Dredging and low visibility doesn’t stop us! We paddle on.

By: Catherine Lo, Research Intern, Oregon State University ‘16

Hello everyone! My name is Catherine Lo and I am a recent graduate from Oregon State University with a Bachelor’s of Science in Biology with a focus in Marine Biology. It has been an incredible whirlwind leading up to this point: long nights studying for finals, completing my degree, and planning the next steps for my future. I am fortunate to be working as a summer research intern for the GEMM Lab under the supervision of Dr. Leigh Torres and Msc. student Florence Sullivan in their research on the foraging ecology of gray whales. I have dreamed of working with marine mammals, potentially as a research veterinarian and so, capturing this position has been a great opportunity to begin my career.

The days go slow, but the weeks go fast. It’s already week 4 of our field season and the team and I are definitely in the groove of our research. The alarm(s) goes off at 5:00 AM…okay maybe closer to 5:30 AM (oops!), getting dressed for either the kayak or cliff based work, scarfing down breakfast that is usually a diet consisting of toast and peanut butter, and then heading off to the beach to launch the kayak. But this week it was different. A dredging event in Port Orford coordinated by the US Army Corps of Engineers is now taking place right next to the port’s jetty near our study site (Figure 1). This is an important process to move the sediment built up during the year in order for ships to safely navigate in and out of the port. We knew this was going to happen at some point over the summer, and worried that it might impact our research methods and objectives, but at the same time it offers some new opportunities: the chance to see how our GoPro and mysid sampling methods in Tichenor Cove are impacted by the sediment flow from the dredging activities.

_EM_0007
Figure 1. View of the dredger from the cliff field site in Port Orford.

My teammate Kelli and I were stationed on the cliff during the first deposit of sediment after the dredge’s first night and morning’s worth of scooping sand. None of us knew where the actual deposit site would be so we kept a good eye on it. The ship headed past the jetty. Turned around and, as a concerned feeling mustered within our field team, it began lowering the platform holding the sand just 250 yards away from our primary study site in Tichenor Cove! At this point, we knew things were going to be different in our samples. Unfortunately along with the sediment stirring up from dredging, we think a phytoplankton bloom is occurring simultaneously. Our GoPro footage lately has been rather clouded making it difficult to identify any mysid relative to our past footage. You can compare Figure 2 to the GoPro image found in Figure 2 of a previous post. It is times like these that we learn how dynamic the ocean is, how human activity can alter the ocean ecosystem, and how to adapt to changes, whether these adaptations are within our reach or not. We are interested to see how our sample sites will change again over time as the dredging operation finishes and the phytoplankton bloom ends.

Figure 2. This GoPro image taken in Tichenor Cove illustrates exactly how murky our view of the water column is with the sediment dredging operation in close proximity.
Figure 2. This GoPro image taken in Tichenor Cove illustrates exactly how murky our view of the water column is with the sediment dredging operation in close proximity.

Aside from the current water clarity situation, we’ve also had some exciting moments! Given how few whales we’ve seen thus far and how the ones we have tracked are predominately hanging by Mill Rocks, which is ~1km east of Tichenor Cove, Dr. Leigh Torres—our head advisor—thought it would be a good idea to check out the mysid scene over there to see what the attraction was. So, we sent our kayak team over there to conduct a few GoPro drops and zooplankton net tows and figure out what is so enticing for the whales.

While conducting this sampling work at Mill Rocks, I and my teammate were lucky enough to encounter a gray whale foraging. And believe me, we were going “off-the-walls” as soon as we heard from the cliff team and saw a blow as the whale surfaced nearby. It was one of those “best time of my life” moments where my dreams of kayaking this close to a whale came true. We fumbled around for our waterproof camera to get clear shots of its lateral flanks for photo identification while also trying to contain our excitement to a more decent level, and at the same time we had to make sure we were not in the whale’s path. There it was; surface after surface, we admired the immense size and beauty of a wild animal before our eyes. The worst part of it was when our camera battery died not long after taking a few pictures, but in a way it gave us a chance to really appreciate the existence of these animals. Note to self during research: always check your batteries are fully charged before heading out!

It baffles me how so often people walk along beaches or drive by without knowing an animal as incredible as this whale is just outside of the shoreline. Every time I’m inside pulling out time stamps or doing photo identification, I always think, “I wonder if there’s a whale in Tichenor Cove or at Mill Rocks right now…Yeah, there probably is one”. Alas, the data management work needs to be done and there’s always the next day for an opportunity of a sighting.

For a few days, our kayak team wasn’t able to work due to a small craft advisory. If you’ve ever been to Port Orford, you’d understand the severity of how windy it gets here. Ranging between 15 knots to 25 knots as early as 7am, so it gets rather difficult to maintain position at each of our sampling stations in our kayak. Fortunately our cliff team was able to set out. We were lucky to see a small whale foraging inside Tichenor Cove and later move onto Mill Rocks. This little one was giving us quite a show! Almost every time it came to the surface, defecation was observed shortly after. As unpleasant as feces might be, it can actually provide an abundance of information about a specific whale including sex, reproductive status, hormone levels, and much more. While doing our research, we are always keeping an eye out for signs of defecation in order to collect samples for another lab member’s PhD work. Here you can check out more information about Leila’s research. Figure 3 depicts a great image of defecation captured by our cliff team.

Figure 3. Gray whale defecating as it dives into the water in Tichenor Cove.
Figure 3. Gray whale defecating as it dives into the water in Tichenor Cove.
Figure 4. Gray whale swimming in Tichenor Cove taken by fellow intern Cathryn Wood.
Figure 4. Gray whale swimming in Tichenor Cove taken by fellow intern Cathryn Wood.

In addition to helping out Leila’s work, we recently began a collaboration with Aaron Galloway from The Oregon Institute of Marine Biology (OIMB). Aaron and his post-doc are looking at the fatty acid composition of mysid as an approach to eventually infer the diet of an aquatic animal. Check out his website which is linked to his name to learn more about the basis of his approach! While we collect mysid samples for them, in return they give us substantial information about the energy content of the mysid. This information on the energetic content of mysid will help the GEMM Lab answer questions about how much mysid gray whales need to eat.

