaining important photo identification and sighting data of gray whales in the area when the GEMM Lab team is not there.

Although SCT is not even 10 years old (though it will be next year in 2022!), Dave has had so many gray whale encounters that he said it was really hard for him to pick just one. However, he ultimately picked the first time that he smelled a gray whale’s breath. It happened during a kayak tour when the group rounded the corner from Tichenor to Nellie’s Cove and a whale suddenly surfaced right in front of everyone, hitting them with the misty cloud of its blow. Up until this moment, Dave had both seen and heard hundreds of whale blows, but had never smelled one. He says, “to hear and see [the blow] is pretty normal but to get the third sense [of smell] is really phenomenal.”. Upon asking what he thinks of the smell, Dave replied that he does not think it is as gross as some people may think and during tours on his boat, the Black Pearl, he now actually tries to (safely) maneuver the boat downwind of the blow so that his clients can get a whiff as well.

The misty cloud emitted by whales when they come to the surface to breathe is referred to as the “blow”. Source: GEMM Lab.
Mike Baran. Source: L Hildebrand.

Mike Baran is a co-owner of Port Orford Sustainable Seafood (POSS) and he also occasionally guides kayak and snorkel tours for SCT. POSS is a community supported fishery that delivers wild, line-caught seafood direct from Port Orford to communities throughout western Oregon. I developed a great friendship with Mike through seeing him on the water a lot as a kayak guide for SCT in my first summer leading the TOPAZ/JASPER projects (2018), as well as seeing him at the field station on most days since POSS’ office and fish-processing facility are located there as well. If you are a keen follower of the GEMM Lab blog, you will know by now that the field season in Port Orford is short, yet very intense and taxing. Therefore, uplifting and sometimes goofy interactions with someone can really turn an upsetting day (potentially due to kayak gear loss or simply exhaustion) into a better one. Mike provided me with a lot of uplifting and goofy interactions and always helped put a smile on my face. 

As a SCT kayak guide, Mike has also had many gray whale encounters, however none are as memorable as the one he had on August 2nd, 2019. Mike describes it as a typical Port Orford day: “windy with lots of whale activity all morning”, though all of the activity had been at a distance (the whale blows were far away). Yet, on the paddle back through Tichenor Cove along the backside of the port jetty, Mike and his tour glimpsed a whale that was headstanding along the jetty rocks. The paddlers slowed down and kept their distance, watching as the gray whale foraged, diving down for 3-4 minutes at a time before resurfacing in almost the same location as it had surfaced in before. Suddenly, the whale surfaced right in the middle of the kayak group, with Mike to its left, a mere meter or so away, and the rest of the group to its right. Despite the fact that the sudden appearance of the whale scared the living daylights out of Mike, he was able to take a picture of the surfacing, which features one of the tour clients in the background with her hands lifted up to her face in total shock. So, thankfully for us the moment is not just eternalized in Mike’s memory but also in photographic form.

The photo of the gray whale that surfaced right next to Mike’s kayak, which also captured the shock & surprise of one of the tour clients in the background. Source: South Coast Tours.
Tara Ramsey. Source: L Hildebrand.

Last but certainly not least is Tara Ramsey, the coordinator of the Redfish Rocks Community Team since the summer of 2020. Despite arriving to Port Orford and her job in the middle of a pandemic, Tara has developed a lot of exciting new outreach and education material for the Redfish Rocks Marine Reserve, including an excellent walking tour of Port Orford (if you are ever there, I cannot recommend it highly enough – it starts at the Visitor Center!). While I have not known Tara as long as the other individuals featured in this blog, she has become a really great friend of mine, teaching me a lot about the reserve and Port Orford in general, including the best spot on Battle Rock beach for a small nighttime bonfire. 

Tara’s most memorable encounter with a gray whale is in fact her only encounter with a gray whale to date, and it happened just a few weeks ago when she was doing an Instagram livestream of the Redfish Rocks Marine Reserve aboard SCT’s Black Pearl. The purpose of the livestream was to bring the public into the reserve without having to leave the comfort and current safety of their homes. Tara describes the conditions in the reserve as “quite eerie” that day as there was a combination of smoke, fog, and no wind in the air. These conditions resulted in some pretty poor visibility, but gave the reserve an almost mystical appearance. Tara was actually mid-sentence on the livestream, talking about how special this moment was for her because it was her first time being in the reserve, when a whale surfaced a few meters from the boat. While the encounter was brief (the whale only surfaced 3 or 4 times before disappearing into the fog), Tara says the vision will be etched in her memory forever as Redfish Rocks is “a circle of islands, kind of like an amphitheater and it was amazing to see the whale just in the middle of it all.” 

