What drives individual specialization?

Clara Bird, PhD Student, OSU Department of Fisheries, Wildlife, and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

When I wrote my first blog on individual specialization well over a year ago, I just skimmed the surface of the literature on this topic and only started to recognize the importance of studying individual specialization. The question, “is there individual specialization in the PCFG of gray whales?” is the focus of my first thesis chapter and the results will affect all my subsequent work. Therefore, the literature and concepts of individual specialization are a focus of my literature review and studies.

In my previous blog I focused on common characteristics of individuals that are similarly specialized as an underlying driver of individual specialization. While these characteristics (often attributable to age, sex, or physical traits) are important to consider, I’ve learned that the list of drivers of individual specialization is long and that many variables are dynamic. Of all the drivers I’ve learned about, competition is among the most common.

Competition is a major driver of individual specialization, and a common driver of competition is resource availability. When resource availability decreases, whether caused by increasing population density or changing environmental conditions, competition for that resource increases. As competition increases, individuals have a choice. They can choose to engage in competition, either by racing, fighting, or sharing [1], which can be costly, or they can diffuse the competition by focusing on a different resource.  This second approach would be considered niche partitioning in the prey dimension. Niche partitioning is a way for individuals to share ecological space by using different resources. Essentially, individuals can share habitat without having to engage in direct competition by pursuing different prey types [2]. 

This switch to different prey types can change the degree of individual specialization present in the population (Figure 1). But the direction of the change is not constant. If all individuals were pursuing the same prey type under low competition conditions but then switched to different alternate prey types under high competition, then individual specialization would increase (Figure 1a). This direction has been observed across a range of species including sharks [3], otters [4]–[7], dolphins [8], [9], stickleback fish [10], [11], largemouth bass [12], banded mongoose [13], fur seals [14], and baleen whales [15].

However, if individuals were pursuing different prey types under low competition conditions (maybe because of underlying differences such as age or sex) but then switched to the same alternate prey types under high competition, diet overlap would increase, and individual specialization would decrease (Figure 1b). Furthermore, an individual might not switch to an entirely new prey type but instead add prey items to its diet [16]. This diet expansion under competition would also decrease individual specialization. Fewer studies have reported this direction but it’s been found in the common bumblebee [17] and in several neotropical vertebrate species [18], [19].

Figure `1. Figure 3 from Araújo et al. 2011 [20]. Illustration of how ecological mechanisms may affect the degree of individual specialization. Arrows linking resources to individual consumers indicate resource consumption (relative thickness indicates proportional contribution). 
Horizontal arrows indicate the sign (positive or negative) of the effect on the degree of individual specialization. (a) Consumers share the same preferred resource (dark gray tangle) but have different alternative resources (white and light gray triangles). As the preferred resource becomes scarce, consumers switch to different alternatives, increasing the degree of individual specialization. (b) Alternatively, consumers have distinct preferred resources, so that as resources become scarce, individuals converge to the alternative resource (dark gray triangle), reducing diet variation.

Interestingly, its hypothesized that individual specialization driven by competition is one of the factors that facilitates the formation and existence of stable groups [21]. For example, a study on resident female dolphins in Sarasota Bay, FL, USA found that females with high spatial overlap used distinct foraging specializations [8](Figure 2). This study illustrates how partitioning prey enabled spatial and social coexistence. A study on banded mongooses reached a similar conclusion [13]. They found that specialization was highest in the biggest groups (with the most competition) and not explained by sex, age, or other inherent differences. They hypothesized that specialization increasing with competition reduced conflict and allowed the groups to remain stable. This study also highlighted the role of learning to determine an individual’s specialization.

Figure 2. A bottlenose dolphin.
Source: https://sarasotadolphin.org

Learning drives the distribution of knowledge throughout a population, which can lead to either specialization or generalization. ‘One-to-one’ learning, where one individual learns from one demonstrator, tends to promote individual specialization [21]. This form of transmission drives specialization because the individuals who learn the specialization tend to then carry on using, and eventually teaching, that specialization [6]. A common example of ‘one-to-one’ learning is vertical transmission from parent to offspring. It has been shown to transmit specializations in dolphins [22] and otters [6]. ‘One-to-one’ learning can occur outside of parent-offspring pairs; non-parent-offspring ‘one-to-one’ learning has been shown to drive specialization in banded mongooses [13](Figure 3).

However, other forms of social learning can promote more generalized foraging strategies. ‘Many-to-one’ or ‘one-to-many’ learning  can reduce the presence of specialization in species [13], [21] as can the presence of conformity in a group [23], [24].

Figure 3. A group of banded mongooses.
Source: http://socialisresearch.org/about-the-banded-mongoose-project/

The multiple drivers of specialization and their dynamic quality means that it is important to contextualize specialization. For example, a study on four species of neotropical frogs found varying degrees of specialization across multiple populations of each species [18]. The degree of specialization was dependent on a variety of drivers including predation and both intra- and inter-specific competition. Notably, the direction of the relationship between degree of specialization and each driver was species specific. This study highlights that one species may not always be more specialized than another, but that a populations’ specialization is context dependent.