Oregon State University and University of Oregon have a long-standing, intense rivalry. However, as an Alumna from Oregon State, I am amazed and thrilled to see how these two institutions can come together and collaborate. I mean, we’re all here for the same thing. Science, right? It creates the opportunity to apply integrative research by taking advantage of various expertise and resources. If we have those chances to reach out to others, why not make the most of it? In the end, sound science is what really matters, not rooting for the ducks or beavers.

My marine science background is based on my experiences looking at tidepools and hopping around on rocks to understand how vast intertidal communities range from invertebrates to algae. These experiences were an incredible part of my life, but now I look at the ocean unsure of what animals or environmental situations I might encounter. That’s what makes it so attractive. Don’t get me wrong. The intertidal will always hold a special place in my heart, but the endless possibilities of being a part of this marine mammal research team is priceless. I have learned so much about myself including my strengths and weaknesses. Living in Port Orford, which is a small coastal town with just a little over 1,000 people gives you a new perspective. The community has been very welcoming and I have appreciated how so much interest is placed on the kind of work we do. As I eat my nightly bowl of ice cream, I think about how, from here on out, the good and the bad can only bring a lifetime of skills and memories.

Figure 5. Me being extremely happy to be out on the kayak on a beautiful morning.
Figure 5. Me being extremely happy to be out on the kayak on a beautiful morning.

 

 

 

 

 

 

From the highs to the lows, that’s just how it blows!

 

By: Kelli Iddings, MSc Student, Duke University, Nicholas School of the Environment

The excitement is palpable as I wait in anticipation. But finally, “Blow!” I shout as I notice the lingering spray of seawater expelled from a gray whale as it surfaces to breathe. The team and I scurry about the field site taking our places and getting ready to track the whale’s movements. “Gray whale- Traveling- Group 1- Mark!” I exclaim mustering enough self-control to ignore the urge to drop everything and stand in complete awe of what in my mind is nothing short of a miracle. I’ve spotted a gray whale searching and foraging for food! As a student of the Master of Environmental Management program at Duke University, I am collaborating on a project in Port Orford, Oregon where my team and I are working to gain a better understanding of the interactions between the Pacific Coast Feeding Group (PCFG) gray whales and their prey. Check out this blog post written earlier by my teammate Florence to learn more about the methods of the project and what motivated us to take a closer look at the foraging behavior of this species.

Understanding the dynamics of gray whale foraging within ecosystems where they are feeding is essential to paint a more comprehensive picture of gray whale health and ecology—often with the intent to protect and conserve them. A lot of our recent effort has been focused on developing and testing methods that will allow us to answer the questions that we are asking. For example, what species of prey are the PCFG whales feeding on in Port Orford? Based on the results of a previous study (Newell and Cowles 2006) that was conducted in Depoe Bay, Oregon, and a lot of great knowledge from the local fisheries and the Port Orford community, we hypothesized that the whales were feeding on a small, shrimp-like crustacean in the order Mysida. Given the results of our videos, and the abundance of mysid, it looks like we are right (Fig. 1)!

DSCF0776[3]
Figure 1: Mysids, only 5-25mm in length, collected in Tichenor Cove using a downrigger to lower a weighted plankton net into the water column from our kayak.
Mysids are not typically the primary food source of gray whales. In their feeding grounds in the Bering and Chukchi Seas near Alaska, the whales feed on benthic amphipods on the ocean floor by sucking up sediment and water and pushing it through baleen plates that trap the food as the water and sediment is filtered out. However, gray whales demonstrate flexible feeding strategies and are considered opportunistic feeders, meaning they are not obligate feeders on one prey item like krill-dependent blue whales. In Oregon, mysid congregate in dense swarms by the billions, which we hypothesize, makes it energetically worthwhile for the massive 13-15m gray whales to hang around and feed! Figure 2 illustrates a mysid swarm of this kind in Tichenor Cove.

DCIM102GOPROG0132732.
Figure 2: Image captured using a Hero 4 Black GoPro. Rocky Substrate is visible in lower portion of image and a clear swarm of mysid is aggregated around this area.

Once we know what the gray whales are eating, and why, we ask follow up questions like how is the distribution of mysid changing across space and time, if at all? Are there patterns? If so, are the patterns influencing the feeding behavior and movement of the whales? For the most part, we are having success characterizing the relative abundances of mysid. No conclusions can be made yet, but there are a few trends that we are noticing. For instance, it seems that the mysid are, as we hypothesized, very dense and abundant around the rocky shoreline where there are kelp beds. Could these characteristics be predictors of critical habitat that whales seek as foraging grounds? Is it the presence of kelp that mysid prefer? Or maybe it’s the rocky substrate itself? Distance to shore? Time and data analysis will tell. We have also noticed that mysid seem to prefer to hang out closer to the bottom of the water column. Last, but certainly not least, we are already noticing differences in the sizes and life stages of the mysid over the short span of one week at our research site! We are excited to explore these patterns further.

The biggest thing we’re learning out here, however, is the absolute necessity for patience, ingenuity, adaptability, and perseverance in science. You heard that right, as with most things, I am learning more from our failures, than I am from our successes.  For starters, understanding mysid abundance and distribution is great in and of itself, but we cannot draw any conclusions about how those factors are affecting whales if the whales don’t come! We were very fortunate to see whales while training on our instruments in Newport, north of our current study site. We saw whales foraging, whales searching, mother/calf pairs, and even whales breaching! Since we’ve been in Port Orford, we have seen only three whales, thrown in among the long hours of womanpower (#WomenInScience) we have been putting in! We are now learning the realities of ecological science that >gasp< fieldwork can be boring! Nevertheless, we trust that the whales will hear our calls (Yes, our literal whale calls. Like I said, it can get boring up on the cliff) and head on over to give the cliff team in Port Orford some great data—and excitement!

