Little bit of Kayaking, Lot a bit of Zoops

Eden Van Maren, Homeschool Student from Brookings, TOPAZ/JASPER High School Intern

Hey! I’m Eden Van Maren, an upcoming high school senior from Brookings. I am homeschooled and am taking electives at Brookings Harbor High School. 

Growing up in rural Oregon, the outdoors have always been more than just my backyard. It’s been both my classroom and my playground. When Oceana (the other high school intern) and I were homeschooled together as children, Fridays meant her mom would take us up the Chetco River. One Friday, we took our snorkels to observe mature salmon migrating upstream. I remember being so amazed by the size and quantity of the salmon, my young brain could not understand why such large fish would want to swim up to such a small area to lay eggs. The next year when we returned to try and see if the salmon would swim upstream again, we found only one salmon swimming around. This river became my classroom, planting my initial interest in science. 

However. Let’s be clear: Being outside in nature was never “all work, no play” – Definitely lots of play! Summers were filled with sunsets on the beach, some foggy day hikes, but most importantly kayaking on the river. I have many fun memories of waking up early on a weekend to pack food for a long day of kayaking in a tandem with my dad and a bunch of other friends. As I’ve gotten older, my passion for both the environment and science have only grown.

Fig 1: My dad and I kayaking with my dog on the Chetco River.

After going on a college tour at the University of Oregon in January, I suddenly started thinking that I should begin planning for college and future career options. On that tour, I met Ma’yet, the Youth Program Education Coordinator at Curry Watershed Partnership who had worked with Allison. Ma’yet was familiar with the TOPAZ/JASPER program run by the GEMM Lab and, while we were discussing possible summer opportunities in science, they suggested that I would be a great fit.  

In early March, when I discovered there would be someone from the program coming to present at school, I had already been scheduled to work a shift at Dutch Bros. I managed last minute to have one of my coworkers cover the last few hours of my shift so I would be able to get there. He arrived late, so I ran to get there on time, but I made it! Upon arriving, I sat down for the presentation, and, within minutes, Allison confirmed my desire to be a part of this program. I always knew that science is where I wanted to focus my studies. When I came across this program, I was very interested because it involved exciting outdoor activities while learning and experiencing scientific field work. I was thrilled to meet Allison in person to ask questions and share my enthusiasm about the project. 


Before working at the Port Orford field station, I had never given much thought to zooplankton. I had known they were the primary prey for whales, but other than that, I hadn’t considered that there was much else to think about. After starting the work associated with zooplankton on this project, I learned through Sophia how zooplankton can be affected by water temperature and kelp abundance, among other things. Along with learning more about zooplankton ecology, part of the program includes collecting zooplankton samples from 12 different stations (using a kayak) out along the Port Orford coastal area. On my very first training day of zooplankton sampling, I pulled up a ridiculous number of zooplankton in the net (much more than the last few seasons).

Fig 2: Me pulling up my first net of zoops! Look at all that zoop!

Once we return to the lab after a morning of zoop collection, we observe these samples under a microscope, identify their species, and count how many species we collected from each station. Just two weeks into our data collection, we have collected 4291 individual zoops, which already surpasses the total amount of zooplankton collected in 2023 and 2022 combined! That’s a lot of zoops! But how do we do it? 

In our team, I am considered the zoop expert, but I couldn’t do it without a handful of Welch’s fruit snacks and my playlist full of bangers. Zoop processing can be very tedious, but I really enjoy the peace that comes with finishing a giant sample by myself. I love being able to blast AJR in the background while ID’ing each zooplankton even though my team loves to tease me for it (but really, I’m totally putting them on). As I’ve gotten better at ID’ing zooplankton, I started brainstorming about what could help teach other interns in the future. Allison and Lisa, the previous TOPAZ/JASPER leaders, created very useful guides used to train me but I felt that there could be other interactive methods to help interns learn about zoop. Having used Quizlet in the past, I thought it would be a great resource to introduce the zooplankton basics to new interns, so I created an online Zooplankton Identification quiz!

Fig 3A & 3B: Me processing a giant sample of Atylus Tridens.

Despite having only completed three weeks of our data collection season so far, I have already learned so much! From waking up at 5:30 ten days in a row, to kayaking for four hours straight, to even counting 995 (not 1000!) zooplankton in one sitting, this internship has been amazing. It’s been a great introduction to working in the scientific field as many of the responsibilities we have been taught are completely new to me. I am excited to share this internship experience as I apply to colleges and add to my list of skills “Zoop expert.”

Fig 4: My favorite zooplankton! A Dungeness Crab Larvae.

“So, I hear you’re an expert in marine mammal ecology?”