Therefore, it is important to not only be aware of the degree of specialization present in a population, but to also understand its dynamics and drivers. These relationships can then be used to understand how, and why, a population may react to competition from other species, predators, and changes in resource availability [20].  A population’s specialization can also affect the specialization of other populations and community dynamics [25], therefore, it’s important to consider and study individual specialization on both the population and community level. I am excited to start using our incredible six-year dataset to start investigating these questions for PCFG gray whales, so stay tuned for results!

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly alert when we make a new post! Just add your name into the subscribe box on the left panel.  

References

[1]       M. Taborsky, M. A. Cant, and J. Komdeur, The Evolution of Social Behaviour. Cambridge: Cambridge University Press, 2021. doi: 10.1017/9780511894794.

[2]       E. R. Pianka, “Niche Overlap and Diffuse Competition,” vol. 71, no. 5, pp. 2141–2145, 1974.

[3]       P. Matich et al., “Ecological niche partitioning within a large predator guild in a nutrient-limited estuary,” Limnol. Oceanogr., vol. 62, no. 3, pp. 934–953, 2017, doi: https://doi.org/10.1002/lno.10477.

[4]       S. D. Newsome et al., “The interaction of intraspecific competition and habitat on individual diet specialization: a near range-wide examination of sea otters,” Oecologia, vol. 178, no. 1, pp. 45–59, May 2015, doi: 10.1007/s00442-015-3223-8.

[5]       M. T. Tinker, G. Bentall, and J. A. Estes, “Food limitation leads to behavioral diversification and dietary specialization in sea otters,” Proc. Natl. Acad. Sci., vol. 105, no. 2, pp. 560–565, Jan. 2008, doi: 10.1073/pnas.0709263105.

[6]       M. T. Tinker, M. Mangel, and J. A. Estes, “Learning to be different: acquired skills, social learning, frequency dependence, and environmental variation can cause behaviourally mediated foraging specializations,” Evol. Ecol. Res., vol. 11, pp. 841–869, 2009.

[7]       M. T. Tinker et al., “Structure and mechanism of diet specialisation: testing models of individual variation in resource use with sea otters,” Ecol. Lett., vol. 15, no. 5, pp. 475–483, 2012, doi: 10.1111/j.1461-0248.2012.01760.x.

[8]       S. Rossman et al., “Foraging habits in a generalist predator: Sex and age influence habitat selection and resource use among bottlenose dolphins (Tursiops truncatus),” Mar. Mammal Sci., vol. 31, no. 1, pp. 155–168, 2015, doi: https://doi.org/10.1111/mms.12143.

[9]       L. G. Torres, “A kaleidoscope of mammal , bird and fish : habitat use patterns of top predators and their prey in Florida Bay,” vol. 375, pp. 289–304, 2009, doi: 10.3354/meps07743.

[10]     M. S. Araújo et al., “Network Analysis Reveals Contrasting Effects of Intraspecific Competition on Individual Vs. Population Diets,” Ecology, vol. 89, no. 7, pp. 1981–1993, 2008, doi: 10.1890/07-0630.1.

[11]     R. Svanbäck and D. I. Bolnick, “Intraspecific competition drives increased resource use diversity within a natural population,” Proc. R. Soc. B Biol. Sci., vol. 274, no. 1611, pp. 839–844, Mar. 2007, doi: 10.1098/rspb.2006.0198.

[12]     D. E. Schindler, J. R. Hodgson, and J. F. Kitchell, “Density-dependent changes in individual foraging specialization of largemouth bass,” Oecologia, vol. 110, no. 4, pp. 592–600, May 1997, doi: 10.1007/s004420050200.

[13]     C. E. Sheppard et al., “Intragroup competition predicts individual foraging specialisation in a group-living mammal,” Ecol. Lett., vol. 21, no. 5, pp. 665–673, 2018, doi: 10.1111/ele.12933.

[14]     L. Kernaléguen, J. P. Y. Arnould, C. Guinet, and Y. Cherel, “Determinants of individual foraging specialization in large marine vertebrates, the Antarctic and subantarctic fur seals,” J. Anim. Ecol., vol. 84, no. 4, pp. 1081–1091, 2015, doi: 10.1111/1365-2656.12347.

[15]     E. M. Keen and K. M. Qualls, “Respiratory behaviors in sympatric rorqual whales: the influence of prey depth and implications for temporal access to prey,” J. Mammal., vol. 99, no. 1, pp. 27–40, Feb. 2018, doi: 10.1093/jmammal/gyx170.

[16]     R. H. MacArthur and E. R. Pianka, “On Optimal Use of a Patchy Environment,” Am. Nat., vol. 100, no. 916, pp. 603–609, 1966, doi: 10.1086/282454.

[17]     C. Fontaine, C. L. Collin, and I. Dajoz, “Generalist foraging of pollinators: diet expansion at high density,” J. Ecol., vol. 96, no. 5, pp. 1002–1010, 2008, doi: 10.1111/j.1365-2745.2008.01405.x.

[18]     R. Costa-Pereira, V. H. W. Rudolf, F. L. Souza, and M. S. Araújo, “Drivers of individual niche variation in coexisting species,” J. Anim. Ecol., vol. 87, no. 5, pp. 1452–1464, 2018, doi: 10.1111/1365-2656.12879.