Then, there is the technology. Oh, the joys of technology. You see I’ve never considered myself a “techie.” Honestly, I didn’t even know what a hard drive was until some embarrassing time in the not-so-distant past. And now, here I am working on a project that is using novel, technology rich approaches to study what I am most passionate about. Oh, the irony. Alas, I have been putting on my big girl britches, saddling up, and taking the whale by the fluke. Days are spent syncing a GoPro, Time-Depth Recorder (TDR), GPS, associated software, and our trusty rugged laptop, all the while navigating across multiple hard drives, transferring and organizing massive amounts of data, reviewing and editing video footage, and trouble shooting all of it when something, inevitably, crashes, gets lost, or some other form of small tragedy associated with data management. Sounds fun, right? Nonetheless, within the chaos and despair, I realize that technology is my friend, not my foe. Technology allows us to collect more data than ever before, giving us the ability to see trends that we could not have seen otherwise, and expending much less physical effort doing so. Additionally, technology offers many alternatives to other invasive and potentially destructive methods of data collection. The truth is if you’re not technologically savvy in science these days, you can expect to fall behind. I am grateful to have an incredible team of support and such an exciting project to soften the blow. Below (Fig. 3) is a picture of myself embracing my new friend technology.

DSCF0758
Figure 3: Retrieving the GoPro, and some tag-a-long kelp, from the water after a successful deployment in Tichenor Cove.

Last but not least, there are those moments that can best be explained by the Norwegian sentiment “Uff da!” I was introduced to the expression while dining at The Crazy Norwegian, known famously for having the best fish and chips along the entire west coast and located dangerously close to the field station. The expression dates back to the 19th century, and is used readily to concisely convey feelings of surprise, astonishment, exhaustion, and sometimes dismay. This past week, the team was witness to all of these feelings at once as our GoPro, TDR, and data fell swiftly to the bottom of the 42-degree waters of Tichenor cove after the line snapped during deployment. Uff da!!! With our dive contact out of town, red tape limiting our options, the holiday weekend looming ahead, and the dreadful thought of losing our equipment on a very tight budget, the team banded together to draft a plan. And what a beautiful plan it was! The communities of Port Orford, Oregon State University, and the University of Oregon’s Institute of Marine Biology came together in a successful attempt to retrieve the equipment. We offer much gratitude to Greg Ryder, our retrieval boat operator, OSU dive safety operator Kevin Buch, and our divers, Aaron Galloway and Taylor Eaton! After lying on the bottom of the cove for almost three days, the divers retrieved our equipment within 20 minutes of the dive – thanks to the quick and mindful action of our kayak team to mark a waypoint on the GPS at the time of the equipment loss. Please enjoy this shot (Fig. 4) of Aaron and Taylor surfacing with the gear as much as we do!

Figure 4: Aaron Galloway and Taylor Eaton surface with our lost piece of equipment after a successful dive retrieval mission.
Figure 4: Aaron Galloway and Taylor Eaton surface with our lost piece of equipment after a successful dive retrieval mission.

The moral of the story is that science isn’t easy, but it’s worth it. It takes hard work, long hours, frustration, commitment, collaboration, and preparedness. But moments come along when your team sits around a dining room table, exhausted from waking and paddling at 5 am that morning, and continues to drive forward. You creatively brainstorm, running on the fumes of the passion and love for the ocean and creatures within it that brought everyone together in the first place; each person growing in his or her own right. Questions are answered, conclusions are drawn, and you go to bed at the end of it all with a smile on your face, anxiously anticipating the little miracles that the next day’s light will bring.

References

Newell, C. and T.J. Cowles. (2006). Unusual gray whale Eschrichtius robustus feeding in the summer of 2005 off the central Oregon Coast. Geophysical Research Letters, 33:10.1029/2006GL027189

The Gray [Whale]s are back in town – Field season 2016 is getting started!

By Florence Sullivan – MSc Student, GEMM Lab

Hello Everyone, and welcome back for season two of our ever-expanding research project(s) about the gray whales of the Oregon coast!

Overall, our goal is document and describe the foraging behavior and ecology of the Pacific Coast Feeding Group of Gray Whales on the Oregon Coast. For a quick recap on the details of this project read these previous posts:

During this summer season, the newest iteration of team ro”buff”stus will be heading back down to Port Orford, Oregon to try to better understand the relationship between gray whales and their mysid prey. Half the team will once again use the theodolite from the top of Graveyard Point to track gray whales foraging in Tichenor Cove, the Port of Port Orford, and the kelp beds near Mill Rocks.  Meanwhile, the other half of the team will use the R/V Robustus (i.e. a tandem ocean kayak named after our study species – Eschrichtius robustus, the gray whale) to repeatedly deploy a GoPro camera at several sampling locations in Tichenor cove. We hope that by filming vertical profiles of the water column, we will be able to create an index of abundance for the mysid to describe their temporal and spatial distribution of their swarms.  We’re particularly interested in the differences between mysid swarm density before and after a whale forages in an area, and how whale behaviors might change based on the relative density of the available prey.

The GEMM lab's new research vessel being launched on her maiden voyage.
Ready to take the R/V Robustus out for her maiden voyage in Port Orford to test some of our new equipment. photo credit: Leigh Torres

In theory, asking these questions seems simple – get in the boat, drop the camera, compare images to the whale tracklines, get an answer!  In reality, this is not the case. A lot of preparatory work has been going on behind the scenes over the last six months. First, we had to decide what kind of camera to use, and decide what sort of weighted frame to build to get it to sink straight to the bottom. Then came the questions of deployment by hand versus using a downrigger,

Example A why it is a bad idea to try to sample during a diatom bloom.
Example A why it is a bad idea to try to sample during a diatom bloom – You can’t see anything but green.

what settings to use on the camera, how fast to send it down and bring it back up, what lens filters are needed (magenta) and other logistical concerns. (Huge thank you to our friends at ODFW Marine Reserves Program for the help and advice they provided on many of these subjects.) We spent some time in late May testing our deployment system, and quickly discovered that sampling during a diatom bloom is completely pointless because visibility is close to nil.

However, this week, we were able to test the camera in non-bloom conditions, and it works!  We were able to capture images of a few small mysid swarms very near the bottom of the water column, and we didn’t need external lights to do it. We were worried that adding extra lights would artificially attract mysid to the camera, and bias our measurements, as well as potentially disturbing the whale’s foraging behavior. (Its also a relief because diving lights are expensive, and would have been one more logistical thing that could go wrong. General advice: Always follow the KISS method when designing a project – keep it simple, ——!)

