Unmanned Aircraft Systems: keep your distance from wildlife!

By Leila Lemos, Ph.D. Student, Department of Fisheries and Wildlife, OSU

Unmanned aircraft systems (UAS) or “drones” are becoming commonly used to observe natural landscapes and wildlife. These systems can provide important information regarding habitat conditions, distribution and abundance of populations, and health, fitness and behavior of the individuals (Goebel et al. 2015, Durban et al. 2016).

The benefits for the use of UAS by researchers and wildlife managers are varied and include reduced errors of population estimations, reduced observer fatigue, increased observer safety, increased survey effort, and access to remote settings and harsh environments (Koski et al. 2010, Vermeulen et al. 2013, Goebel et al. 2015, Smith et al. 2016). Importantly, data gathered from UAS can provide needed information for the conservation and management of several species. Although it is often assumed that wildlife incur minimal disturbance from UAS due to the reduced noise compared to traditional aircraft used for wildlife monitoring (Acevedo-Whitehouse et al. 2010), the impacts of UAS on most wildlife populations is currently unexplored.

Several studies have tried to comprehend the effects of UAS flights over animals and so far there is no evidence of behavioral disturbance. For instance Vermeulen et al. (2013) conducted a study where authors observed a group of elephants’ reaction or warning behavior while a UAS passed ten times over the individuals at altitudes of 100 and 300 meters, and no disturbance was recorded. Furthermore, a study conducted by Acevedo-Whitehouse et al. (2010) reported that six different species of large cetaceans (Bryde’s whale, fin whale, sperm whale, humpback whale, blue whale and gray whale) did not display avoidance behavior when approached by the UAS for blow sampling, suggesting that the system caused minimal distress (negative stress) to the individuals.

However, the fact that we cannot visually see an effect in the animal does not mean that a stress response is not occurring. A study analyzed the effects of UAS flights on movements and heart rate responses of American black bears in northwestern Minnesota (Ditmer et al. 2015). It was observed that all bears, including an individual that was hibernating, responded to UAS flights with increased heart rates (123 beats per minute above the pre-flight baseline). In contrast, no behavioral response by the bears was recorded (Figure 1).

By Leila Lemos, Ph.D. Student, Department of Fisheries and Wildlife, OSU Unmanned aircraft systems (UAS) or “drones” are becoming commonly used to observe natural landscapes and wildlife. These systems can provide important information regarding habitat conditions, distribution and abundance of populations, and health, fitness and behavior of the individuals (Goebel et al. 2015, Durban et al. 2016). The benefits for the use of UAS by researchers and wildlife managers are varied and include reduced errors of population estimations, reduced observer fatigue, increased observer safety, increased survey effort, and access to remote settings and harsh environments (Koski et al. 2010, Vermeulen et al. 2013, Goebel et al. 2015, Smith et al. 2016). Importantly, data gathered from UAS can provide needed information for the conservation and management of several species. Although it is often assumed that wildlife incur minimal disturbance from UAS due to the reduced noise compared to traditional aircraft used for wildlife monitoring (Acevedo-Whitehouse et al. 2010), the impacts of UAS on most wildlife populations is currently unexplored. Several studies have tried to comprehend the effects of UAS flights over animals and so far there is no evidence of behavioral disturbance. For instance Vermeulen et al. (2013) conducted a study where authors observed a group of elephants’ reaction or warning behavior while a UAS passed ten times over the individuals at altitudes of 100 and 300 meters, and no disturbance was recorded. Furthermore, a study conducted by Acevedo-Whitehouse et al. (2010) reported that six different species of large cetaceans (Bryde’s whale, fin whale, sperm whale, humpback whale, blue whale and gray whale) did not display avoidance behavior when approached by the UAS for blow sampling, suggesting that the system caused minimal distress (negative stress) to the individuals. However, the fact that we cannot visually see an effect in the animal does not mean that a stress response is not occurring. A study analyzed the effects of UAS flights on movements and heart rate responses of American black bears in northwestern Minnesota (Ditmer et al. 2015). It was observed that all bears, including an individual that was hibernating, responded to UAS flights with increased heart rates (123 beats per minute above the pre-flight baseline). In contrast, no behavioral response by the bears was recorded (Figure 1).
Figure 1: (A) Movement rates (meters per hour) of an adult female black bear with cubs prior to, during, and after a UAS flight (gray bar); (B) The corresponding heart rate (beats per minute) of the adult female black bear. Source: Modified from Figure 1 from Ditmer et al. 2015.