[19]     M. M. Pires, P. R. Guimarães Jr, M. S. Araújo, A. A. Giaretta, J. C. L. Costa, and S. F. dos Reis, “The nested assembly of individual-resource networks,” J. Anim. Ecol., vol. 80, no. 4, pp. 896–903, 2011, doi: 10.1111/j.1365-2656.2011.01818.x.

[20]     M. S. Araújo, D. I. Bolnick, and C. A. Layman, “The ecological causes of individual specialisation,”Ecol. Lett., vol. 14, no. 9, pp. 948–958, 2011, doi: https://doi.org/10.1111/j.1461-0248.2011.01662.x.

[21]     C. E. Sheppard, R. Heaphy, M. A. Cant, and H. H. Marshall, “Individual foraging specialization in group-living species,” Anim. Behav., vol. 182, pp. 285–294, Dec. 2021, doi: 10.1016/j.anbehav.2021.10.011.

[22]     S. Wild, S. J. Allen, M. Krützen, S. L. King, L. Gerber, and W. J. E. Hoppitt, “Multi-network-based diffusion analysis reveals vertical cultural transmission of sponge tool use within dolphin matrilines,” Biol. Lett., vol. 15, no. 7, p. 20190227, Jul. 2019, doi: 10.1098/rsbl.2019.0227.

[23]     L. M. Aplin, D. R. Farine, J. Morand-Ferron, A. Cockburn, A. Thornton, and B. C. Sheldon, “Experimentally induced innovations lead to persistent culture via conformity in wild birds,” Nature, vol. 518, no. 7540, pp. 538–541, Feb. 2015, doi: 10.1038/nature13998.

[24]     E. Van de Waal, C. Borgeaud, and A. Whiten, “Potent Social Learning and Conformity Shape a Wild Primate’s Foraging Decisions,” Science, Apr. 2013, doi: 10.1126/science.1232769.

[25]     D. I. Bolnick et al., “Why intraspecific trait variation matters in community ecology,” Trends Ecol. Evol., vol. 26, no. 4, pp. 183–192, Apr. 2011, doi: 10.1016/j.tree.2011.01.009.

Are there picky eaters in the PCFG?

Clara Bird, PhD Student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

As anyone who has ever been, or raised, a picky eater knows, humans have a wide range of food preferences. The diversity of available cuisines is a testament to the fact that we have individual food preferences. While taste is certainly a primary influence, nutritional benefits and accessibility are other major factors that affect our eating choices. But we are not the only species to have food preferences. In cetacean research, it is common to study the prey types consumed by a population as a whole. Narrowing these prey preferences down to the individual level is rare. While the individual component is challenging to study and to incorporate into population models, it is important to consider what the effects of individual foraging specialization might be.

To understand the role and drivers of individual specialization in population ecology, it is important to first understand the concepts of niche variation and partitioning. An animal’s ecological niche describes its role in the ecosystem it inhabits (Hutchinson, 1957). A niche is multidimensional, with dimensions for different environmental conditions and resources that a species requires. One focus of my research pertains to the dimensions of the niche related to foraging. As discussed in a previous blog, niche partitioning occurs when ecological space is shared between competitors through access to resources varies across different dimensions such as prey type, foraging location, and time of day when foraging takes place. Niche partitioning is usually discussed on the scale of different species coexisting in an ecosystem. Pianka’s theory stating that niche partitioning will increase as prey availability decreases uses competing lizard species as the example (Pianka, 1974). Typically, niche partitioning theory considers inter-specific competition (competition between species), but niche partitioning can take place within a species in response to intra-specific competition (competition between individuals of the same species) through individual niche variation.

A species that consumes a multitude of prey types is considered a generalist while one with a specific prey type is considered a specialist. Gray whales are considered generalists (Nerini, 1984). However, we do not know if each individual gray whale is a generalist or if the generalist population is actually composed of individual specialists with different preferences. One way to test for the presence of individual specialization is to compare the niche width of the population to the niche width of each individual (Figure 1, Bolnick et al., 2003).  For example, if a population eats five different types of prey and each individual consumed those prey types, those individuals would be generalists. However, if each individual only consumed one of the prey types, then those individuals would be specialists within a generalist population.

Figure 1. Figure from Bolnick et al. 2003. The thick curve represents the total niche of the population and the thin curves represent individual niches. Note that in both panels the population has the same total niche. In panel A, the individual curves overlap and are all pretty wide. These curves represent individual generalists that make up a generalist population. In panel B, the thin curves are narrower and do not overlap as much as those in panel A. These curves represent individual specialists that make up a generalist population.

If individual specialization is present in a population the natural follow-up question is why? To answer this, we look for common characteristics between the individuals that are similarly specialized. What do all the individuals that feed on the same prey type have in common? Common characterizations that may be found include age, sex, or distinct morphology (such as different beak or body shapes) (Bolnick et al., 2003).