An aerial view of Redfish Rocks Marine Reserve. Source: FishTracker.

I will miss being the field project lead of the TOPAZ and JASPER projects. I will miss kayaking every other day and spying on gray whales from the cliff site. I will miss having the opportunity to work closely with and train a new crop of aspiring marine scientists. I will miss my daily interactions with Tom, Dave, Mike, Tara, and many more individuals, when I do not go to Port Orford for six weeks next summer. I will cherish all the memories I have amassed over my last four summers in Port Orford for a very long time. Most of all, I will always be grateful to the gray whales that brought me back every summer and who (in a way) made all those memories happen.

PI Leigh Torres and Lisa at the end of the 2021 TOPAZ field season in Port Orford after the annual community presentation with Battle Rock Beach, Humbug Mountain, and Redfish Rocks Marine Reserve in the background. Source: L Torres.

The Unpredictable Nature of Field Work & a Mystery Mysid

By Jasen C. White, GEMM Lab summer intern, OSU senior, Department of Fisheries, Wildlife, and Conservation Sciences

Field work is predictably unpredictable. Even with years of experience and exhaustive planning, nature always manages to throw a few curveballs, and this gray whale foraging ecology field season is no exception. We are currently in our sixth week of data collection here in Port Orford, and we have been battling the weather, our equipment, and a notable lack of whales and their zooplankton prey. Throughout all of these setbacks, Team “Heck Yeah” has lived up to its mantra as we have approached each day ready to hit the ground running. When faced with any of our myriad of problems, we have managed to work collaboratively to assess our options and develop solutions to keep the project on track. 

For those of you that are unfamiliar with Port Orford, it is windy here, and when it is not, it can be foggy. Both of these weather patterns have the potential to make unsafe paddling conditions for our kayak sampling team. This summer we have frequently delayed or altered our field work routines to accommodate these weather patterns. Occasionally, we had to call off kayaking altogether as the winds and swell precluded us from maintaining our boat “on station” at the predetermined GPS coordinates during our samples, only for the winds to die down once we had returned to shore and completed the daily gear maintenance. Despite weather challenges, we have made the most of our data collection opportunities over these past six weeks, and we have only been forced to give up four total days of data collection. Flexibility to take advantage of the good weather windows when they arrive is the key!

Equipment issues can be even more unpredictable than the weather. The first major stumbling block for our equipment was a punctured membrane in the dissolved oxygen probe that we lower into the water at each of our twelve sample locations. This puncture was likely the result of a stray urchin’s spine that was in the wrong place at the wrong time. Soon after noticing the problem, we quickly rallied to refurbish the membrane, recalibrate the sensor, and design a protective housing using some plumbing parts from the local hardware store to prevent any future damage to the membrane (Figures 1a-d). Within 6 days, we were back up and running with the dissolved oxygen sensor.

Figure 1. a) Punctured dissolved oxygen sensor membrane; b) plans for constructing a protective housing for the sensor; c) the new protective housing for the dissolved oxygen sensor (yellow) is attached to the sensor array; d) intern Jasen White measuring seawater for the dissolved oxygen sensor calibration after replacing the punctured membrane. Source: A. Dawn

The next major equipment issue involved a GoPro camera whose mounting hardware snapped while being retrieved at a sample site. This event was captured on the camera itself (see below). Fortunately, thanks to our collaborators at the Oregon Institute of Marine Biology, we were soon able to recover the lost GoPro camera, and in the meantime, we relied on our spare to continue sampling. 

Figure 2. The steel cable of the downrigger used to deploy and retrieve our sensor array had worn down until only two strands remained intact. Source: J. White.

The most recent equipment problem was a fraying cable (Figure 2) on our downrigger. We use the downrigger as a winch to lower and raise our sensor array and zooplankton nets into the water to obtain our samples. Fortunately, keen eyes on our team noticed the fray before it fully separated while the sensor array was in the water which could have resulted in losing our gear. We were quickly able to find the necessary repair part locally and get back on the water to finish out our sample regime within an hour of noticing the problem. 