 

Therefore, behavioral analysis alone may not be able to describe the complete effects of UAS on wildlife, and it is important to consider other possible stress responses of wildlife.

Regarding marine mammals, only a few studies have systematically documented the effects of UAS on these animals. A review of these studies was produced by Smith et al. (2016) and the main factors influencing behavioral disturbance were identified as (1) noise and visual stimulus (from the UAS or its shadow), and (2) flight altitude of the UAS. Thus, studies that approach marine mammals closely with UAS (e.g., blow sampling in cetaceans) should be closely monitored for behavioral reactions because the noise level and visual stimulus will likely be increased.

Fortunately, when UAS work is applied to cetaceans and sirenians (manatees and dugongs) the air-water interface acts as a barrier to sound so these animals are unlikely to be acoustically disturbed by UAS. However, acoustic detection and response are still possible when an animal’s ears are exposed in the air during a surfacing event.

The best way to minimize stress responses in wildlife is to use caution while operating UAS at any altitude. According to National Oceanic and Atmospheric Administration (NOAA), “UAS can also be disruptive to both people and animals if not used safely, appropriately, or responsibly”. Therefore, since 2012, the Federal Aviation Administration (FAA) has required UAS operators in the United States to have a certified and registered aircraft, a licensed pilot, and operational approval, known as Section 333 Exemption (Note: in late August 2016, the 333 will be replaced by a revision to part 107). These authorizations require an air worthiness statement or certificate and registered aircraft. Public entities, like Oregon State University, operate under a certificate of authorization (COA.) As a public entity OSU certifies its own aircraft and sets standards for UAS operators. These permit requirements discourage illegal operations and improves safety.

Regarding marine mammals, all UAS operators should also be aware of The Marine Mammal Protection Act (MMPA) of 1972. This law makes it illegal to harass marine mammals in the wild, which may cause disruption to behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering. A close UAS approach has the potential to cause harassments to marine mammals, thus federal guidelines recommend keeping a safe distance from these animals in the wild. The required vertical distance is 1000 ft for most marine mammals, but increases for endangered animals such as the North Atlantic right whales with a required buffer of 1500 ft (http://www.nmfs.noaa.gov/pr/uas.html). Therefore, NOAA evaluates all scientific research that use UAS within 1000 ft of marine mammals in order to ensure that the benefits outweigh possible hazards. NOAA distributes research permits accordingly.

Of course, with new technology the rules are always changing. In fact, last week the Department of Transportation (DOT) and the FAA finalized the first operational rules for routine commercial use of small UAS. These new guidelines aim to support new innovations in order to spur job growth, advance critical scientific research and save lives, and are designed to minimize risks to other aircraft and people and property on the ground. These new regulations include several requirements (e.g., height and speed restrictions) and hopefully allow for a streamlined system that enables beneficial and exciting wildlife research.

For my PhD project we are using UAS to collect aerial images from gray whales in order to describe behavioral patterns and apply a photogrammetry methodology. Through these methods we will determine the overall body condition and health of the individuals for comparison to variable ambient ocean noise levels. This project is conducted in collaboration with the NOAA Pacific Marine Environmental Lab.

Since October 2015, we have conducted 31 over-flights of gray whales using our UAS (DJI Phantom 3) and no behavioral disturbance has been observed. When over the whale(s) we generally fly between 25 and 40 m above the animals. We have a FAA certified UAS operator and fly under our NOAA/NMFS permit 16111. Prior to each flight we ensure that the weather conditions are safe, the whales are behaving normally, and that no on-lookers from shore or other boats will be disturbed.

Here is a video showing the launch and retrieval of the UAS system, our research vessel, the surrounding Oregon coastline beauty and gray whale individuals. The video includes some interesting footage of a gray whale foraging over a shallow reef, indicating that this UAS flight did not disturb the animal’s natural behavior patterns.