Oceana Powers-Schmitz, Brookings-Harbor High School student, TOPAZ/JASPER GEMM Lab Project, MMI Oregon State University

Hi, I’m Oceana Powers-Schmitz and while I am not quite an expert in marine mammal ecology (yet!), I am quite the expert in bringing the team together through a clever game and a heartfelt laugh. One game I turned the team onto this summer during a team dinner was “So, I hear you’re an expert in ______.” Essentially, someone in your group provides you with a niche topic and someone else will have to then go on a spiel about it for at least a minute. One of the best ones I heard so far was when we were driving back from getting Langlois Market hot dogs (don’t knock it, till you’ve tried it). I tasked Eden with “So, I hear you’re an expert in the price of tea in China”. The most fun part of this game is how you have to think on your feet when the pressure is on. This skill is helpful during this internship because I have had to troubleshoot a lot in the field. One example of this was when the team had to rethink the mechanics of our zooplankton net because it was not collecting efficiently. We solved this problem by taking a trip to Gold Beach Lumber and attaching a washer to the bottle to weigh it down, allowing for more space to catch zooplankton within the bottle.

Fig 1: Zooplankton net (Left) with fishing weights in the bottle. Zooplankton net (Right) after removing weights and adding washer.

Although I’m definitely the best at this game, the team has shown some promise at getting better as we spend more and more time together. At the start of the internship, I watched the team make our share of mess ups (fortunately during training week!) such as not turning on equipment or losing the spare zooplankton net overboard. As the internship has progressed, it has been amusing to experience us getting a handle on all the new methods and protocols that come with the TOPAZ/JASPER project. For example, in the beginning, one of the most challenging methods to execute in the field is setting up the Theodolite on an unlevel cliff side. But now Celest and I have a competition to see who can set up and level the Theodolite the fastest. (If you ask her, we’re tied— but I’m obviously winning.)

Fig 2: Celest (right) and me (left) after I assembled the theodolite. (Celest thinks she’s winning.)

Afternoons in the lab are an enjoyable part of the day (for me at least) because it is a chance to relax after an eventful, physically demanding (and hopefully whale-filled) morning. After we break for lunch, I head to the kitchen to make my go-to: 4 slices of Oven-roasted Turkey, a slab of butter, pinch of pepper and salt (can’t be stingy with the salt) on two toasted slices of Buttermilk bread. Pro tip: food is best digested with a book; I’m on my third one.

Fig 3: The best post-field day lunch combo 🙂

The afternoon is also a chance to become closer as a team. From watching the GoPro bloopers to trying desperately to get Google Earth to work in order to check if we were “on station,” these afternoons are always fun. While this statement might be a hot take, I’ve really gravitated to data processing over zooplankton ID. For this project, data processing consists of inputting RBR data, visibility metrics, and going through each station’s GoPro footage into an excel sheet. This process is an important part of the long-term study of our Port Orford field site because researchers will be able to access and use this information. Using what we have collected, future studies may draw new conclusions or make important findings that can be published and add to our knowledge of the ecology of the local gray whales.

Though I am not yet an expert in the field, this internship has solidified the idea that I could become one in marine science. I’m glad for the hands-on experience this internship has provided and through this I feel confident in the fact that I would enjoy this career path. Over the next couple weeks, I can’t wait to introduce the team to more entertaining games to keep us on our toes while we wait for whales. I’m excited for each of us to return home saying “I’m an expert at GEMM Lab’s TOPAZ/JASPER Gray Whale Project.”

Fig 4: Locked in, listening to my favorite podcast, looking through RBR data.

*P.S. Here’s a great podcast to listen to when processing data, you can thank me later 🙂

Radio Lab Link

Getting to the Bottom of it

Sophia Kormann, NSF REU Intern in the GEMM Lab, St. Olaf College

Hello! My name is Sophia Kormann and I am an NSF REU intern this summer in the GEMM lab being mentored by PI Leigh Torres, Allison Dawn, and Clara Bird. I was introduced in last week’s blog as part of our awesome whale team (deemed “Team Protein”) working out of Port Orford. I am a rising senior at St. Olaf College where I am studying statistics and biology. One of my personal goals for this summer was to get to the bottom of what is next for me. A pretty small task if you ask me… I really want to figure out if research is the route I want to go within the intersection of these two subjects or if something else would be a better fit. When looking into internships I wanted to find something where I could analyze data and see how research works as a career first hand, but not be stuck at a desk all day. I pretty much struck gold with the GEMM lab.

This summer I get to participate in field work that involves ocean kayaking, tracking whales, and identifying zooplankton, while also conducting statistical analysis on data collected from the past two years of this decade-long project. In 2022, the TOPAZ project introduced a new sensor to the data collection procedures, the RBR concerto,which records for dissolved oxygen and temperature readings during a “cast” through the water column. My big task for the summer was to explore how temperature and dissolved oxygen affect zooplankton abundance data that were simultaneously collected via a GoPro during the 2022 and 2023 field seasons. 

Figure 1. Me (!) doing my first zooplankton sampling in our kayak R/V Robustus. 

