Hearing Gray: Diving into the Sonic World of the Gray Whale

By Natalie Nickells, visiting PhD Student, British Antarctic Survey

For the last three months, I’ve been lucky enough to be welcomed into the GEMM lab as a visiting PhD student to work on the acoustic data from hydrophones in CATS tags deployed on gray whales. This work has been a huge change for me! I’ve gone from studying Antarctic baleen whale foraging, the topic of my PhD, from a distance at my desk in Cambridge England, to studying PCFG gray whales in Newport- and finally being in the same country, state, and even county to the whales I am studying! Unlike my Antarctic research, where whale blows in the distance become tiny points in a sea of data, listening to the CATS tag data has allowed me to really connect with these animals on an emotional level, as I’ve spent days, weeks and months listening to the world as they hear it.

Humans are fundamentally visual creatures- we take in information through sight first, with hearing probably our second, or for some even third, sense in line. However, for marine mammals, the same cannot be said: their world is auditory first. This fact is an important realisation to get our heads around, highlighted beautifully by the phrase “the ears are the window to the soul of the whale” (Sonic Sea (2017)) or Tim Donaghy’s emotive statement that “a deaf whale is a dead whale”. High levels of ocean noise therefore have a huge impact on baleen whales. Imagine trying to do your groceries or find a friend while blindfolded or in a thick fog– you might struggle to access food or communicate with others, and your stress would certainly be high. To succeed, you would likely need to change your behaviour.

Behavioural changes in response to ocean noise are observed in baleen whales: for example, humpback whales change their foraging behaviour when ship noise increases (Blair et al., 2016), and gray whales have been shown to call more frequently and possibly more loudly in conditions of high ocean noise (Dahlheim & Castellote, 2016). However, even in the absence of notable behaviour change due to ocean noise,  North Atlantic  right whales  may still be experiencing a stress response. When shipping traffic in the Bay of Fundy significantly decreased in the aftermath of 9/11, North Atlantic  right whales in the area had decreased chronic stress levels (Rolland et al., 2012).

Previous work by the GEMM lab observed this stress response to ocean noise in gray whales. They found a correlation between high levels of glucocorticoid (a stress indicator) in male gray whale faeces with high vessel noise and vessel counts in the area. Vessel noise was measured using two static hydrophones off the Oregon coast, and it was assumed all animals in the area experienced the same noise (Lemos et al., 2022; Pirotta et al., 2023). However, a static hydrophone is an imperfect measure of the sound levels a mobile animal experiences, particularly as we might expect animals to change behaviour when disturbed (Sullivan & Torres, 2018).  This previous work became the starting point for the question I have addressed during my time in the GEMM Lab: can we measure and characterise the sound levels  an individual whale was exposed to? Enter CATS tags. These are suction-cup tags fitted with a host of sensors, which have been used by the GEMM lab since 2021 (see Image 1). So far, they have mostly been used for their accelerometry data (Colson et al. (in press), see also Kate’s blog post). However, the GEMM lab had the foresight to put hydrophones on these tags, and as a result I was welcomed into the lab by a bumper-crop of hydrophone data just waiting to be analysed!

Image 1: A gray whale (“Slush”) being tagged with a CATS tag and Natalie (right) with the same tag.

This tag data is particularly valuable, not only for its ability to follow the acoustic world of an individual whale, but also due to the whole suite of data that comes with the acoustics: essentially, the acoustic data comes with behavioural data. Or at least, it comes with data from which we can infer behaviour (Colson et al, in press)! Incorporating behaviour into passive acoustics work hugely strengthens its ecological usefulness (Oestreich et al., 2024). We can hear what an individual whale is hearing, and we can also infer what they were doing before, during, and after they heard or made that sound. Having behavioural data also means that we can ground-truth the sounds we hear. When hearing an interesting sound, I can go back to the video data and accelerometer data to check what the whale sees, what its body-position is doing (e.g., is it headstand foraging?) and the speed and direction of its travel. Context is key!