We all have the responsibility to help keep wildlife safe. Here in the GEMM Lab, we commit to using UAS safely and responsibly, and aim to use this new and exciting technology to continue our efforts to better protect and understand marine mammals.

 

References

Acevedo‐Whitehouse K, Rocha‐Gosselin A and Gendron D. 2010. A novel non‐invasive tool for disease surveillance of free‐ranging whales and its relevance to conservation programs. Anim. Conserv. 13(2):217–225.

Ditmer MA, Vincent JB, Werden LK, Tanner JC, Laske TG, Iaizzo PA, Garshelis DL and Fieberg JR. 2015. Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles. Current Biology 25:2278–2283.

Durban JW, Moore MJ, Chiang G, Hickmott LS, Bocconcelli A, Howes G, Bahamonde PA, Perryman WL and Leroi DJ. 2016. Photogrammetry of blue whales with an unmanned hexacopter. Marine Mammal Science. DOI: 10.1111/mms.12328.

Goebel ME, Perryman WL, Hinke JT, Krause DJ, Hann NA, Gardner S and LeRoi DJ. 2015. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biol. 38(5):619-630.

Koski WR, Abgrall P and Yazvenko SB. 2010. An inventory and evaluation of unmanned aerial systems for offshore surveys of marine mammals. J. Cetacean Res. Manag. 11(3):239–247.

NOAA. Unmanned Aircraft Systems: Responsible Use to Help Protect Marine Mammals. In: http://www.nmfs.noaa.gov/pr/uas.html. Accessed in: 06/12/2016.

Smith CE, Sykora-Bodie ST, Bloodworth B, Pack SM, Spradlin TR and LeBoeuf NR. 2016. Assessment of known impacts of unmanned aerial systems (UAS) on marine mammals: data gaps and recommendations for researchers in the United States1 J. Unmanned Veh. Syst. 4:1–14.

Vermeulen C, Lejeune P, Lisein J, Sawadogo P and Bouché P. 2013. Unmanned aerial survey of elephants. PLoS One. 8(2):e54700.

 

How can we reconstruct life-history pathways of whales?

By Leila Lemos, Ph.D. Student, Department of Fisheries and Wildlife, OSU

 

Have you ever heard of statistical modeling? What about Hierarchical Bayes Models?

Hard words, I know…

Modeling is when known data (previously collected) is analyzed using sophisticated computer algorithms to look for patterns in these data. Models can be very useful for filling in data gaps where and when no sampling occurred. Hierarchical Bayes model is a type of statistical model that hierarchically integrates the observed data to estimate parameters. This type of model can analyze long-term data from individual animals to predict into data gaps and inform us about population dynamics.

When studying wild animals we often only collect data from brief and random encounters. Therefore, many researchers struggle with the reconstruction of possible pathways that could connect different sightings of wild animals to determine where, when and how the animal was doing in between sightings.

For instance, consider an animal that was observed in healthy condition at one sighting but in a subsequent sighting it was in poor health. How can we estimate what happened to this animal between sightings? Can we estimate where, when and how health deteriorated?

This is where the modeling comes in! It is a powerful tool used by many researchers to fill in gaps in our scientific knowledge using data that we do have. We use these ‘known data’ to estimate patterns and determine probabilities. The hierarchical Bayes model is a type of modeling that can be used to estimate the probability of pathways between known events. Schick et al. (2013) used hierarchical Bayes models to estimate the many factors that impact whale health and survivorship including distribution and movement patterns, true health condition of the individual and survival rates.

Modeling is very advantageous when studying aquatic animals like dolphins and whales that are very hard to spot since they spend a higher proportion of their lives submerged than above water. Also, sea conditions can hamper visual detection.

Schick et al. (2013) analyzed decades of data from photo-identifications of North Atlantic right whale resightings along the east coast of North America. They assessed different information from these pictures including body condition, infestation of cyamids, presence of fishing gear entanglements, rake marks and skin condition. The authors also used information of age and calving of the individuals. A model using these data was constructed and a more complete scenario of health and movement patterns of individuals and the populations were estimated. Survival rates of each individual were also estimated using this model. This is an example of a well-informed model and is important to notice that a model is only as good as the data you put into the model.