My project involves modeling zooplankton abundance as a response to temperature and dissolved oxygen. The ultimate goal would be to be able to plug in the dissolved oxygen and temperature to an equation and get back an accurate prediction for the zooplankton abundance, but this is often tricky to do with data that has been collected from the field. I needed to get to the bottom of what causes a change in zooplankton abundance. After a lot of trial and error, I eventually determined that temperature and dissolved oxygen at the lowest depth of each cast has the best relationship with zooplankton abundance along the whole cast, and thus produce the most accurate predictions of zooplankton abundance from the model. I literally had to go to the bottom of the ocean to get to the bottom of the relationship. 

In hindsight, these relationships make a lot of sense for the Port Orford ecosystem. Ask anyone at the field station this summer and we can all tell you that it can be VERY windy here. This abundance of wind mixed with the shallow depths of the system make for very well mixed water, which means that there is little variation in the temperature and dissolved oxygen in the entire water column from the surface to the floor (Kämpf 2017).  The wind here causes an increase of upwelling, which is the process of moving surface water away from the coast and allowing for deeper water to replace it. This upwelling brings cold, nutrient dense water that is low on oxygen to the surface (Bograd 2023). Since this Port Orford ecosystem is so well mixed, the bottom is likely the most stable in terms of temperature and dissolved oxygen (Ni 2016). Therefore, it would make sense that this stability would then lead to a better prediction of zooplankton as it is less affected by other factors that could be affecting the zooplankton abundance such as wind speed, land temperature, turbidity and other variables that we did not take into account while modeling.

Figure 2. Functional response curves produced from a general additive model for zooplankton abundance in response to bottom dissolved oxygen (top left), bottom temperature (top right), and station (bottom).

Table 1. Zooplankton abundance is significantly affected by bottom dissolved oxygen and bottom temperature.

At this point during my summer. I have made a lot of progress in completing the data analysis and I also have made a lot of progress in getting to the bottom of “what’s next?” for me. Thankfully, this effort did not involve going to the bottom of the ocean, although I aced my kayak safety and basic life safety training since being here, so I would definitely be able to self-rescue even if I did end up there. Anyhow, one thing that helped me with this process is that I had the privilege of attending the Decadal Celebration for the TOPAZ/JASPER project. I got the chance to interact with so many people that had been in my exact place as an intern on this project over the last nine years. We discussed gap years, masters programs, and just got to hear about so many different pathways to current roles. There truly is no one “right way” to go from here. 

This internship experience also taught me that I really enjoy sharing what I have discovered in this research. Whether answering the “What are you doing?” questions we get almost everyday from tourists while we are doing cliff work, or creating templates of my code for future researchers to use, or teaching Leigh Torres Gen-Z slang over dinner (ask her what “I’m dead” and “Let him cook” mean… she knows now!), I have found out that I love sharing information with others.

Figure 3. Me teaching the other interns and our new team lead how to analyze the GoPro footage. 

Part of what has drawn me to statistics is the ability to turn a long string of data into an easily digestible graph for the general public. Being a part of this opportunity has allowed me to really figure out my interests and I have discovered a very genuine passion for making sense of the unknown through data analysis. With this experience I know I will be happy with whatever comes next for me as long as there is someone to share results with and a challenging question for me to get to the bottom of.

We have four more weeks of work for this field season which means more time on the ocean and hopefully more time with whales! I am very excited to see what the near future holds for me and what more we will be able to uncover this summer. With our community presentation in front of us, I am excited to share our summer with those in Port Orford. I also get to present my own research in our REU poster symposium. I look back on the almost six weeks that have already flown by with gratefulness for all I’ve already been able to learn and look forward to the next four weeks with excitement for what’s yet to be discovered.

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly message when we post a new blog. Just add your name and email into the subscribe box below.

Loading

References 

Bograd, SJ, Jacox, MG, Hazen, EL, Lovecchio, E, Montes, I, Pozo Buil, M, Shannon, LJ, Sydeman, WJ, Rykaczewski, RR (2023) Climate change impacts on eastern boundary upwelling systems. Annual Review of Marine Science 15

Kämpf, J (2017) Wind-driven overturning, mixing and upwelling in shallow water: A nonhydrostatic modeling study. Journal of Marine Science and Engineering, 5(4), 47. https://doi.org/10.3390/jmse5040047

Ni, X, Huang, D, Zeng, D, Zhang, T, Li, H, & Chen, J (2016) The impact of wind mixing on the variation of bottom dissolved oxygen off the Changjiang Estuary during summer. Journal of Marine Systems, 154, 122–130. https://doi.org/10.1016/j.jmarsys.2014.11.010 

Giving Ecologists Mega Muscles: Introducing the 2024 Port Orford Gray Whale Foraging Ecology Project Team, “Team Protein”!

Allison Dawn, Master’s alumni, OSU Department of Fisheries, Wildlife and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

In addition to honoring the decade-long legacy, this year is also special as I am co-leading “Team Protein” with Celest Sorrentino, incoming GEMM lab Master’s student. Now with four South Coast summers under my belt, I am beyond excited to get to share what I’ve learned with someone equally as passionate about immersive marine science education and mentorship. While I am teaching Celest how to prepare for weather-dependent fieldwork, lead a team of 5, shop on a budget, organize the lab, and more, I am also learning so much from her. I am especially grateful for her bright energy and unwavering positivity, which are skills that can rarely be taught yet have such a powerfully positive influence on the success of a field season. After just a week together I feel there is no one better suited for me to pass on the “GoPro/RBR torch” to and I know she will lead the project successfully into its next chapter.