The importance of context was highlighted in my very first week here in the GEMM lab. I became very interested in a sound I could hear frequently when the whale would surface- a distorted bark-like noise, but the whale was surely too far offshore for any barking dog to be heard? And almost every time the whale surfaced? After a few days pondering, I shared my mystery with Leigh, who laughingly revealed that one of the whale-watching boats in this area has a ‘whale-alerting’ dog on board! Sometimes if it sounds like a dog… it’s a dog! Besides my slightly anticlimactic discovery of dogs barking, committing time to listening to the tags and hearing what the whales hear, has been a magical experience. My favourite hydrophone sound, that still gets me excited when I hear it, is the gray whale ‘bongo call’- or as it’s more formally known in the literature, M1 vocalisation (Guazzo et al., 2019). I’ll let you decide which name is more appropriate! I first heard this call when investigating a time on “Scarlett’s” tag when we knew her 14 year-old daughter “Pacman” had been close: about 15 minutes before “Pacman” appears on the video, Scarlett makes this call (you can play the clip below to listen).  In “Lunita’s” tag, we even hear this call three times in a row!

Image 2: A ‘bongo call’ made by “Scarlett” when her daughter “Pacman” was nearby.

Relatively little research has been done on gray whale calls compared to other more studied species like humpbacks. Most of this research has taken place on gray whale migratory routes (Guazzo et al., 2019, 2017; Burnham et al. 2018)  or in captivity (Fish et. al, 1974 ) so these tag recordings could be a valuable addition to a small sample from the foraging grounds (Clayton et al., 2023; Haver et al., 2023)- as well as being very personally exciting to hear!

We’ve also been able to use the tag hydrophone data to look at close calls with ships. As I was going through the data on “Scarlett’s” tag, I noticed a spike in vessel noise. Looking at the video from the same timestamp, I could see a small vessel passing directly over her as she surfaced. At the time this vessel passed over her, the tag was only 0.8 m under the surface of the water!

Image 3: A close encounter between a small vessel and “Scarlett”, shown both on the video from the CATS tag (top) and the spectrogram (bottom). The close call is outlined in a yellow box, when a greater intensity of noise occurred as illustrated by the brighter colour intensity compared to the white box (quieter vessel noise). Brighter colours denote a louder volume. The red boxes show surfacing noise- this can essentially be ignored when interpreting the echogram for our purposes.

Sometimes vessels may be more distant, but possibly equally harmful: we have seen vessel noise from larger and presumably more distant vessels dominate the soundscape in some of the tag data. Remembering that to a whale, the sonic world is as important as the visual world is to us, this elevated background noise from ships could have major consequences. So, the first step is to try to quantify the gray whales’ exposure to this vessel noise. I’ve been running some systematic sampling on the tag data to try to quantify background noise levels, and how this changes depending on the time of day: do individual whales experience the same daily spikes in ocean noise that were detected on the static hydrophones, at around 6am and noon due to vessel traffic (Haver et al., 2023)? If not, are they taking evasive action to avoid these spikes? These are just some of the questions that these CATS tags can help us answer, although ideally we need longer acoustic data recordings to capture day and night data, as well as potentially improving the hydrophones on the CATS tags themselves to minimise the impacts of tag interference and random noise.

When explaining to the public what it is to be a PhD student, I often refer to myself as a ‘scientist in training’, or to young children, a ‘baby scientist’. As I look toward my departure from the GEMM lab, I hope to have developed into at least a scientific toddler, having gained the ability to walk through reams of acoustic data with (relative) independence. More than that, I’m excited to take home a refreshed sense of curiosity about what drives marine mammals to behave as they do, an openness to collaboration and new approaches, and a large dose of ‘American emotion’! Let’s hope my British colleagues can handle it!

My heartfelt thanks to all those who welcomed me so warmly at the GEMM lab and Oregon State University, particularly my mentors Leigh Torres and Samara Haver.

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly alert when we make a new post! Just add your name into the subscribe box below!

Loading

Bibliography

Sonic Sea (2017) Directed by Michelle Dougherty [Film] Distributed by the Natural Resources Defense Council.

Blair, H.B., Merchant, N.D., Friedlaender, A.S., Wiley, D.N. & Parks, S.E. (2016) Evidence for ship noise impacts on humpback whale foraging behaviour. Biology Letters. 12 (8), 20160005. doi:10.1098/rsbl.2016.0005.

Burnham, R., Duffus, D. & Mouy, X. (2018) Gray Whale (Eschrictius robustus) Call Types Recorded During Migration off the West Coast of Vancouver Island. Frontiers in Marine Science. 5, 329. doi:10.3389/fmars.2018.00329.