 

This image is taken at a depth of ~10 meters, with no color corrective filter on the lens
This image is taken at a depth of ~10 meters, with no color corrective filter on the lens – notice how blurry the mysid are.
This is empty water, in the mid water column
This is empty water, in the mid water column
More Mysid! This time with a Magenta filter on the lens to correct the colors for us.
Much clearer Mysid! This time with a magenta filter on the lens to correct the colors for us.

My advisor recently introduced me to the concept of the “7 Ps”; Proper Prior Planning Prevents Piss Poor Performance.  To our knowledge, we are the first group to try to use GoPro cameras to study the spatial and temporal patterns of zooplankton aggregations. With new technology comes new opportunities, but we have to be systematic and creative in how we use them. Trial and error is an integral part of developing new methods – to find the best technique, and so that our work can be replicated by others. Now that we know the GoPro/Kayak set-up is capable of capturing useable imagery, we need to develop a protocol for how to process and quantify the images, but that’s a work in progress and can wait for another blog post.   Proper planning also includes checking last year’s equipment to make sure everything is running smoothly, installing needed computer programs on the new field laptop, editing sampling protocols to reflect things that worked well last year, and expanding the troubleshooting appendixes so that we have a quick reference guide for when things go wrong in the field.  I am sure that we will run into more weird problems like last year’s “Chinese land whale”, but I also know that we would have many more difficulties if we had not been planning this field effort for the last several months.

Planning our sampling pattern in Tichenor Cove
Planning our sampling pattern in Tichenor Cove.

Team Ro”buff”stus is from all over the place this year – we will have members from Oregon, North Carolina and Michigan – and we are all meeting for the first time this week.  The next two weeks are going to be a whirlwind of introductions, team bonding, and learning how to communicate effectively while using the theodolite, our various computer programs, GoPro, Kayak, and more!  We will keep the blog updated with our progress, and each team member will post at least once over the course of the summer. Wish us luck as we watch for whales, and feel free to join in the fun on pretty much any cliff-side in Oregon (as long as you’ve got a kelp bed nearby, chances are you’ll see them!)

Blown out.

By Dr. Leigh Torres, Assistant Professor, Oregon State University, Marine Mammal Institute, Geospatial Ecology of Marine Megafauna Lab

Hurry up and wait. Can’t control the weather. All set and nowhere to go.

However you want to say it, despite our best efforts to be ready to sail today, the weather has not agreed with our best-laid plans. It’s blowing 20-30 knots in the South Taranaki Bight, which makes it very difficult to spot a whale from our small (but sturdy) research vessel (NIWA’s R/V Ikatere), and practically impossible to take good photos of the whales or to deploy our hydrophones. So, we wait.

Over the last few days we have been busy tracking down gear, assembling the hydrophones, discussing project logistics, preparing equipment (Fig. 1), provisioning the vessel, getting the crew in place, and practicing vessel operations. We have flown to the other side of the world. We have prepared. We are ready. And we wait. Such is field work. I know this. I’ve been through this many times. But it is always hard to take when you feel the clock ticking on your timeline, the funds flowing from your budget, and your people waiting for action. Fortunately, I have built in contingency time so we will still accomplish our goals. We just have to wait a bit longer. As the Kiwis say, ‘Bugger!’

kristin and hydrophones small
Figure 1. Kristin Brooke Hodge of The Bioacoustics Research Program at Cornell University performs a global sound check on the hydrophones (loud bang of hammer to pipe) so that times can all be synced and any clock drift accounted for.

Below is a wind and rain forecast for New Zealand (provide by the MetService). The box in red is our study region of the South Taranaki Bight. We are currently in Wellington where the green star is, but we want to be in Pohara where the yellow star is – this will be our base during the field project, if we can just get there.

NZ wind

Wind strength and direction in these types of maps is depicted by the wind indicator lines: the wind is coming from the tail toward the flag end of the symbol, and the strength is symbolized by the number and size of the barbs on the flag end.

wind barbs

Notice how inside the red box there are lots of barbs on the indicator lines (most saying about 20 knots), but just to the west and north there are few barbs – about 5 to 10 knots. These are great survey conditions, but not where we want to be! A bit heartbreaking. But that’s how it goes, and I know we will get our weather window soon. Until then, we sit tight and watch the wind blow through the pohutukawas and cabbage trees in beautiful Wellington.

New Zealand’s mega-fauna come to Newport, Oregon.

By Olivia Hamilton, PhD Candidate, University of Auckland, New Zealand.

The week leading up to my departure from New Zealand was an emotional rollercoaster. Excited, nervous, eager, reluctant… I did not feel like the fearless adventurer that I thought I was. D-day arrived and I said my final goodbyes to my boyfriend and mother at the departure gate. Off I went on my three-month research stint at the Hatfield Marine Science Center.

Some thirty hours later I touched down in Portland. I collected my bags and headed towards the public transport area at the airport. A young man greeted me, “Would you like to catch a taxi or a shuttle, ma’am?” “A taxi please! I have no idea where I am”, I responded. He nodded and smiled. I could see the confusion all over his face… My thick kiwi accent was going to make for some challenging conversations.

After a few days in Portland acclimatizing to the different way of life in Oregon, it was time to push on to Newport. I hit a stroke of luck and was able take the scenic route with one of the girls in the GEMM lab, Rachael Orben. With only one wrong turn we made it to the Oregon coast. I was instantly hit with a sense of familiarity. The rugged coastline and temperate coastal forest resembled that of the west coast of New Zealand. However, America was not shy in reminding me of where I was with its big cars, drive-through everything, and RVs larger than some small kiwi houses.

The Oregon Coast. Photo by Olivia Hamilton.
The Oregon Coast. Photo by Olivia Hamilton.

We arrived at Hatfield Marine Science Center: the place I was to call home for the next quarter of a year.

So, what am I doing here?

In short, I have come to do computer work on the other side of the world.