Figure 1: Allison and Celest, on a particularly windy day, fully packed with gear and groceries, ready and excited to head to the South Coast Outpost!

That said, we still have 5 weeks before the 10th year has officially culminated, and it is my honor and pleasure to introduce you to the team who will be paddling us through this incredible milestone! Before I talk about each individual, I’d like to explain the inspiration behind our team name this year.

Every Port Orford field team gets to choose their team name, and we quickly settled on ours – “Team Protein”! After we spent a few days together, the five of us found we have at least two things in common: we all love exercise and to fuel up on protein. Between quick 2-3 mile evening runs, competitive pushups after dinner, yoga – on top of our kayaking and gear-carrying- and so much baked chicken, we are undoubtedly getting stronger together. 

In addition to this name describing the team well, we also have seen an increase in zooplankton abundance sampled during the first-week than in previous years. Because whale food seems to be prevalent this year, we all agree that this season’s whales will also be on “Team Protein”. We hope that means we will see strong, healthy PCFG whale visitors in the next several weeks!

Figure 2: Logo for “Team Protein”, created by NSF REU Sophia Kormann

So, who exactly are the brains and brawn behind Team Protein? First, we have team leader Allison (me!). I defended my master’s degree in June 2023 and loved the beauty and community of the South Coast so much I decided to stick around for one more adventure-filled year before moving on to begin my doctorate at Clemson University in South Carolina. There I will be implementing all the skills and lessons learned in the GEMM Lab into studying grassland bird habitat using remote sensing technologies. I am thrilled to get another year of leading this incredibly dynamic project, mentoring students, and obviously increasing my muscle mass before I move on from studying (gray) whales to (bobwhite) quails.

Figure 3: Allison stoked on great conditions for our first kayaking sampling training day

Next, we have our co-lead, Celest Sorrentino!

Figure 4: Celest, Allison, and Leigh grabbing a selfie before the awesome Decadal Party!

Name: Celest Sorrentino

School/year: Oregon State University, incoming master’s student 

What interested you in this project/what are you most excited for?

As an older sister of four, teaching and mentoring them has always been something I’ve loved to do and intended to hone my skills in as I pursued higher education. When the opportunity arose during a conversation with Dr. Torres last summer to be able to develop these valuable skills during my masters, I couldn’t be more excited. Now having completed just my first week here in Port Orford, I can totally understand the enamor Allison has shared for this project. I am excited to continue to learn from her as not only a lead for this project, but also from her own mentorship style that is both naturally impactful and unique. 

Our third team member is our NSF REU student Sophia Kormann. Stay tuned for her blog next week on the exciting project that she has been co-mentored by myself, Leigh and Clara.

Figure 5: Sophia enjoying the beautiful moonrise on the cliff site at the Decadal Party.

Name: Sophia Kormann

School/year: rising senior at St. Olaf College

What interested you in this project/what are you most excited for?

I was looking for something within biology research that would allow me to do a lot of analysis but wouldn’t just be sitting at a desk all day. And if you get the chance to whale watch everyday for the summer…you take it. I am the most excited to combine my interests in biology and statistics.

Next we have Eden Van Maren, who I met during a recruitment talk in Brookings. Eden immediately stood out as an enthusiastic and bright student.

Figure 5: Eden’s first zooplankton net sample had more amphipods than Allison had ever seen in the net!

Name: Eden Van Maren

School/year: I am homeschooled doing electives at Brookings-Harbor High School. 

What interested you in this project/what are you most excited for?

I was interested in this opportunity because of the opportunity to do scientific field work while getting to kayak on the ocean. I’m excited to learn about how ocean conditions affect zooplankton and how that impacts whale foraging.

Last but not least, we have Oceana Powers-Schmitz. Oceana is a passionate bookworm and impressive history buff. In addition to taking on this fieldwork internship, she is also teaching herself Algebra 2 in order to test out of taking the class next year.

Figure 6: Oceana finds a red urchin at Nellie’s Cove!

Name: Oceana Powers-Schmitz

School/year: Brookings-Harbor High School

What interested you in this project/what are you most excited for?

Getting actual research/lab experience as well as using it to see what part of science I’m interested in, and to hopefully have a whale-filled summer. 

Well, as a surprise to no one, we’re off to do some yoga. Tune into our Instagram takeover by following @gemm_lab on instagram for more real-time updates from “Team Protein”!

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly message when we post a new blog. Just add your name and email into the subscribe box below.