Woo et al. (2008) studied individual specialization in Brünnich’s guillemot, a generalist sea bird species, using diet and tagging data. They found individual specialization in both diet (prey type) and behavior (dive depth, shape, and flight time). Specialization occurred across multiple timescales but was higher over short-time scales. The authors found that it was more common for an individual to specialize in a prey-type/foraging tactic for a few days than for that specialization to continue across years, although a few individuals were specialists for the full 15-year period of the study. Based on reproductive success of the studies birds, the authors concluded that the generalist and specialist strategies were largely equivalent in terms of fitness and survival. The authors searched for common characteristics in the individuals with similar specialization and they found that the differences between sexes or age classes were so small that neither grouping explained the observed individual specialization. This is an interesting result because it suggests that there is some missing attribute, that of the authors did not examine, that might explain why individual specialists were present in the population.

Hoelzel et al. (1989) studied minke whale foraging specialization by observing the foraging behaviors of 23 minke whales over five years from a small boat. They identified two foraging tactics: lunge feeding and bird-associated feeding. Lunge feeding involved lunging up through the water with an open mouth to engulf a group of fish, while bird-associated feeding took advantage of a group of fish being preyed on by sea birds to attack the fish from below while they were already being attacked from above. They found that nine individuals used lunge feeding, and of those nine, six whales used this tactic exclusively. Five of those six whales were observed in at least two years. Seventeen whales were observed using bird-associated feeding, 14 exclusively. Of those 14, eight were observed in at least two years. Interestingly, like Woo et al. (2008), this study did not find any associations between foraging tactic use and sex, age, or size of whale. Through a comparison of dive durations and feeding rates, they hypothesized that lunge feeding was more energetically costly but resulted in more food, while bird-associated feeding was energetically cheaper but had a lower capture rate. This result means that these two strategies might have the similar energetic payoffs.

Both of these studies are examples of questions that I am excited to ask using our data on the PCFG gray whales feeding off the Oregon coast (especially after doing the research for this blog). We have excellent individual-specific data to address questions of specialization because the field teams for  this project always carefully link observed behaviors with individual whale ID.  Using these data, I am curious to find out if the whales in our study group are individual specialists or generalists (or some combination of the two). I am also interested in relating specific tactics to their energetic costs and benefits in order to assess the payoffs of each foraging tactic. I then hope to combine the results of both analyses to assess the payoffs of each individual whale’s strategy.

Figure 2. Example images of two foraging tactics, side swimming (left) and headstanding (right). Images captured under NOAA/NMFS permit #21678.

Studying individual specialization is important for conservation. Consider the earlier example of a generalist population that consumes five prey items but is composed of individual specialists. If the presence of individual specialization is not accounted for in management plans, then regulations may protect certain prey types or foraging tactics/areas of the whales and not others. Such a management plan could be a dangerous outcome for the whale population because only parts of the population would be protected, while other specialists are at risk, thus potentially losing genetic diversity, cultural behaviors, and ecological resilience in the population as a whole. A plan designed to maximize protection for all the specialists would be better for the population because populations with increased ecological resilience are more likely to persist through periods of rapid environmental change. Furthermore, understanding individual specialization could help us better predict how a population might be affected by environmental change. Environmental change does not affect all prey species in the same way. An individual specialization study could help identify which whales might be most affected by predicted environmental changes. Therefore, in addition to being a fascinating and exciting research question, it is important to test for individual specialization in order to improve management and our overall understanding of the PCFG gray whale population.

References

Bolnick, D. I., Svanbäck, R., Fordyce, J. A., Yang, L. H., Davis, J. M., Hulsey, C. D., & Forister, M. L. (2003). The ecology of individuals: Incidence and implications of individual specialization. American Naturalist, 161(1), 1–28. https://doi.org/10.1086/343878

Hoelzel, A. R., Dorsey, E. M., & Stern, S. J. (1989). The foraging specializations of individual minke whales. Animal Behaviour, 38(5), 786–794. https://doi.org/10.1016/S0003-3472(89)80111-3

Hutchinson, G. E. (1957). Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22(0), 415–427. https://doi.org/10.1101/sqb.1957.022.01.039

Nerini, M. (1984). A Review of Gray Whale Feeding Ecology. In The Gray Whale: Eschrichtius Robustus (pp. 423–450). Elsevier Inc. https://doi.org/10.1016/B978-0-08-092372-7.50024-8

Pianka, E. R. (1974). Niche Overlap and Diffuse Competition. 71(5), 2141–2145.

Woo, K. J., Elliott, K. H., Davidson, M., Gaston, A. J., & Davoren, G. K. (2008). Individual specialization in diet by a generalist marine predator reflects specialization in foraging behaviour. Journal of Animal Ecology, 77(6), 1082–1091. https://doi.org/10.1111/j.1365-2656.2008.01429.x

Who Am I? Exploring the theory of individualisation among marine mammals

By Lisa Hildebrand, MSc student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

“Just be yourself!” is a phrase that everyone has probably heard at least once in their lives. The idea of being an individual who is distinctly different from other individuals is a concept that is focal to the society we live in today. While historically it may have been frowned upon to be the “black sheep in the crowd”, nowadays that seems to be the goal.

Source: Go Comics.

This quest for uniqueness has resulted in different styles of fashion, speech, profession, interest in art, music, literature, automobile types – the list is endless. The American Psychological Association defines personality as the “individual differences in characteristic patterns of thinking, feeling and behaving”1. So, all of the choices we make on a daily basis shape our behaviour, and our behaviour in turn shapes our personality.