Dr. Leigh Torres is on my PhD committee and I am lucky enough to have been given the opportunity to come to Newport and analyze my data under her guidance.

My PhD has a broad interest in the spatial ecology of mega-fauna in the Hauraki Gulf, New Zealand. For my study, megafauna includes whales, dolphins, sharks, rays, and seabirds. The Hauraki Gulf is adjacent to Auckland, New Zealand’s most populated city and home to one of our largest commercial ports. The Hauraki Gulf is a highly productive area, providing an ideal habitat for a number of fish species, thus supporting a number of top marine predators. As with many coastal areas, anthropogenic activities have degraded the health of the Gulf’s ecosystem. Commercial and recreational fishing, run-off from surrounding urban and rural land, boat traffic, pollution, dredging, and aquaculture are some of the main activities that threaten the Gulf and the species that inhabit it. For instance, the Nationally Endangered Bryde’s whale is a year-round resident in the Hauraki Gulf and these whales spend much of their time close to the surface, making them highly vulnerable to injury or death from ship-strikes. In spite of these threats, the Gulf supports a number of top marine predators.  Therefore it is important that we uncover how these top predators are using the Gulf, in both space and time, to identify ecologically important parts of their habitat. Moreover, this study presents a unique opportunity to look at the relationships between top marine predators and their prey inhabiting a common area.

The Hauraki Gulf, New Zealand. The purple lines represent the track lines that aerial surveys were conducted along.

 

Common dolphins in the Hauraki Gulf. Photo by Olivia Hamilton
Common dolphins in the Hauraki Gulf. Photo by Olivia Hamilton

 

A Bryde’s whale, common dolphins, and some opportunistic seabirds foraging in the Hauraki Gulf. Photo by Isabella Tortora Brayda di Belvedere.
A Bryde’s whale, common dolphins, and some opportunistic seabirds foraging in the Hauraki Gulf. Photo by Isabella Tortora Brayda di Belvedere.

 

Australisian Gannets and shearwaters foraging on a bait ball in the Hauraki Gulf. Photo by Olivia Hamilton.
Australisian Gannets and shearwaters foraging on a bait ball in the Hauraki Gulf. Photo by Olivia Hamilton.

To collect the data needed to understand the spatial ecology of these megafauna, we conducted 22 aerial surveys over a year-long period along pre-determined track lines within the Hauraki Gulf. On each flight we had four observers that collected sightings data for cetaceans, sharks, predatory fish, prey balls, plankton, and other rare species such as manta ray. An experienced seabird observer joined us approximately once a month to identify seabirds. We collected environmental data for each sighting including Beaufort Sea State, glare, and water color.

The summary of our sightings show that common dolphins were indeed common, being the most frequent species we observed. The most frequently encountered sharks were bronze whalers, smooth hammerhead sharks, and blue sharks. Sightings of Bryde’s whales were lower than we had hoped, most likely an artifact of our survey design relative to their distribution patterns. In addition, we counted a cumulative total of 11,172 individual seabirds representing 16 species.

Summary of sightings of megafauna in the Hauraki Gulf.

Summary of sightings of megafauna in the Hauraki Gulf.My goal while here at OSU is to develop habitat models for the megafauna species to compare the drivers of their distribution patterns. But, at the moment I am in the less glamorous, but highly important, data processing and decision-making stage. I am grappling with questions like: What environmental variables affected our ability to detect which species on surveys? How do we account for this? Can we clump species that are functionally similar to increase our sample size? These questions are important to address in order to produce reliable results that reflect the megafauna species true distribution patterns.

Once these questions are addressed, we can get on to the fun stuff – the habitat modeling and interpretation of the results. I will hopefully be able to start addressing these questions soon: What environmental and biological variables are important predictors of habitat use for different taxa? Are there interactions (attraction or repulsion) between these top predators? What is driving these patterns? Predator avoidance? Competition? So many questions to ask! I am looking forward to answering these questions and reporting back.

Gray whale field work wrap-up; sea you later

Hello everyone,

Florence here with an update about the final numbers from this summer’s gray whale field season.

For folks just hearing about the project, my team of interns and I spent the summer alternating between study sites at Depoe Bay and Port Orford to conduct fine-scale focal follows of gray whales foraging in near-shore Oregon waters using a theodolite.  That is to say, we gathered 10,186 ‘marks’ or ‘locations’ where whales came to the surface, and by connecting the dots, we are able to create tracklines and analyze their movement patterns.  The idea is to document and describe gray whale foraging behavior in order to answer the questions: Are there patterns in how the whales use the space? Is there a relationship between foraging success and proximity to kelp beds? Do behaviors vary between individuals, location, or over time during the season?

All these tracklines are from one whale, Keyboard, visiting the same area multiple times over the course of a month. I'll break this figure down a little later in the post. Notice how the whale consistently returns to the bay just west of the port jetty
All these tracklines are from one whale, Keyboard, visiting the same area multiple times over the course of a month. I’ll break this figure down a little later in the post. Notice how the whale consistently returns to the bay just west of the port jetty

While at our study sites, we often received questions about vessel disturbance on the whale’s behavior. Over the course of the summer, we saw whales completely ignore boats, approach boats, and actively avoid boats. Therefore, we documented these vessel interactions in order to ask questions such as: Does vessel disturbance alter behavior? How close is too close? Does the potential for vessel disturbance vary depending on (1) size of motor, (2) speed of approach, (3) type of vessel, i.e. kayak, fishing boat, tour boat, (4) the number of vessels already in the area, (5) amount of time a vessel has been following a whale, (6) time of season, (7) the presence of a calf or other whales? The end goal, once the data have been analyzed, is to bring our results to local vessel operators (commercial and recreational) and work together to write reasonable, effective, and scientifically informed guidelines for vessel operations in the presence of gray whales.