Loading

Intermittent upwelling impacts zooplankton and their gray whale predators

Allison Dawn, MSc, GEMM Lab graduate, OSU Department of Fisheries, Wildlife and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab 

The second year of my master’s flew by. Gone were the days of feeling new to graduate school. While I was feeling more comfortable navigating courses, balancing time at both Corvallis and HMSC campuses, and leading recruitment and logistics for the TOPAZ/JASPER field seasons, I certainly felt intimidated by my long, yet exciting, list of research goals I planned to accomplish in order to graduate in Summer 2023. Now, I am proud to say we have come a long way from my (overly ambitious) research proposal and simple Pearson correlations.

At this time last year, I had narrowed down a few key environmental factors to assess relationships between zooplankton in reef systems where PCFG gray whales feed and environmental variability. Even still, I was feeling frustrated at my preliminary analysis results that suggested upwelling had little to no impact on zooplankton abundance or whale foraging effort. This result was dissatisfying given what we know about the upwelling and the California Current System (CCS), so I wondered if my analysis approach, upwelling metrics, or both, were limited. However, thanks to the dedicated mentorship of Leigh, and an informal chat on the water with Aaron Galloway while dive tending for CamDO deployments, I was encouraged to dig even deeper into the literature (and subsequent debates) on the role of upwelling in the nearshore. After several inspiring meetings with the lab about our latest literature deep-dive, I reconfigured my initial hypotheses and charged ahead into the next phases of analysis with a different metric of upwelling than I had calculated before, which I will describe further below. While my final chapter includes a total of seven environmental factors that capture both broad- and fine-temporal temporal scales, for the purposes of this blog I will just share the result of the broad-scale impact of intermittent upwelling on both zooplankton abundance and gray whale foraging effort.

First, a brief recap on upwelling — during the spring and summer in the CCS, strong northerly winds push surface waters offshore, bringing cold, nutrient rich waters from the deep; which creates coastal upwelling. However, upwelling is not persistent. There are periods of time when these northerly winds relax, reducing surface water advection, and upwelling stalls. This relaxation period allows for nearshore retention of primary productivity, which permeates trophic levels with important nutrients. The alternation between upwelling and relaxation is called “intermittent upwelling”, and researchers are finding that the occurrence of relaxation periods are just as important as upwelling itself. Both support biophysical mechanisms that deliver and retain nutrients in the system.

For an example of intermittent upwelling in the CCS,  Figure 1 shows a northerly wind stress plot taken from a coastal buoy near our Port Orford study area during 2016. On the y-axis we have northerly wind stress, where positive values show less strong northerly winds, indicating downwelling favorable conditions, and negative values represent strong northerly winds, indicating upwelling favorable conditions. The x-axis is months over time. Here, you can see how in the winter downwelling prevails, but in the summer time we mainly have upwelling favorable winds. However, these summer periods are punctuated by positive values of wind stress, demonstrating that alternations between upwelling and relaxation occur several times throughout the spring and summer period.

Figure 1: Example plot of northerly wind stress plot taken from NOAA Buoy 4601 in 2016 (near our Port Orford, Oregon study area).

The role of upwelling intermittency has been explored in previous work and was posited as the Intermittent Upwelling Hypothesis (IUH) by Menge and Menge 2013. Figure 2, left, demonstrates this hypothesis in theoretical plots. In panel A we see that the rates of ecological processes such as primary productivity and prey response are maximal in at middle values of persistent upwelling and downwelling. In panel B. we see ecological processes positively increase with an index of upwelling intermittency. In Figure 2, right, the authors tested this hypothesis on chlorophyll-a and barnacle and mussel larval recruitment across several study sites and found the results did closely match theory.

Figure 2: Left, Intermittent Upwelling Hypothesis (IUH) theoretical plots showing predicted unimodal relationship between nutrient availability and prey response along a gradient between persistent upwelling and persistent downwelling (panel A) and the expected linear relationship between nutrient availability and upwelling intermittency (panel B); Right, Chlorophyll-a, barnacle, and mussel recruitment responses to an upwelling and intermittency index. Menge and Menge 2013.

Nearshore systems in the CCS, like the ones described in this Menge and Menge 2013 paper, are vastly understudied. And while there is a growing body of literature investigating the role of intermittent upwelling on various prey metrics (Mace & Morgan, 2006; Roegner et al 2007; Benoit-Bird et al., 2019) as well as cetacean movement (Ryan et al., 2022), to our knowledge no study has yet assessed the role of intermittent upwelling on nearshore prey availability and marine mammal occurrence.

To investigate the role of intermittent upwelling, we used the coastal upwelling transport index (CUTI) as our proxy for upwelling. Using daily CUTI values we generated a cumulative upwelling index and number of relaxation events for each year of the study (Figure 3.). This cumulative upwelling information was used to define the day of spring transition (ST) and end of the upwelling season for each year (2016-2021), following the upwelling phenological definitions from Bograd et al. 2009.