Colson, K., E. Pirotta L. New, D Cade, J Calambokidis, K. Bierlich, C Bird, A Fernandez Ajó, L. Hildebrand, A. Trites, L. Torres. (in press). Using accelerometry tags to quantify gray whale foraging behavior. Marine Mammal Science.

Clayton, H., Cade, D.E., Burnham, R., Calambokidis, J. & Goldbogen, J. (2023) Acoustic behavior of gray whales tagged with biologging devices on foraging grounds. Frontiers in Marine Science. 10, 1111666. doi:10.3389/fmars.2023.1111666.

Dahlheim, M. & Castellote, M. (2016) Changes in the acoustic behavior of gray whales Eschrichtius robustus in response to noise. Endangered Species Research. 31, 227–242. doi:10.3354/esr00759.

Fish, J.F., Sumich, J.L. & Lingle, G.L. (n.d.) Sounds Produced by the Gray Whale, Eschrichtius robustus.

Guazzo, R., Schulman-Janiger, A., Smith, M., Barlow, J., D’Spain, G., Rimington, D. & Hildebrand, J. (2019) Gray whale migration patterns through the Southern California Bight from multi-year visual and acoustic monitoring. Marine Ecology Progress Series. 625, 181–203. doi:10.3354/meps12989.

Guazzo, R.A., Helble, T.A., D’Spain, G.L., Weller, D.W., Wiggins, S.M. & Hildebrand, J.A. (2017) Migratory behavior of eastern North Pacific gray whales tracked using a hydrophone array S. Li (ed.). PLOS ONE. 12 (10), e0185585. doi:10.1371/journal.pone.0185585.

Haver, S.M., Haxel, J., Dziak, R.P., Roche, L., Matsumoto, H., Hvidsten, C. & Torres, L.G. (2023) The variable influence of anthropogenic noise on summer season coastal underwater soundscapes near a port and marine reserve. Marine Pollution Bulletin. 194, 115406. doi:10.1016/j.marpolbul.2023.115406.

Lemos, L.S., Haxel, J.H., Olsen, A., Burnett, J.D., Smith, A., Chandler, T.E., Nieukirk, S.L., Larson, S.E., Hunt, K.E. & Torres, L.G. (2022) Effects of vessel traffic and ocean noise on gray whale stress hormones. Scientific Reports. 12 (1), 18580. doi:10.1038/s41598-022-14510-5.

Oestreich, W.K., Oliver, R.Y., Chapman, M.S., Go, M.C. & McKenna, M.F. (2024) Listening to animal behavior to understand changing ecosystems. Trends in Ecology & Evolution. S0169534724001459. doi:10.1016/j.tree.2024.06.007.

Pirotta, E., Fernandez Ajó, A., Bierlich, K.C., Bird, C.N., Buck, C.L., Haver, S.M., Haxel, J.H., Hildebrand, L., Hunt, K.E., Lemos, L.S., New, L. & Torres, L.G. (2023) Assessing variation in faecal glucocorticoid concentrations in gray whales exposed to anthropogenic stressors S. Cooke (ed.). Conservation Physiology. 11 (1), coad082. doi:10.1093/conphys/coad082.

Rolland, R.M., Parks, S.E., Hunt, K.E., Castellote, M., Corkeron, P.J., Nowacek, D.P., Wasser, S.K. & Kraus, S.D. (2012) Evidence that ship noise increases stress in right whales. Proceedings of the Royal Society B: Biological Sciences. 279 (1737), 2363–2368. doi:10.1098/rspb.2011.2429.

Sullivan, F.A. & Torres, L.G. (2018) Assessment of vessel disturbance to gray whales to inform sustainable ecotourism. The Journal of Wildlife Management. 82 (5), 896–905. doi:10.1002/jwmg.21462.

Toward an enhanced understanding of large whale ecology: a standardized protocol to quantify hormones in whale blubber

Dr. Alejandro A. Fernández Ajó, Postdoctoral Scholar, Marine Mammal Institute – OSU Department of Fisheries, Wildlife, & Conservation Sciences, Geospatial Ecology of Marine Megafauna (GEMM) Lab.

Whales are exposed to an increasing number of human-induced stressors—ranging from pollution and bycatch to the impacts of climate change on prey quality and distribution. Understanding how these factors affect whale health is critical for their conservation. The use of alternative approaches (i.e., alternative to blood samples) for gathering physiological information on large whales using a variety of non-lethal and non to minimally invasive sample matrices (i.e., blubber biopsies, blow, and fecal samples) provides a window into their endocrine state, allowing researchers to assess how these animals respond to both short-term and long-term stressors, and assess their reproductive and nutritional status. However, a lack of standardized protocols might hinder the comparability of results across studies, making it difficult to draw broad conclusions about the health and reproductive parameters of different whale populations.