Since personality is something that is so engrained within human society, it isn’t surprising that ecologists have explored this concept among non-humans. Decades of research have resulted in an abundance of literature detailing personality in many different taxa and species, ranging from chimpanzees to mice to ants2. Naturally, the definition of personality for animals differs from that for humans since the assessment of animal thoughts and feelings is still somewhat of a locked box to us. Nevertheless, the behavioural aspect of the two definitions remains consistent whereby animal personality is broadly defined as “consistent variation in behavioural traits between individuals”3.

Although I am an early career marine mammal ecologist finding my footing in this rapidly expanding field, I have a keen interest in teasing apart possible cases of individual specialisation within marine mammal populations. So, before getting straight into the nitty gritty of individual specialisation, it is important for me to take a small step back and consider the concept of specialisation as applied to small subgroups or populations of marine mammals.

Specialisations are mostly related to foraging or feeding behaviour whereby a subgroup of individuals will develop a novel method to locate and capture prey. These behaviours have been reported for several marine mammal species, and are strongly coupled to intra and inter-specific competition with other predators for prey and habitat characteristics. Furthermore, it is posited that factors such as resource benefits (e.g. energy content of prey), prey escape rates, and handling times can be minimised if specialisation for a particular prey type or habitat occurs4.

In Florida Bay, Torres & Readdocumented two distinct foraging strategies employed by two bottlenose dolphin ecotypes. One dolphin ecotype was found to forage using deep diving with erratic surfacings, whereas the second ecotype chose to forage through mud ring feeding and were mostly seen in shallow habitats. The latter ecotype is in fact so adapted to shallow depths that dolphins were typically observed foraging in waters <2 m deep. In this example, the foraging tactics of the two ecotypes are strongly driven by habitat conditions, specifically depth. The video below is aerial footage of bottlenose dolphins performing mud ring feeding.

Such group specialisations have been identified not only in several other bottlenose dolphin populations around the world6,7, but also in other cetacean species, including killer whales (distinct differences in target prey between transients and residents8), Guiana dolphins (mud-plume feeding9), humpback dolphins (strand feeding10), and several others. Noticeable here is that these records concern Odontocete species, which is not surprising since these toothed whales are vastly different to baleen whales in that they often live in structured groups with bonds between individuals sometimes lasting for decades11. Long-term relationships are conducive to developing specialised group hunting strategies as individuals will spend considerable time with one another and the success of obtaining prey depends on the cooperation and coordination of the group.

For baleen whales and other marine mammals, such as pinnipeds, where life history and social organisation is more geared toward a solitary life, examples of group specialisations are relatively rare (with the exception of the well-documented bubble-net feeding exhibited by humpback whales12). While group specialisation may not be as prevalent in Mysticetes, the same problems of inter and intra-specific competition persists among these more solitary species too, which would suggest that individuals should develop their own unique foraging tactics and preferences. Evidence for individualisation is hard to obtain since it requires repeated observations of the same individuals over time with good knowledge of the prey type being consumed and/or the habitat being used to forage in.

Nevertheless, examples do exist. Perhaps the most well-documented case of individualisation within a population for marine mammals is of the sea otter. Estes et al. (2003) describe 10 female sea otters in Monterey Bay that had high inter-individual variation in diet, which they investigated over a scale of 8 years13. Most females specialised on 1-4 types of prey, with marked differences between the diets chosen by each female, despite habitat overlap. This individualisation of diet was not attributable to variation in prey availability; hence, authors concluded that this extreme specialisation occurred to reduce intra-population competition for prey.

Ecologists have historically (and probably still to this day) disagreed on whether individualisation actually matters in the grand scheme of things. There are generally three schools of thought on the matter: (1) individual specialisation is rare and/or weakly influences population dynamics and so is not very important; (2) while individual specialisation does occur and may in fact be commonplace, it does not affect ecological processes at the large population scale; and (3) individual specialisation is widespread and can significantly impact population dynamics and/or ecosystem function.

As you might have guessed by this point, I find myself in the third school of thought. There are many arguments supporting this theory, and what I believe to be very good arguments against statements 1 and 2. While I have only provided one specific named example for individual specialisation in a marine mammal, there are several documented cases of such occurrences among other marine taxa (e.g., pinnipeds14, sharks15, fish16) and a much larger number of studies for terrestrial species4. Thus, the claim that it is rare or weak, seems implausible to me.

Statement 2 is a little more complicated to tackle as it involves understanding how actions on a relatively small scale affect a whole population or even an ecosystem. For instance, consider two female sea otters living in a small coastal area where one sea otter prefers to eat turban snails and the other exclusively feeds on abalone. The sudden decline in abundance of either of these prey could lead to serious health and reproductive issues for those females. Should the low prey abundance persist, then poor health and reproduction of several females in a population that specialise on that prey item can rapidly lead to genetic loss and an overall population decline. Particularly if an individual’s or species’ home range is rather restricted or small. In the case of the sea otter, which are often touted as a keystone species due to its presence preventing sea urchin barren formation that is known to wreak havoc on kelp forests, knock-on effects of such a population decline could result in poor overall ecosystem health.