Figure 3: Summed running mean of Cumulative Upwelling Transport Index (CUTI) at latitude 42°N across years 2016-2021, initial data source https://oceanview.pfeg.noaa.gov/products/upwelling/cutibeuti

Using of five-year dataset we investigated functional relationships between each environmental variable and either zooplankton abundance or whale foraging effort using Boosted Regression Tree analysis (Elith et al., 2008).  Model results demonstrate that  for both zooplankton and whales, species occurrence is high at the intersection between moderate values of accumulated upwelling and with an increasing number of relaxation events. Overall, this work identifies intermittent upwelling as a primary driver of zooplankton abundance and gray whale foraging effort in a nearshore region of Oregon.

Winds in the California Current System are projected to get stronger with climate change, and if upwelling-favorable winds increase in duration and intensity, this could potentially threaten this balance between relaxation and upwelling. While these changes may mean greater primary productivity on some scales, how exactly this increase might affect the very nearshore regions and intermittent upwelling is unknown. Thus, research should continue long-term monitoring of nearshore areas to assist with adaptive management solutions in the face of environmental change.

Preparing this manuscript for my first-first author publication has been another new and exciting process. I feel so grateful for my time as a Master’s student in the GEMM Lab, and for the support of my lab mates, the HMSC community, family, and friends who cheered me on each step of the way to the finish line.  

Figure 4: Toasting to a successful master’s defense seminar with GEMM Lab mates, friends and family.

Did you enjoy this blog? Want to learn more about marine life, research, and
conservation? Subscribe to our blog and get a weekly message when we post a new
blog. Just add your name and email into the subscribe box below.

Loading

References

Benoit‐Bird, K. J., Waluk, C. M., & Ryan, J. P. (2019). Forage species swarm in response to coastal upwelling. Geophysical Research Letters, 46(3), 1537-1546.

Bograd, S. J., Schroeder, I., Sarkar, N., Qiu, X., Sydeman, W. J., & Schwing, F. B. (2009). Phenology of coastal upwelling in the California Current. Geophysical Research Letters, 36(1).

Curtis Roegner, G., Armstrong, D. A., Hickey, B. M., & Shanks, A. L. (2003). Ocean distribution of Dungeness crab megalopae and recruitment patterns to estuaries in southern Washington State. Estuaries, 26, 1058-1070.

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of animal ecology, 77(4), 802-813.

Mace, A. J., & Morgan, S. G. (2006). Biological and physical coupling in the lee of a small headland: contrasting transport mechanisms for crab larvae in an upwelling region. Marine Ecology Progress Series, 324, 185-196.

Menge, B. A., & Menge, D. N. (2013). Dynamics of coastal meta‐ecosystems: the intermittent upwelling hypothesis and a test in rocky intertidal regions. Ecological Monographs, 83(3), 283-310.

Oestreich, W. K., Abrahms, B., McKenna, M. F., Goldbogen, J. A., Crowder, L. B., & Ryan, J. P. (2022). Acoustic signature reveals blue whales tune life‐history transitions to oceanographic conditions. Functional Ecology, 36(4), 882-895.

Roegner, G. C., Armstrong, D. A., & Shanks, A. L. (2007). Wind and tidal influences on larval crab recruitment to an Oregon estuary. Marine Ecology Progress Series, 351, 177-188.


Ryan, J. P., Benoit‐Bird, K. J., Oestreich, W. K., Leary, P., Smith, K. B., Waluk, C. M., … & Goldbogen, J. A. (2022). Oceanic giants dance to atmospheric rhythms: Ephemeral wind‐driven resource tracking by blue whales. Ecology Letters, 25(11), 2435-2447.

Embracing Failures for Personal and Professional Growth 

By Autumn Lee, Mount Holyoke College rising senior, GEMM Lab REU Intern 2023

Hello! My name is Autumn Lee, and I am a GEMM lab REU student this summer being mentored by Allison Dawn and Dr. Leigh Torres! I am a rising senior at Mount Holyoke College studying Neuroscience and Behavior, focusing on coastal and marine science. It has been a pleasure working with the GEMM Lab this summer, and I have enjoyed learning more about the field of research before I graduate. 

As part of the research experience for undergraduates (REU) program, I am doing an independent project this summer in addition to our intense fieldwork for the TOPAZ project. I am working with the CamDo underwater video data that the GEMM Lab has collected since 2020. You can read Allison’s recent blog post to learn more about our CamDo underwater housings. Over the previous seasons, scuba divers have deployed our CamDo’s in our two study sites near Port Orford Titchener Cove and Mill Rocks on a weekly schedule of collection and redeployment. My project focuses on developing a methodology for examining the interactions between zooplankton prey and marine predators, and to quantify zooplankton density from the swarms seen on camera. Even though I hope my project’s success will contribute to the field, embarking on new method protocols always carries a risk of failure. Science tends to focus on successes; only in the footnotes do we hear about failures, wrong turns, and forgotten ideas. However, failure is how research advances; and with scientists who are brave enough to take that first step and humble enough to accept and reflect on failure.