Using this model, Schick et al. documented variations in annual spatial distribution patterns between sexes (Fig. 1). For example, females arrive earlier to the BOF region than males, and have greater estimated transitions to SEUS region at the end of the year. It is also possible to see that there is a lack of information for the region MIDA, characterizing another advantage of modeling since it can highlight areas where effort should be increased.

Figure 1: Movement transition estimates from North to South regions in the western Atlantic Ocean for male and female right whales over the course of a year. Size of the circles in each region at each month corresponds to the actual number of right whales observed. Lines connecting regions indicate probability of transition. Magnitude of probability is depicted by line thickness. (NRTH: North region; BOF: Bay of Fundy; JL: Jeffreys Ledge; GOM: Gulf of Maine; RB: Roseway Basin; NE: Northeast; GSC: Great South Channel; MIDA: Mid-Atlantic; and SEUS: Southeastern US). Source: Figures 5 and 6 from Schick et al. 2013.
Figure 1: Movement transition estimates from North to South regions in the western Atlantic Ocean for male and female right whales over the course of a year. Size of the circles in each region at each month corresponds to the actual number of right whales observed. Lines connecting regions indicate probability of transition. Magnitude of probability is depicted by line thickness.
(NRTH: North region; BOF: Bay of Fundy; JL: Jeffreys Ledge; GOM: Gulf of Maine; RB: Roseway Basin; NE: Northeast; GSC: Great South Channel; MIDA: Mid-Atlantic; and SEUS: Southeastern US).
Source: Figures 5 and 6 from Schick et al. 2013.

 

When the model is applied to individual whales, the authors were able to estimate survival and health rates across the whale’s life-span (Fig. 2). Whale #1077 was a rarely seen adult male, with a sparse sighting history over 25 years. The last sighting of this whale was in 2004 when its health status was poor due to a poor body condition. According with his condition in the last sighting, the model predicted a high decrease in his health over time and since the whale was not seen for more than six years, so was presumed dead, following the standards set by the North Atlantic Right Whale Consortium.

Figure 2: Health time series for whale #1077. Time series of health observations for body condition, cyamids, entanglements, rake marks and skin condition (circles), estimates with uncertainty of health (thick line and dashed lines) and estimates of survivals (height rectangle at bottom). Photographic observations are color and size coded by class (three categories for body condition: green is good, orange is fair and purple is poor; and two categories for skin condition: green is good and orange is poor). Source: Figure 11 from Schick et al. 2013.
Figure 2: Health time series for whale #1077. Time series of health observations for body condition, cyamids, entanglements, rake marks and skin condition (circles), estimates with uncertainty of health (thick line and dashed lines) and estimates of survivals (height rectangle at bottom). Photographic observations are color and size coded by class (three categories for body condition: green is good, orange is fair and purple is poor; and two categories for skin condition: green is good and orange is poor).
Source: Figure 11 from Schick et al. 2013.

 

As I begin data collection for my thesis project to examine gray whale health along the Oregon coast in relation to ocean noise and inter-annual variability, I am considering how to apply a similar modeling approach to enhance our understanding of what influences individual gray whale health and also connect pathways between our resightings.

The marine environment is constantly changing, across space and over time. Therefore, distinguishing what contributes most significantly to whale stress levels can be very challenging. However, through a model we may be able to decipher the contributions of several factors to individual stress among the many parameters we are monitoring: ocean noise, prey availability, environmental patterns, season, sex, age, geographic area, reproductive status and body condition.

Marine ecology is a complex world, and sometimes complex models are needed to help us to find patterns in our data! Once estimates of these ecological processes are created and different hypotheses are explored, information can then be provided to conservation and environmental management to aid decision making, such as defining thresholds of ambient ocean noise levels in the vicinity of baleen whales.

 

Bibliographic Reference:

Schick RS, Kraus SD, Rolland RM, Knowlton AR, Hamilton PK, Pettis HM, Kenney RD and Clark JS. 2013. Using Hierarchical Bayes to Understand Movement, Health, and Survival in the Endangered North Atlantic Right Whale. PLOS ONE 8(6):e64166.