And now, the numbers you’ve all been waiting for, here is the tally of our data collection this summer:

 

Boiler Bay Graveyard Point Humbug Mountain
Whales total 80 73 28
Boats total 307 105 7
Total survey time (HH:MM:SS) 122:22:41 72:49:17 50:22:35
Total survey time with whales (HH:MM:SS) 64:47:54 80:39:57 22:59:00
Total Marks 4744 4334 1108

Table 1. Summary of survey effort for gray whale foraging ecology field season summer 2015

Whale named "Keyboard" visits graveyard head multiple times. Green track: 7.21.15, Pink track: 7.21.15, Teal track: 7.30.15. The orange polygons are approximate locations of kelp patches.
Whale named “Keyboard” visits graveyard head multiple times. Green track: 7.21.15, Pink track: 7.21.15, Teal track: 7.30.15. The orange polygons are approximate locations of kelp patches.
"Keyboard" continues to visit. Red trackline: 8.27.15, white trackline: 8.28.15, purple trackline: 8.28.15
“Keyboard” continues to visit. Red trackline: 8.27.15, white trackline: 8.28.15, purple trackline: 8.28.15

 

Whale 130 foraged near Boiler Bay for 5.5 hours on Aug 12. Trying to look at the whole trackline in one go is a little complicated, so let’s break it down by hour.
Whale 130 foraged near Boiler Bay for 5.5 hours on Aug 12. Trying to look at the whole trackline in one go is a little complicated, so let’s break it down by hour.
This panel shows hours 4-6 of the track. Things get more complex as various vessels use the same area. Whale 130 is always in red.
This panel shows hours 4-6 of the track. Things get more complex as various vessels use the same area. Whale 130 is always in red.

So, what does this all mean?  Well, the unsatisfying answer is of course: we don’t know yet. However, it is my job to find out!  I will spend the fall and winter processing data, writing and running behavioral models, communicating my successes and frustrations, and finally presenting my results to the community.

The human eye is well adapted to pick out patterns. Test yourself – what trends can you see in these images?  Are there areas that the whales seem to prefer over other areas?  In the Port Orford images with Keyboard & our kelp patches, does our theory of a relationship between whale presence and kelp patches seem valid?

This field season would not have been possible without the help of some truly excellent people.  Thank you Cricket and Justin and Sarah for making up the core of Team Ro”buff”stus. It was a pleasure working with you this summer.  Thank you to guest observers and photographers Era, Steven, Diana, Cory, Kelly, Shea and Brittany for filling in when we needed extra help! Thank you to our support network down in Port Orford: Tom, Tyson and the team at the Port Orford Field Station – we appreciate the housing and warm welcome, and to Jim and Karen Auborn and the Port of Port Orford for allowing us access to such a fantastic viewing location. Thank you to Oregon State Parks for allowing us access to the field sites at Boiler Bay and Humbug. Finally, thank you to Depoe Bay Pirate Coffee Company for keeping us warm and caffeinated on many foggy, cold early mornings. This work was funded by the William and Francis McNeil Fellowship Award, the Wild Rivers Coast Alliance, and the American Cetacean Society: Oregon Chapter.

Fair winds,

Florence

Not Everyday is Gray (just most of them)

As Amanda explains quite nicely in her previous blog post, research is not always glamorous, and we don’t always see the species we’ve come out to the field to study.  However, that doesn’t mean that there aren’t other cool species out there to spot!  Here are some common (and uncommon) visitors to some of our research sites this summer.

Also, if you continue to the bottom, we’ve included some cool videos of (1) gray whale sharking behaviour, (2) Gray whale swimming (top down full body view), and what it looks and sounds like when we’re doing one of our close-in focal follows. Enjoy!

A very unexpected, but very welcome visitor! Spotted off Boiler Bay August 10.
A very unexpected, but very welcome visitor! Blue Whale spotted off Boiler Bay August 10.
Often in pairs, we've started seeing more of these lately as they come back north from the breeding grounds further south.
Often in pairs, we’ve started seeing more of these California sea lions lately as they come back north from the breeding grounds further south.
fluffy crow
A young crow fluffs up in the breeze
Humpback Whale which has been hanging out around Depoe Bay for the past two weeks.  Its split dorsal fin makes it easy to recognize! Notice the darker color than the grays we usually see.
Humpback Whale which has been hanging out around Depoe Bay for the past two weeks. Its split dorsal fin makes it easy to recognize! Notice the darker color than the grays we usually see.
Spotted at Graveyard Point
A Great Egret spotted at Graveyard Point
Long Billed Curlew
A long billed curlew drops by for a visit
This chick waits patiently for parents to bring a meal
This chick waits patiently for parents to bring a meal
We see the Osprey mutliple times a day in Port Orford as there are a couple of nesting pairs with chicks to feed.
We see the Osprey multiple times a day in Port Orford as there are a couple of nesting pairs with chicks to feed.
Our Oystercatchers at Boiler Bay have also successfully fledged a pair of chicks while we've been watching!
Our Oystercatchers at Boiler Bay have also successfully fledged a pair of chicks while we’ve been watching!
Pelicans
Brown Pelicans
There are at least two pairs of Peregrines with chicks in Port Orford as well.  This one brings home a catch! (possibly murre or guillemot chick?)
There are at least two pairs of Peregrines with chicks in Port Orford as well. This one brings home a catch! (possibly murre or guillemot chick?)
Peregrine
Peregrine Falcon
Pigeon Guillemots
Pigeon Guillemots at Port Orford

 

If you remember a few weeks ago, we shared photos of gray whale “sharking” behaviour.  Well, now we have video!  Enjoy:

Here’s what it looks like from the top of Graveyard Bluff when a whale swims by below us!

We get really excited by this behavior because its positive proof that the whales are successfully foraging!

and here is a fluke!

We’ll be back soon with more updates from Port Orford.

Fair winds,

Florence & the rest of Team Ro”buff”stus

 

An insight into what Marine Mammal Observing is really like!

By Amanda Holdman

It’s August of 2015. That means I have exactly 2.5 months left until my field season and data collection for my masters comes to a close. At the end of October, I will have collected exactly 2 years of visual data on marine mammal distributions off of the coast of Newport, Oregon.

This is a bittersweet moment for me. Currently, I am on a 7 hour flight to Scotland to do some initial data analysis on my collected observations, with the help of a workshop offered by the University of St. Andrews. My first time abroad has me pretty restless with excitement on the plane, but with a 9 hour time change, some good rest will be key to being successful at the workshop. As I try to close my eyes, and picture what the next two weeks of what I like to call “Intensive Distance Sampling Summer School” will be like, the stranger next to me inevitably begins to make small talk, beginning with

“So what do you do?”