Figure 1: Team prepping CamDo setup for deployment 

In the past, I have learned to troubleshoot computer software and lab equipment. However, there were already protocols in place, and my research contributions were part of another student’s pre-defined project. Unlike my previous research experience, for my REU project, I had to learn how to use unfamiliar software, set achievable goals, overcome obstacles, and devise a plan to accomplish them without relying on a team of peers. This is a project Allison and I have been working on together outside of field work, but we have not been without support. Both Victoria Hermanson, a Biological Science Aid with the Antarctic Ecosystem Research Division, and Suzie Winquist, a graduate student at the Marine Mammal Institute, have inspired and guided us through using VIAME for our research questions.

Taking that leap into uncharted waters, we chose to work with two software programs that were new to me called VIAME (Video and Image Analytics for the Marine Environment) and ImageJ. Our goal was to utilize VIAME so that it could distinguish between zooplankton or predators in our CamDo videos (from the hundreds of unannotated frames) and then use ImageJ to quantify the density of zooplankton in those identified frames. Although it has been exciting to use this software that uses Artificial Intelligence (AI) to track and detect prey and predator interactions in video footage, we have encountered many challenges along the way. Within 10 weeks, we had to learn this new software, train it to identify zooplankton and predators, and calculate density using classified frames that we would train. When tackling such an ambitious project in a limited time frame, we expected some setbacks, and through the advice of experienced professionals and the support of Allison (as well as a healthy dose of self-determination), we were able to gain success by breaking down the project into smaller tasks and using trial and error to fix any issues that arose.

Figure 2: Photo of Allison and myself working together to problem solve a VIAME error 

Although we have had some failures along the way, we have accomplished a lot, and I am eager to share some results with you. First, we developed and fine-tuned a workflow in VIAME to use AI to identify zooplankton prey and predators in our CamDo videos.

Figure 3:  Screenshot of VIAME program that illustrates how we trained a model to identify zooplankton prey (yellow boxes) and fish predators (blue box) in the CamDo videos. 

 In addition, we implemented a workflow in ImageJ (another software program designed to process and analyze scientific images) to quantify zooplankton density from frames identified by VIAME with zooplankton. Even though it took a lot of trial and error, our primary objectives were met, and we learned a great deal for future GEMM projects.

Figure 4: An example processed output image depicting how ImageJ  recognized bodies of zooplankton (black outlines) and counted individual zooplankton ( red dots). 

While working on my independent project, I learned that an ability to troubleshoot software and data processing can apply to tricky field work situations as well. For instance, when we lost a weighted cage attachment that protects our RBR concerto sensor, we needed a temporary solution until the divers recovered  our lost gear. So our team discussed a few different DIY options. After a frantic afternoon of trial and error, we ultimately decided on using a milk jug as a temporary cage. While it wasn’t the most glamorous solution, the GEMM lab is known to think outside the box as a fundamental part of both the fieldwork and research process. 

Figure 5: Photo of Allison testing out our RBR milk jug temporary setup 

I have found through this experience that sometimes it is more valuable to struggle and learn skills than to immediately succeed. I am hopeful that this lesson has prepared me for my future, and I couldn’t be more grateful. It has been an interesting summer for me as far as adapting to failures and embracing them. It was a difficult transition leaving my new friends at Hatfield in Newport where I spent my first 4 weeks and embracing an entirely different living dynamic here in Port Orford. With the field season and my research approaching its end, I realize how much I appreciate all the new people I have met here. Before this summer, I had not had many opportunities to interact with similar and enthusiastic marine scientists. Now I live and work with marine science mentors and peers in the field every day, which has been an invaluable experience, and I am grateful for the opportunity to learn from and interact with these inspiring people. It has been a meaningful summer, and I look forward to continuing to build relationships and learn from my failures during this next phase of my life. 

    Figure 6: Photo of Zoop Troop, from left to right Natalee, Autumn, Allison, Jonah, Aly 

Did you enjoy this blog? Want to learn more about marine life, research, and
conservation? Subscribe to our blog and get a weekly message when we post a new
blog. Just add your name and email into the subscribe box below.

Loading

Accurate and Precise: Learning how to track a focal species

By Jonah Lewis, rising junior at Pacific High School, GEMM Lab Intern 2023

Hello, I’m Jonah Lewis, the other high school intern for the TOPAZ/JASPER Project. I am a rising junior for Pacific High School in Port Orford. I am interested in many things, including computer sciences, electrical sciences, different types of engineering, and lately, marine biology. At the end of February, my biology teacher, Hilary Johnson, was looking for high schoolers to join this internship and I decided that it could be a great experience for me. I applied, and somewhere in March, before I knew it, I was being interviewed by Allison Dawn, our Zoop Troop Sergeant, and Leigh Torres, the head of the operation. I was so nervous for my interview, and tried my best to do well. Then on March 31st, I saw the job offer email, and my family and I were overjoyed. Now that we are in our fourth week, I can say the people and the experiences have been amazing, but my favorite part of all has been the cliff site and the adrenaline rush of tracking a whale moving across the ocean.

Figure 1: Jonah smiles after fixing a whale using the theodolite. 