Dr. Logan Pallin and I organized a lab exchange, funded by The Company of Biologists, to start a new collaboration aimed at bridging this gap by validating and standardizing methods for endocrine assessments in whale blubber. This is not just a technical exercise; it is a foundational step towards building equity and capacity in laboratories worldwide to conduct reliable and comparable endocrine assessments, enhancing the opportunities for multi-lab collaborations. Through this exchange, we aim to consolidate a standardized approach that will yield consistent results between laboratories, enabling better comparisons across different large whale populations. Hosted by the University of California Santa Cruz Biotelemetry and Behavioral Ecology Lab (UCSC-BTBEL Lab) under the mentorship of Dr. Logan Pallin, this experience is instrumental in advancing my research on large whale ecology and conservation.

Dr. Logan Pallin and Alejandro Fernandez Ajó conducting hormone extractions from gray whale blubber samples (left). Preparing a microtiter assay plate for hormone quantification in blubber (right).

During this exchange at the BBE Lab, I had the privilege of working closely with Dr. Logan Pallin, whose expertise in large whale endocrinology (particularly analyzing blubber biopsies) has been instrumental in shaping modern approaches to whale research. The lab’s cutting-edge equipment and Logan’s extensive experience with hormone extraction and quantification methods provided an ideal setting for refining our protocols. Our work focused on the extraction and quantification of progesterone from gray whale blubber samples provided by the Oregon State University Marine Mammal Stranding Network, part of MMI. These large blubber sections allow for repeated sub-sampling to ensure that the selected immunoassays reliably detect and measure the hormones of interest, while also assessing potential sources of variability when applying a standardized protocol. We initially focused our tests and validations on progesterone, as it is the precursor of all major steroid hormones and serves as an indicator of reproductive state in females.

A fieldwork day off Monterrey Bay, California with Dr. Logan Pallin, and PhD candidate Haley Robb. Blubber. Blubber biopsies can be obtained from free swimming whales with minimally invasive methods. From each sample we can derive multiple information about the reproductive status, genetics and overall health of the individuals.

The broader impact of our work
The successful validation and standardization of these protocols represents a significant advancement in whale conservation physiology. Once these methods are established, we plan to acquire funds to apply them to a larger collection of blubber samples. We hope to expand our work to include other species and regions, building a broader network of researchers dedicated to studying large whales in a rapidly changing world, and to assess hormone profiles in relation to factors like reproductive success, body condition, and exposure to stressors such as vessel traffic and environmental changes.

During our fieldwork in Monterey Bay, we had fascinating encounters with Minke whales (Balaenoptera acutorostrata, top left), a large group of Risso’s dolphins (Grampus griseus, bottom left), playful Humpbacks (Megaptera novaeangliae, top right), and a Blue whale (Balaenoptera musculus, no photo).

As I conclude this lab exchange, I am filled with excitement for the future. The knowledge and skills gained during this experience will undoubtedly shape the next phase of my research, allowing me to contribute more effectively to the conservation of these incredible animals. I look forward to applying these standardized methods to ongoing and future projects, and to continuing this fruitful collaboration with the BBE Lab. This journey has reinforced the importance of collaboration, standardization, and innovation in the field of conservation physiology. By working together, we can better understand the complex lives of large whales and take meaningful steps towards their protection in an increasingly challenging environment.

Acknowledgments: This exchange was made possible by the support of The Company of Biologists Traveling Fellowship Grant. I would like to thank Dr. Ari Friedlaender (BBE Lab PI) for facilitating this exchange, and Dr. Leigh Torres (GEMM Lab PI) and Dr. Lisa Balance (MMI director) for their support in helping me expand my collaboration network and skillsets. Special thanks to PhD student Haley Robb for her assistance in the laboratory and fieldwork, and a heartfelt thank you to Dr. Logan Pallin for generously sharing his knowledge and time.

Did you enjoy this blog? Want to learn more about marine life, research, and
conservation? Subscribe to our blog and get a weekly message when we post a new
blog. Just add your name and email into the subscribe box below.