I usually tend to answer this question in two different ways. When I’m in my science community, I have no hesitation giving my 3 minute elevator speech on what I have been researching for the past year. However, when I’m making small talk with anyone I tend to just say

“I’m a master’s student studying marine mammals”

And that’s about all you need to say to get everyone’s attention around you! With a little more detail, I explain that I run transects to collect visual observation data of marine mammals to assist with understanding their patterns in distribution and habitat use. This explanation is always followed up with:

“Man, you’ve got the coolest job ever! What’s it like doing this all the time?”

Again most of the time I get this question, I’m usually conversing with people visiting the west coast hoping to see a large gray whale on vacation; or  young children who haven’t yet figured out that marine biology isn’t just about dolphins and pretty coral reefs – but it’s still good to inspire them! Just last week even, I ran into someone on the beach that told me his daughter thinks I’m a rock star for teaching her that you can research the sounds that whales, dolphins, and seals make. (His daughter attended Marine Science Day back in April, and I showed her some recordings of sounds – but I’ll carry this compliment with me for a long time)

But when people ask me how awesome my job is, I tend to keep the morale up and I usually answer

“yep, it’s pretty awesome. I love it! ”

But to be honest, sometimes… it isn’t.

For me, there are four components that equate to a great day of fieldwork: ocean conditions, marine mammals, the boat itself, and equipment (hydrophones, GPS, CTD, camera, etc.)

So in reality…

“The flow of research season goes a lot like this: whales are present, but ocean is impossible; or ocean is calm but the whales are gone; or both whales and ocean are good but the boat breaks down; or everything is working but the rain last night brought in some fog and ruined the visibility” (From Hawaii’s Humpbacks: Unveiling the Mysteries)

AND EVEN on the rare chance that everything goes right – observing marine mammals is hard and uncomfortable – 14 hours of standing with back pain, squinting into the sun until you see one part of the water that looks a little different than the others. I mean really there isn’t much on earth that’s more enormous than the ocean.

This sounds like a lot of negativity, but I am in Scotland currently to resolve some of these minor setbacks we encountered during field collection. Using a statistics program called DISTANCE, we can take into account environmental conditions, sea state, observer bias, etc. When we combine all of these factors together we create a detection function or a ratio of the animals we saw, compared to those we missed. Eventually we end up with an abundance estimate of how many animals are in our study area.

Analyzing the results of my observations this week has provided me with the realization that my time on a boat is coming to an end. In my two years of fieldwork collection, marine mammal observing has molded me into the type of person that has what it takes to do this kind of research: dedicated, tolerant to pain, boredom, and frustration, and most importantly passionate about what I am doing.

Passion is definitely a prerequisite for the life of a GEMM student. Graduate school gives you the chance to be reflective and the time to carefully wade through information. I’ve always had a strong desire to learn, and when I get to combine that with my personal interests, it turns out graduate school can be quite the rewarding initiative.

It’s easy to be discouraged sometimes, especially in an intense and competitive environment like scientific research. I can assure you though, even on our unlucky days, when we’ve swallowed all of the truths about the difficulties of what we do and we’re frustrated enough to give up, our luck turns – usually right when we need it to.

I think the BBC Zoologist, Mark Carwardine, knows just how I feel in saying, “There are few things more rewarding than seeing the worlds’s largest animal in its natural habitat!

Thanks for reading!

We need all the “Kelp” we can get!

Hello from Hatfield Marine Science Center! This is Justin bringing you the latest and greatest in Gray Whale news. But first, let me fill you folks in with some info about me.  I am an undergraduate student, transitioning into my senior year, with Oregon State University’s Fisheries and Wildlife Department. In addition to my major, I am also minoring in statistics; crazy right? I have hopes and dreams of working in Marine Ecology, and I believe working on this Gray Whale project is a fine start! Which means, this summer, I have had the fortunate opportunity to work alongside the lovely Florence van Tulder, the mastermind behind the project, as well as Cricket and Sarah, the other two charismatic interns.

Our team name is derived from the scientific name of the gray whale: E. robustus, and the colorful "buff" scarves you can see us wearing on most days.
Our team name is derived from the scientific name of the gray whale: E. robustus, and the colorful “buff” scarves you can see us wearing on most days. (Left to right: Sarah, Florence, Cricket, Justin)

As we were wrapping up our two week stint in Port Orford, We observed the Gray Whales exhibiting some interesting behavior; they seemed to move from kelp patch to kelp patch, almost as if they were searching for something. What could be hiding under the luscious stands of Nereocystis luetkeana, otherwise known as bull kelp? Well, with the presence of defecation ( whale droppings) left behind from diving whales near many of the floating kelp patches, one culprit came to mind- mysid shrimp. Mysid shrimp are believed to be a primary prey source of the Gray whales.

Calmly approaching the kelp, this whale takes his time to observe his surroundings
Calmly approaching the kelp, this whale takes his time to observe his surroundings

Naturally, my curiosity got the best me and I ended up spending hours on end conducting literature searches and looking for bathymetry maps, thanks to Florence. All joking aside, I asked Florence if we could use our fancy Theodolite to assess or roughly map the distribution of the kelp patches. We would create polygonal shapes of the kelp on a map and observe how the whales move with respect to the kelp. The idea being, to get a better of picture of the relationship between the whales and the kelp, if any relationship exists at all. It is still a work in progress, due to our survey sites getting all kinds of “fogged” up. When the kinks are worked out and we have some useful visual data, we will post an awesome photo.

A quick breather before heading down into the depths near the kelp. (it's even heart shaped!)
A quick breather before heading down into the depths near the kelp. (it’s even heart shaped!)
This large  white tailed beauty bounced between kelp patches  like a pinball!
This large white tailed beauty bounced between kelp patches like a pinball!