Finally, as Damian mentioned in his post last week, this season seemed to start much slower than the previous field seasons. In the early weeks, many of our zooplankton sampling nets repeatedly came up almost empty. There was often nothing but murky water to see in the GoPro videos that accompany the zooplankton samples. Likely due to the lack of prey, we have only managed to spot a couple of transitory whales that rarely entered our study area. Those few whales that we did observe were difficult to track as the relatively high winds and waves quickly dissipated the tell-tale blows and camouflaged their briefly exposed backs and flukes. 

Our determination and perseverance have recently started to pay off, however, as the prey abundance in at least some of our sample sites has begun to increase. This increase in prey has also corresponded to a slight increase in whale sightings. One whale even spent nearly 30 minutes around the sampling station that consistently yields the most prey, likely indicating foraging behavior. These modest increases in zooplankton prey and whale sightings provide more evidence in support of the hypothesis Damian mentioned last week that reduced whale abundance in the area is likely the result of low prey abundance.

Figure 3. Example of a previously unidentified mysid that dominates several of our zooplankton samples. Due to the unique fat and flat telson (the “tail”) portion, we have been affectionately calling these “beavertail” mysids. Source: J. White.

As the zooplankton abundance finally started to increase, we noticed an interesting shift in the kinds of prey that we are capturing compared to previous seasons. Donovan Burns, an intern from the 2019 field season, noted in his blog post that the two most common types of zooplankton they found in their samples were the mysid species Holmesimysis sculpta and members of the genus Neomysis. While Neomysis mysid shrimp are continuing to make up a large proportion of our prey samples this year, we have noticed that many of our samples are dominated by a different type of mysid shrimp (Figure 3) which, in previous years, was a very rare capture. After searching through several mysid identification guides, this unknown mysid appears to be a member of the genus Lucifer, identified based on the presence of some distinctive characteristics that are unique to this genus (Omori 1992). 

This observation is interesting because historically, Lucifer mysid shrimp are typically found in warmer tropical and subtropical waters and were rarely reported in the eastern North Pacific Ocean before the year 1992 (Omori 1992). Additionally, a key to common coastal mysid shrimp of Oregon, Washington, and British Columbia does not include members of the Lucifer genus, nor does it include any examples of mysids that resemble these new individuals showing up in our zooplankton nets (Daly and Holmquist 1986). If our initial identification of this mysid species is correct, then the sudden rise in the abundance of a typically warm water mysid species in Port Orford may indicate some fascinating shifts in oceanographic conditions that could lend some insight into why our prey and subsequent whale observations are so different this year than in years past.

Figure 4. View from the cliff site where we track gray whales using a theodolite. Source: A. Dawn.

As the 2021 field season draws to a close in Port Orford, I cannot help but reflect on what a wonderful opportunity we have been given through this summer internship program. I have loved the short time that I have spent living in this small but lively community for these past five weeks. Most days we could either be found kayaking around the nearshore to sample for the tiny creatures that our local gray whales call dinner, or we were on a cliff, gazing at the tirelessly beautiful, rugged coastline (Figure 4), hoping to glimpse the blow of a foraging whale so that we could track its course with our theodolite. Though the work can be physically exhausting during long and windy kayaking trips, mentally taxing when processing the data for each of the new samples after a full day of fieldwork, or incredibly frustrating with equipment failures, weather delays and shy whales, it is also tremendously satisfying to know that I contributed in a small but meaningful way to the mission of the GEMM Lab. I cannot imagine a better way to obtain the experience that my fellow interns and I have gained from this work, and I know that it will serve each of us well in our future ambitions.

References

Daly, K. L., and C. Holmquist. 1986. A key to the Mysidacea of the Pacific Northwest. Canadian Journal of Zoology 64:1201–1210.

Omori, M. 1992. Occurrence of Two Species of Lucifer (Dendrobranchiata: Sergestoidea: Luciferidae) off the Pacific Coast of America. Journal of Crustacean Biology 12:104–110.

Where are all the whales: Thoughts from the first half of the Port Orford project 2021

By Damian Amerman-Smith, Pacific High School senior, GEMM Lab summer intern

Left to right: Damian, Nadia, Jasen. The group scans the ocean looking for whales, while Damian puts on sunscreen. Source: A. Dawn. 