Loading

The Beginning of the End

By Rachel Kaplan, PhD candidate, Oregon State University College of Earth, Ocean, and Atmospheric Sciences and Department of Fisheries, Wildlife, and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

I moved to Corvallis exactly four years ago, in the deep, dark midst of the Covid pandemic, and during the added chaos of the 2020 Labor Day Fires, some of the worst in Oregon’s history. I vividly remember attending our virtual lab meeting sitting on the floor surrounded by boxes, while my labmates told me their own stories (many, surprisingly!) of moving during natural disasters. At the time, beginning graduate school represented so many big changes in my life: I had quit my job, sold my furniture, and moved across the country, hoping to explore an area of research that had been calling to me for years, and to gain a new skillset and confidence.

Highlight: A very pandemic cruise. My first day of marine mammal fieldwork in 2021, at sea with (now Dr.) Dawn Barlow.

Now, I’m starting the fifth year of my PhD, thinking about all that has happened and all that is to come. Graduate school is full of milestones to mark time and progress: I’ve taken the courses required for my program, sat for a written exam to test my broad knowledge of oceanography, and written a dissertation proposal. Earlier this year, I spent two months buried in the literature on oceanography, krill, and whale ecology in preparation for my oral qualifying exam. I’ve stared at the water for dozens of hours watching for whales off the Oregon coast, and experienced polar night studying winter krill in Antarctica. I’ve conquered my fear of learning to code, and felt constant, profound gratitude for the amazing people I get to work with.

The last four years have been incredibly busy and active, but now more than ever, it feels like the time to really do. I can see the analytical steps ahead for my final two dissertation chapters more clearly than I’ve been able to see either of the other two chapters that have come before. One of my favorite parts of the process of research is discussing analytical decisions with my labmates and supervisors, and experiencing how their brains work. Much of our work hinges on modeling relationships between animals and their environment. A model, most fundamentally, is a reduced-scale representation of a system. As I’ve learned to use statistical models to understand relationships between krill and whales, I have simultaneously been building a mental model of the Northern California Current (NCC) ecosystem and the ecological relationships within it. Just as I have long admired in my supervisors and labmates, I can now feel my own mind becoming more playful as I think about this ocean environment, the whales and krill that make a living in the NCC, and the best way to approach studying them analytically.

Highlight: Working on my dissertation proposal during a friend’s 2022 wedding celebration in Utah.

Graduate school demands that you learn and work to constantly exceed your own bounds, and pushing to that extent for years is often stressful and even existentially threatening. However, this process is also beautiful. I have spent the last four years growing in the ways that I’ve long wanted to, and reveled in feeling my mind learn to play. I wouldn’t give up a moment of the time I’ve spent in the field, the relationships I’ve built with my labmates, or the confidence I’ve developed along the way.

As I look ahead to this next, final, year of graduate school, I hope to use what I’ve learned every day – and not just about how to conduct research, but about myself. I want to always remember that krill, whales, and the ocean ecosystem are incredible, and that it is a privilege to study them. I hope to work calmly and intentionally, and to continue appreciating this process of research and growth.

Highlight: My first in-person oral presentation, at the 2024 ICES-PICES International Zooplankton Production Symposium in Hobart, Tasmania.

The Theme of the Year is Learning New Things!

By Hali Peterson, rising freshman, Western Oregon University

Hello, my name is Hali Peterson and I am a rising freshman in college. Last summer (2023) I was given the opportunity to be a paid high school intern for the OSU Marine Mammal Institute’s very own GEMM Lab (Geospatial Ecology of Marine Megafauna Laboratory) based at the Hatfield Marine Science Center in Newport, Oregon. My time working in the GEMM Lab has been supported by the Oregon Coast STEM Hub. I started my internship in June 2023 and I was one of the two GEMM Lab summer interns. However, my internship did not end when summer did, as I continued to work throughout the school year and even into this summer. 

Figure 1: Leaving work late and accompanied with a beautiful view of the Newport bridge over Yaquina Bay.

June 29, 2023 to September 20, 2024 (1 year, 2 months, and 21 days if anyone is curious) – what did I do and what did I learn during this time…

Initially, I was tasked with helping the GRANITE project (Gray whale Response to Ambient Noise Informed by Technology and Ecology) by processing drone footage of Pacific Coast Feeding Group (PCFG) gray whales and identifying their zooplankton prey. I started off my internship under the mentorship of KC Bierlich and Lisa Hildebrand and I dove into looking at zooplankton underneath a microscope and watching whales in drone footage, both gathered by the GEMM Lab field team. 