Port Orford didn’t just bring us sweet whales, it brought the heat! Temperatures were up to almost the nineties the last week in July! We beat the heat with plenty of hydration and sun block and the predicable wind patterns became a savior on those sweltering days giving us temporary relief.  The heat seemed to tease out other critters as well. We saw a variety of birds, from turkey vultures, Peregrine Falcons, Ospreys, Bald Eagles, and even Egrets!  In the water we saw baby Harbor seals, and some bonus River Otters.

This is our "tripod" of river otters!
This is our “tripod” of river otters!

In more recent news, August 8th marked our first full month of surveying between our two whale hotspots. However, the term “hotspot” doesn’t always seem to be fitting. This past week has been a tough one for the team and I up in Boiler Bay due to less than optimal weather conditions and our survey site has been exposed to an abnormal cycle of fog. Our friendly “neighborhood” grays have been a bit sparse, and yet, we have had Humpback Whales grace us with their presence and these whales have been spotted during several survey days this week! ( In the tradition of opportunistic data, we even tracked one of them.)

The track-line for whale 118 - a humpback who has been hanging out near Boiler Bay all week.
The track-line for whale 118 – a humpback who has been hanging out near Boiler Bay all week.

This summer has been very fun because not only do we get to watch whales every day, but when we are in Boiler Bay, we have the opportunity to meet fascinating people from all over the world! The positive support for the project coming from the community is quite a nice touch to our days in the field. If you are ever in the neighborhood, stop by and say hello, maybe share a whale’s tale or two!

 

Gray whales do not "fluke" very often, so its always a treat when we get a picture of one!
Gray whales do not “fluke” very often, so its always a treat when we get a picture of one!

Gray Whale Goofs

Hello there!  Florence here, signing in from Newport.  We had a fantastic trip south to Port Orford, and tracked another 53 whales bringing our season total up to 117 so far! This morning, we were back out at Boiler Bay and spent 5 hours staring at empty water – in keeping with the theme of this post, field work does not always go as planned.

Our two study areas couldn’t be more different.  At the Boiler Bay State Wayside, we are approximately 18 meters off the water.  In Port Orford, we are perched on the side of a 63 meter tall cliff. This extra height greatly increases our range and accuracy as well as changing the angle of our photography and the type of photo analysis we can do.  We’re quite excited to have a top down view of our whales, because the photos we are capturing will allow us to use certain photogrammetry techniques to measure the length and girth of the individuals.  With luck, when we compare the photos from the beginning of the season (now) to the end of our study (September) we may be able to see a change in the height of the post-cranial fat deposit, which would indicate a successful foraging season.  Gray whales do not eat from the beginning of their southward migration, through the breeding and calving season, until they reach productive foraging grounds at the end of their northward migration.  This means that all their sustenance for 6+ months is derived from their summer foraging success.  Did you know that they even generate their own water through an oxidation reaction which creates ‘metabolic water’ from their blubber stores?  So it will be rather fantastic if we manage to measure the change in whale body condition over the course of the summer – particularly if we are able to spot any mother-calf pairs who will have had an especially grueling journey north.

A foraging behavior where the whale turns on its side in shallow water. The triangle of the fluke resembles a shark fin
Sharking: A foraging behavior where the whale turns on its side in shallow water. The triangle of the fluke resembles a shark fin

So, while our photo database is advancing nicely, technical difficulties are to be expected when you’re in the field, and sometimes, troubleshooting takes longer than you would like it to.  This evening, let me introduce you to the elusive species known as ‘the Chinese land whale.’  It is a very rare breed which spontaneously generates itself from misaligned computer files.

When the theodolite beeps as we ‘mark’ a whale, a pair of horizontal and vertical angles are getting sent from the machine to a program called ‘Pythagoras’ on the laptop. Given our starting coordinates and a few other variables, the program auto-calculates for us the latitude and longitude of that whale.  While we hoped it would be a simple matter to upload these coordinates to Google Earth to visualize the tracklines, it turns out that Pythagoras stores the East/West hemisphere information in a separate column, so if we just plot the raw numbers, our whale tracks end up in the middle of a field in rural China! Hence, the rare ‘Chinese land whale’.  Now that we know the trick, it is not so difficult to fix, but we were quite surprised the first time it happened!

If you dont have your hemisphere correctly labeled, you end up in China instead of Oregon.
If you don’t have your hemisphere correctly labeled, you end up in China instead of Oregon.

Of course, that is not the only thing that has gone wrong with visualizing the tracklines.  When we first got to Graveyard Point survey site, it turns out that we had set our azimuth (our reference angle) the wrong direction from true north, so all our whales seemed to be foraging near the fish and chips restaurant in the middle of town.

If the azimuth is incorrectly referenced, you might end up on land instead of in the water.
If the azimuth is incorrectly referenced, you might end up on land instead of in the water.

After discovering that in order to rotate something 180degrees, you simply need to alter the azimuth angle by 90degrees, (we’re still not sure why this is working), the whales left the fish and chips to us and returned to the harbor.  Anyways, now that we’ve figured out these glitches, we can focus on identifying individual whales, and figuring out which track-lines might be repeat visitors.

Once all the kinks got worked out - the real trackline!  Dont worry, whale 60 did not go through the jetty, thats an artifact of the program wanting to draw straight lines from point a to b.  more likely we simply missed a surface as it transited around the point of the jetty.
Once all the kinks got worked out – the real trackline! Dont worry, whale 60 did not go through the jetty, thats an artifact of the program wanting to draw straight lines from point a to b. more likely we simply missed a surface as it transited around the point of the jetty.

In other outreach news, the OSU media department came out to the field and interviewed us a few weeks ago (on a day that the theodolite and computer were refusing to talk to each other due to a faulty connector cable – which is always delightful when one is trying to showcase research in progress). The resulting article has been posted should you wish to take a look:

http://oregonstate.edu/ua/ncs/archives/2015/aug/researchers-studying-oregon%E2%80%99s-%E2%80%9Cresident-population%E2%80%9D-gray-whales

More shallow sharking behavior
More shallow sharking behavior
Well known for having the shortest, toughest baleen of any of the great whales, here you can see the plates in its mouth!
Well known for having the shortest, toughest baleen of any of the great whales, here you can see the plates in its mouth!

Until next time,

Team Ro”buff”stus