Growing up in Port Orford, a short ten-minute walk from the Pacific Ocean, has certainly shaped my life a lot. It has given me a great regard for the ocean, the diversity of life within it, and how life seems to bypass human derived borders in order to go wherever it can. I often marvel at all the beautiful, intricate ecosystems that are able to exist inside of our planet’s vast oceanic expanses. Along with my love of the ocean has come a great regard for marine mammals and the novelties of these animals that allow them to live entirely in the ocean despite not having gills. Every new discovery of these beautiful ocean creatures brings me such simple and pure joy, such as my very recent discovery that baleen whales have two blow holes. These blow holes look so peculiar on the top of their bodies, like a short upside-down nose. 

Photo of a gray whale’s blow hole. Source: NOAA.

My interest in the ocean and its inhabitants was a large part of what made me so enthused to take a part in the gray whale foraging ecology (GWFE) project in Port Orford this summer. When Elizabeth Kelly, my friend and a previous intern for the GWFE project mentioned her experiences from the previous summer, I was very happy when she put me in contact with Lisa Hildebrand and Leigh Torres so that I could apply to be an intern. Since then, I have been very ecstatically awaiting the beginning of the project and could hardly believe it when it finally began, and I was able to meet my fellow team members: Lisa Hildebrand, the PhD student who has been leading the GWFE project for the last four years; Allison Dawn, a Master’s student who is going to take over the project in Lisa’s stead; Nadia Leal, an OSU undergrad hoping to further pursue the field of marine biology; and Jasen White, an OSU undergrad whose time in the Navy has made him a very steeling presence while out on the water. 

The three weeks that we have spent together learning the procedures that make up the project have been well spent, teaching all of us a lot of new things, such as what a theodolite is, how to operate a dissolved oxygen sensor, and (for me) how to use Excel. The first two weeks were largely spent just learning about how we collect data and improving our field skills, but as we have become more comfortable with our skills, we have also begun looking beyond the procedures, towards the data itself and what it can mean. Primarily, we started to notice the distinct lack of gray whales and almost complete lack of zooplankton prey for any gray whales in the area to eat. 

A calm & beautiful, yet whale-less, view from the cliff site. Source: L. Hildebrand.

As we pass the halfway point in the project, we have only witnessed two whales inside our study area. While in the beginning it was not surprising that there were no whales, it has started to become concerning to me. We have a strong working hypothesis about why there have not been many whale sightings in our monitored sites of Mill Rocks and Tichenor’s Cove: there is not nearly enough zooplankton prey to attract them. Monday, August 9th is a good example to support this hypothesis. On that day, when we pulled up our sample net at Tichenor Cove station #1, we collected fifty-three individual Neomysis mysid shrimp, which are a tasty treat for gray whales. However, all the other prey samples from the remaining eleven kayak sampling stations had perhaps a maximum of five assorted zooplankton each, which is certainly not enough to attract the attention of such a large predator as Eschrichtius robustus (a gray whale). Unfortunately, we have yet to see much change in zooplankton prey availability in our sampling nets over the season so far, but we are hopeful that swarms of zooplankton in the area will resurge and the gray whales will begin using the area around the port as their August feeding grounds.

Our hopes aside, it is intriguing to think about why there has been so few zooplankton at our sampling sites. A main factor is likely the decrease of Port Orford’s kelp forests over the past few years. Kelp is very important to zooplankton, particularly mysids, as it allows them to seek shelter from predators. Declines in kelp forests have been documented all along the southern Oregon coast, and are believed to be fueled by many factors (ORKA, 2021). A combination of warming waters with decreasing amount of nutrients available to the kelp (Richardson 2008), and the increasing abundances of purple sea urchins that eat the kelp has vastly impacted the amount of kelp in the area. The decline in local kelp forests may be the reason that we are seeing fewer mysid swarms than in previous years. This reduced kelp and mysid availability could, in turn, be making Port Orford waters an unappetizing area for hungry whales to visit this year. While this trophic cascade is still just an educated hypothesis, it is important for us and others to keep watch on the situation, and to see how it changes. There are organizations such as the Oregon Kelp Alliance (ORKA) that are working hard to study why the kelp populations are hurting and how we can help. We will power through the season with the hopes that the gray whales will come. It is still very possible that the zooplankton will resurge and the whales will return with plenty to feed on.

References

Richardson, Anthony J. 2008. In hot water: zooplankton and climate change, ICES Journal of Marine Science, Volume 65, Issue 3, Pages 279–295, https://doi.org/10.1093/icesjms/fsn028

ORKA, 2021. “Kelp.” Oregon Kelp Alliancewww.oregonkelp.com/.