It may be easy to assume that one individual dolphin, otter, seal or whale cannot possibly make a difference to a whole population or ecosystem. This assumption strikes me as a little odd since humans are always told to ‘be the change they wish to see in the world’ and that ‘every person can make a difference’. Why then should these sentiments not be applicable to non-humans? While a gray whale may not hold a sign at a protest or run for president (actions commonly considered to cause change in the human world), perhaps the choice that a gray whale makes every day to only consume one species of zooplankton, can influence other gray whales in the area, predators from other taxa, habitat structure, other prey availability, and/or cause trophic cascades.

Through my research, I aim to elucidate whether the gray whales display some level of foraging individualisation while feeding in Port Orford, Oregon. I will use data from four years to compare tracks of individual whales with zooplankton samples collected in the area to correlate each individual’s movement patterns with prey availability. I will assess the quality of prey through bomb calorimetry and microplastic analysis of the zooplankton samples to determine energetic content and pollutant levels, respectively. This prey assessment will describe the potential effects of prey specialization on whales, which is fundamental to assessing overall population health. Individualisation can strongly affect fitness of individuals, either positively or negatively depending on several factors, which will undoubtedly have an impact at the population level.

(The videos below are examples of two different tactics we see the gray whales display while foraging along the Oregon coast in the summer months. The first video shows a whale foraging among kelp with some very acrobatic moves, while the second is of a whale employing the ‘sharking’ method where the whale is feeding benthically in such shallow depths that both the pectoral fin and the fluke stick out of the water, making the whale look like a ‘shark’.)

References

  1. American Psychological Association, Personality. Retrieved from: https://www.apa.org/topics/personality/.
  2. Carere C., & Locurto, C., Interaction between animal personality and animal cognition. Current Zoology, 2015. 57(4): 491-498.
  3. Gosling, S.D., From mice to men: what can we learn about personality from animal research?Psychological Bulletin, 2001. 127(1): 45-86.
  4. Bolnick, D.I., et al., The ecology of individuals: incidence and implications of individual specialisation. The American Naturalist, 2003. 161(1): 1-28.
  5. Torres, L.G., & Read, A. J., Where to catch a fish? The influence of foraging tactics on the ecology of bottlenose dolphins (Tursiops truncatus) in Florida Bay, Florida. Marine Mammal Science, 2009. 25(4): 797-815.
  6. Gisburne, T.J., & Connor, R.C., Group size and feeding success in strand-feeding bottlenose dolphins (Tursiops truncatus) in Bull Creek, South Carolina. Marine Mammal Science, 2015. 31(3): 1252-1257.
  7. Gazda, S.K., et al., A division of labour with role specialization in group-hunting bottlenose dolphins (Tursiops truncatus) off Cedar Keys, Florida.Proceedings of the Royal Society: Biological Sciences, 2005. 272(1559): 135-140.
  8. Ford, J.K.B., et al., Dietary specialization in two sympatric populations of killer whales (Orcinus orca) in coastal British Columbia and adjacent waters. Canadian Journal of Zoology, 1998. 76(8): 1456-1471.
  9. Rossi-Santos, M.R., & Wedekin, L.L., Evidence of bottom contact behaviour by estuarine dolphins (Sotalia guianensis) on the Eastern Coast of Brazil.Aquatic Mammals, 2006. 32(2): 140-144.
  10. Peddemors, V.M., & Thompson, G., Beaching behaviour during shallow water feeding by humpback dolphins (Sousa plumbea). Aquatic Mammals, 1994. 20(2): 65-67.
  11. Tyack, P., Population biology, social behavior and communication in whales and dolphins. Trends in Ecology & Evolution, 1986. 1(6): 144-150.
  12. Wiley, D., et al., Underwater components of humpback whale bubble-net feeding behaviour.Behaviour, 2011. 148(5/6): 575-602.
  13. Estes, J.A., et al., Individual variation in prey selection by sea otters: patterns, causes and implications. Journal of Animal Ecology, 2003. 72(1): 144-155.
  14. Cherel, Y., et al., Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. Journal of Animal Ecology, 2007. 76(4): 826-836.
  15. Matich, P., et al., Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. Journal of Animal Ecology, 2010. 80(1): 294-305.
  16. Svanbäck, R., & Persson, L., Individual diet specialization, niche width and population dynamics: implications for trophic polymorphisms. Journal of Animal Ecology, 2004. 73(5): 973-982.

Making a Splash

By: Cathryn Wood, Lawrence University ’17, summer REU in the GEMM Lab

Greetings from Port Orford! My name is Cathryn, and I am the fourth member of the GEMM Lab’s gray whale foraging ecology research team, which includes Florence, Kelli, and the other Catherine (don’t worry, I go by Cat). Nearly 5 weeks into field season, I am still completely amazed with my first West Coast experience and doing what I’ve always dreamt of: studying marine mammals. Coming from Michigan’s Upper Peninsula, this may seem slightly out of place, but my mom can attest; she read “Baby Beluga” to me every night when I was a toddler. Now a rising senior majoring in biology at Lawrence University, I’ve been focusing my coursework on aquatic and marine ecology to prepare for graduate school where I plan to specialize in marine science. Being part of this research is a very significant step for me into the field.