KC taught me how to process drone footage, measure whales and calibration boards, test an artificial intelligence model, as well as write a protocol of the drone processing methods that I had worked on. These tasks were a big responsibility as the measurements need to be accurate and precise so that they can be used to effectively assess the body condition of gray whales, which provides crucial insights into population health.

Figure 2: My favorite drone video of moms and calves meeting up for a playdate!

Under Lisa’s mentorship I learned how to identify and process zooplankton prey samples, process underwater GoPro videos, as well as identify and analyze kelp patches from satellite images. Within these tasks, I honed my expertise in zooplankton and habitat analysis and the results of my work will contribute to a deeper understanding of gray whale feeding habits along the Oregon coast.

Figure 3: My favorite zooplankton to see, a juvenile crab larva.

As my main mentors, KC and Lisa taught me so much about the world of science and research. All of these detail-oriented and multi-layered tasks helped me improve some of the skills I already had before I started the internship as well as gift me with skills I didn’t previously possess. For example, I learned how to collaborate and work with a team, pay attention to detail, double and even triple check everything for quality work, problem solve, and learn to ask questions. 

However, as my time in the GEMM Lab extended beyond the summer of 2023, so did my tasks. Later on I received another mentor, Clara Bird. Under Clara I learned how to identify whales from drone footage recorded in Baja, Mexico (an area that is specifically known as the breeding lagoons where the gray whales go in the winter), as well as use the Newport, Oregon drone footage and CATS (Customized Animal Tracking Solution) tag data to measure inhalation duration and bubble blast occurrences. These experiences furthered my knowledge and yet again I learned something new, a common theme throughout my time in the GEMM Lab. 

Just a few months ago, the GEMM Lab hired Laura Flores Hernandez as a new high school student summer intern, and under the guidance of both Lisa Hildebrand and Leigh Torres, I was given the opportunity to develop my own mentoring skills. I used the skills I had obtained over the past year to teach someone else how to do the tasks I once was new to. I taught Laura how to identify zooplankton, process drone footage, and measure calibration boards. Stepping into that mentor role helped me reflect on my own learning and experiences. I had to go back and figure out how I did things, where I struggled, and how I overcame those struggles. Not an easy task but one I was glad to be presented with. 

Figure 4: Matthew Vaughan (chief scientist on the trip) and me (right) looking at a box core sample.

During my time here I was also invited to join a STEM (Science, Technology, Engineering, Mathematics) cruise led by Oregon Sea Grant with fellow high school students. On this science cruise I got to help look at box core samples (a tool used to collect large amounts of sediment off of the ocean floor). Equipped with my previous knowledge on zooplankton identification, I was able to help the chief scientist on the trip to explain to other high school students what we were seeing in the samples. This trip helped me grow my teamwork and identification skills, as well as experience what it is like to collect data while on a moving ship. 

Figure 5: Sea Kayaking through the fjord with the Girls on Icy Fjords team of 2024.

Another amazing opportunity I was selected for was to join the 2024 Girls on Icy Fjords team. This program, in association with OSU, was designed to empower young women in STEM in the backcountry of Alaska. With a team of 3 amazing instructors and 8 girls (all from different parts of the United States of America) we camped in the backcountry for 8 days, learning about glaciers and fjords, surviving in the backcountry, sea kayaking, and working as a team. I would highly recommend any young woman interested in science, art, or just an amazing experience to check out Inspiring Girls Expeditions.

Bonus Image: This is Jeff the Moyebi Shrimp and I love him.

All in all this will be a job that I will not soon forget; interning in the GEMM Lab has been both a learning opportunity as well as a challenge. My internship wasn’t without its challenges, from a computer that seemed determined to shut down whenever I made progress, to endless hours spent staring at a green screen, waiting to count a fish that might eventually swim by. Though the job had its ups and downs, I am so glad I was given this opportunity and was kept on in the lab for as long as I was. In just a few weeks, I will start my Bachelors of Aquarium Science at Western Oregon University and I’m both excited and nervous. I know that without a doubt the skills I learned during this internship will come in handy as I continue my education and pursue a career in the future. 

Thank you to all my mentors, anyone who answered one of the many questions I had, and to the friends I made along the way!