So how did I end up here, as part of this amazing project and dream, women-in-science team? I am interning through OSU’s Ocean Sciences REU program at the Hatfield Marine Science Center, where the GEMM Lab is located. REU stands for “Research Experience for Undergraduates ”, and is an NSF-funded research internship program found in numerous universities around the country. These internships allow undergrads to conduct independent research projects under the guidance of a faculty mentor at the program’s institution. I applied to several REUs this past winter, and was one of 12 undergrads accepted for the program at HMSC. Each of us is paired with different faculty members to work on various projects that cover a diverse range of topics in the marine sciences; everything from estuarine ecology, to bioacoustics. I was ecstatic to learn that I had been paired with Dr. Torres as my faculty mentor to work on Florence’s gray whale project, which had been my first choice during the application process.

My particular research this summer is going to complement Florence’s master’s thesis work by asking new questions regarding the foraging data. While her project focuses on the behavioral states of foraging whales, I will be looking at the whale tracks to see if there are patterns in their foraging behavior found at the individual level. Traditionally, ecological studies have accepted classical niche theory, treating all individuals within a population as ecological equivalents with the same niche width. Any variances present among individuals are often disregarded as having an insignificant consequence on the population dynamics as a whole, but this simplification can overlook the true complexity of that population . The presence of niche variation among conspecifics is known to occur in at least 93 species across a diverse array of taxa, so the concept of individual specialization, and how it can affect ecological processes is gaining recognition progressively in the field (Bolnick et al., 2003). My goal is to determine whether or not the gray whales in this study, and presumably others in the Pacific Coast Feeding Group (PCFG), exhibit individual specialization in their foraging strategies . There are many ways in which individuals can specialize in foraging, but I will be specifically determining if fine scale spatial patterns in the location of foraging bouts exists, regardless of time.

To address my question, I am using the whale tracking data from both 2015 and 2016, and learning to use some very important software in the spatial ecology world along the way through a method that Dr. Torres introduced to me. Starting in ArcGIS, I generate a kernel density layer of a raw track (Fig. 1 ), which describes the relative distribution of where the tracked whale spent time (Fig. 2 ). Next, using the isopleth function in the software Geospatial Modelling Environment, I generate a 50% density contour line that distinguishes where the whale spent at least 50% of its time during the track (Fig. 3 ). Under the assumption that foraging took place in these high density areas, we use these 50% contour lines to describe foraging bout locations. I now go back to ArcGIS to make centroids within each 50% line, which mark the exact foraging bout locations (Fig. 4 ).

Fig.1 Raw individual whale track.
Fig. 1 Raw individual whale track.

Fig. 2 Kernel Density map of whale track.
Fig. 2 Kernel Density map of whale track.

Fig. 3 50% isopleth contours of locations with highest foraging densities
Fig. 3 50% isopleth contours of locations with highest foraging densities

Fig. 4 Final centroids to signify foraging bouts
Fig. 4 Final centroids to signify foraging bouts

These centroids will be determined for every track by an individual whale, and then compared relative to foraging locations of all tracked whales to determine if the individual is foraging in different locations than the population. Then, the tracks of individuals who repeatedly visit the site at least three times will be compared with one another to determine if the repeat whales show spatial and/or temporal patterns in their foraging bout locations, and if specialization at a fine scale is occurring in this population. If you did not quite follow all those methods, no worries, it was a lot for me to take in at first too. I’ve finally gotten the hang of it though, and am grateful to now have these skills going into grad school.

Because I am interested in behavioral ecology and the concept of individuality in animal populations, I am extremely excited to see how this research plays out. Results could be very eye-opening into the fine scale foraging specialization of the PCFG sub-population because they already demonstrate diet specialization on mysid (as opposed to their counterparts in the Bering Sea who feed on benthic organisms) and large scale individual residency patterns along the Pacific Northwest (Newell, 2009; Calambokidis et al., 2012). Most significantly, understanding how individuals vary in their feeding strategies could have very important implications for future conservation measures for the whales, especially during this crucial foraging season where they replenish their energy reserves.  Management efforts geared for an “average population” of gray whales could ultimately be ineffective if in fact individuals vary from one another in their foraging strategies. Taking into account the ways in which variation occurs amongst individuals is therefore crucial knowledge for successful conservation approaches.

My project is unique from those of the other REUs because I am simultaneously in the midst of assisting in field season number two of Florence’s project. While most of the other interns are back at Hatfield spending their days in the lab and doing data analyses like a 9-5 job, I am with the team down in Port Orford for field season. This means we’re out doing research every dawn as weather allows. Though I may never have an early bird bone in my body, the sleepy mornings are totally worth it because ecology field work is my favorite part of research. To read more about our methods in the field, check out Florence’s post.

Since Catherine’s last update, we’ve had an eventful week. To our dismay, Downrigger Debacle 2.0 occurred. (To read about the first one, see Kelli’s post). This time it was not the line – our new line has been great. It was a little wire that connected the downrigger line to the pipe that the GoPro and TDR are connected to. It somehow snapped due to what I presume was stress from the currents.   Again, it was Catherine and I in the kayak, with a very successful morning on the water coming to a close when it happened. Again, I was in the bow, and she was in the stern deploying the equipment – very déjà vu. When she reeled in an equipment-less line, we at first didn’t know how to break it to Florence and Kelli who were up on the cliff that day. Eventually, Catherine radioed “Brace yourselves…” and we told them the bad news. Once again, they both were very level-headed, methodical, and un-blaming in the moments to follow. We put together the same rescue dive team as last time, and less than a week later, they set off on the mission using the GPS coordinates I had marked while in the kayak. Apparently, between the dredging taking place in the harbor and the phytoplankton bloom, visibility was only about 2 feet during the dive, but they still recovered the equipment, with nothing but baked goods and profuse thanks as payment. We are very grateful for another successful recovery, and are confident that our new attachment mechanism for the downrigger will not require a third rescue mission (Fig. 6-8). Losing the equipment twice now has taught us some very important things about field work. For one, no matter how sound you assume your equipment to be, it is necessary to inspect it for weak points frequently – especially when salt water and currents are in the picture. Perhaps even more importantly, we’ve gotten to practice our problem solving skills and see firsthand how necessary it is to act efficiently and calmly when something goes wrong. In ecological field research you have to be prepared for  anything.

Fig. 5 Original setup of GoPro and TDR.
Fig. 5 Original setup of GoPro and TDR.

Fig. 6 Photo taken after the wire that connected the pole to the downrigger line snapped.
Fig. 6 Photo taken after the wire that connected the pole to the downrigger line snapped.

Fig. 7 New mechanism for attaching the pole to the downrigger line.
Fig. 7 New mechanism for attaching the pole to the downrigger line.

Fig. 8 Equipment rescue team: Aaron Galloway and Taylor Eaton diving, Greg Ryder operating the boat, and Florence on board to direct the GPS location of where the equipment was lost.
Fig. 8 Equipment rescue team: Aaron Galloway and Taylor Eaton diving, Greg Ryder operating the boat, and Florence on board to direct the GPS location of where the equipment was lost.

In other news, unlike our slow-whale days during the first two weeks of the project, we have recently had whales to track nearly every day from the cliff! In fact, the same, small, most likely juvenile, whale pictured in Catherine’s last post has returned several times, and we’ve nicknamed her “Buttons” due to two distinguishing white spots on her tail peduncle near the fluke. Though we tend to refer to Buttons as “her”, we cannot actually tell what the sex is definitively…until now. Remember in Catherine’s post when she described how Buttons defecated a lot, and how our team if, given the opportunity, is supposed to collect the feces when we’re out in the kayak for Leila’s project?  Everything from hormone levels to reproductive status to, yes, sex, is held in that poop! Well, Miss (or Mr.) Buttons was in Tichenor Cove today, and to our delight, she performed well in the defecation department once again. Florence and I were on cliff duty tracking her and Kelli and Catherine were in Tichenor on the kayak when we first noticed the defecation.  I then radioed down to the kayak team to stop what they were doing and paddle quickly to go collect it before it sank (Fig. 9).  Even in these situations, it is important to stay beyond 100 yards of the animal, as required by the MMPA. Florence and I cheered them on and our ladies did indeed get the poop sample, without disturbing the whale (Fig. 10). It was a sight to behold.

Fig. 9 Kelli and Catherine on a mission.
Fig. 9 Kelli and Catherine on a mission.

Fig. 10 Kelli and Catherine collecting the feces.
Fig. 10 Kelli and Catherine collecting the feces.

We were able to track Buttons for the remainder of our time on the cliff, and were extremely content with the day’s work as we packed all the gear up later in the afternoon. Right before we were about to leave, however, Buttons had one more big treat for us. As we looked to the harbor before starting the trek back to the truck, we paused briefly after noticing a large, white splash in the middle of the harbor, not far from the dock. We paused for a second and thought “No, it can’t be, was that —?” and then we see it again and unanimously yelled “BREACH!” Buttons breached about five times on her way back to Tichenor Cove from where she had been foraging in Mill Rocks. It is rare to see a gray whale breach, so this was really special. Florence managed to capture one of the breaches on video:

At first I thought a big ole humpback had arrived, but nope, it was our Buttons! I am in awe of this little whale, and am forever-grateful to be in the presence of these kinds of moments. She’s definitely made her splash here in Port Orford. I think our team has started to as well.

 

Bolnick, D. I., Svanback, R., Fordyce, J. A., Yang, L. H., Davis, J. M., Hulsey, C. D., & Forrister, M. L. (2003). Ecology of Individuals: Incidence and Implications of Individual Specialization. The American Naturalist, 161(1), 28.

Calambokidis, J., Laake, J. L., & Klimek, A. (2012). Updated analysis of abundance and population structure of seasonal gray whales in the Pacific Northwest, 1998-2010 (Vol. 2010).

Newell, C. (2009). Ecological Interrelationships Between Summer Resident Gray Whales (Eschrichtius robustus) and Their Prey, Mysid Shrimp (Holmesimysis sculpta and Neomysis rayi) along the Central Oregon Coast.