Theodolite is an important aspect of this research project. This instrument was invented by Leonard Digges back in the 1550’s and is a highly accurate instrument for mapping, engineering, etc. Read here to learn more about the theodolite’s component parts, written by last year’s intern Nichola Gregory, a previous JASPER intern. In Port Orford, we use it for tracking where a gray whale blows and surfaces! Setting up the theodolite can be a challenge for newcomers, but as you repeatedly put this device together, and then take it down, you understand and can troubleshoot better and faster than the previous time. It took me and the team some practice to be able to get all three ways it needs to level just right, or else the instrument decides to throw a fit. For example, when the theodolite isn’t exactly leveled right, or maybe the batteries are low, or the cord just isn’t plugged in all the way, it will just beep at you, trying to say there is an error. After the theodolite is properly leveled, you connect it to the computer that runs our software program called Pythagoras.

Not only does the physical setup require care, but “fixing” a whale requires technique. Here, we are trained to be both accurate and precise when following our focal species. To be accurate, we would need to position the theodolite scope so that the whale is close to the crosshairs. To be precise, we need to fix the whale in the same location on the theodolite crosshairs consistently. Our team has learned how to be both accurate and precise.

Figure 2: Accurate and precise diagram using the crosshairs of a theodolite as reference, diagram by A. Dawn.

Being on cliff team can get tedious, even when you are not using the theodolite to fix a whale. Staring at the waves and the horizon can feel like an eternity, especially when gray whales aren’t active in our study area. Yet, during this time we have to be “on effort”. Being on effort is making sure you scan the horizon consistently, both you and a partner are constantly looking at our study sites. All this is best represented by our team manager Allison: On the cliff with her, she is always looking at the ocean, paying attention to both sites, and for at least the first hour or longer, she will not sit down. 

Figure 3: Kelp bed behind the jetty while a whale flukes in the background.

After we collect all of our data from kayak and cliff each day, we head down to the dry lab and get prepared to download and transfer our data to a hard drive known as “Tharp”. I learned that Marie Tharp was a woman in the 20th century, who mapped the ocean floors, which helps scientists even now. (The GEMM Lab names each hard drive after famous scientists; it helps to track the many hard drives.) When I use the hard drive, I think about her and about how I also helped collect data for mapping features in our marine study site. During the first week of data collection, Allison and I looked through the theodolite scope, found obvious kelp patches on the surface of the water, and fixed many times around the edges, making a complete polygon around the kelp beds. 

Figure 4: Team bonding at the Prehistoric Gardens in Port Orford

This internship for the past four weeks has been an amazing experience. In addition to our fieldwork, I’ve been able to participate and connect with many other interns and professionals here at the Field Station. I have also enjoyed connecting with visitors from all different areas who come by and ask what research we’re doing on the cliff.  At the field station I have fun hanging with the guys at the house as well, where we play sports in our downtime and cook together. I also learn about what projects they are doing, from urchin culling to sea otter research, it all fascinates me. I have helped POSS (Port Orford Sustainable Seafood) with bagging fish, washing dishes, and in return they provide samples of the amazing food they make. I am overjoyed about what I have learned and the people I have met during this experience, and am so thankful to be a part of the ninth year of this project.

Did you enjoy this blog? Want to learn more about marine life, research and conservation? Subscribe to our blog and get weekly updates and more! Just add your name into the subscribe box below!

Loading

Diving into new experiences

By Natalee Webster, Oregon State University rising senior, GEMM Lab Intern 2023

When I was younger, I was terrified of the water, sobbing on a rock across the river, afraid to be immersed in the unknown. Flash-forward to the present and I have one more year left to finish my undergraduate degree in Biology at Oregon State University with a focus in Marine Biology. I was a little hesitant about choosing a more focused degree since I wasn’t sure what aspect of sciences piqued my interest more. However my curiosity for the ocean grew as I took the PADI Open Water scuba class through school. After earning my certification, I discovered I loved being in the water, and seeing the habitats I read about firsthand. I quickly took my Advanced Scuba and worked my way up to Divemaster, and ultimately AAUS Scientific diving. This new certification provided me with skills for a career in marine biology, performing tasks and taking surveys underwater. Through the diving community at OSU, I met Allison Dawn, our graduate student leader of the TOPAZ/JASPER project studying gray whale foraging ecology. Through meeting her I was informed about this project and decided to apply. Now, as I write, we are working on week three of this project, and I could not be happier with my decision. This internship has already taught me so much about the hard work and logistics that goes into studying the behaviors of large marine mammals in the field, as well as what it is like to closely work with a team to accomplish our goals.

Figure 1. Port of Port Orford at dawn.

Each morning we wake up before the sun with a new set of goals, with a variety of tasks ahead that certainly keeps you on your toes. Long-time readers will know of our kayak and cliff methods, but another aspect of this project is our CamDo underwater cameras. These are cameras that we place in Mill Rocks and Tichenor Cove, our two sampling sites, for a week at a time for longer term footage. In order to deploy these cameras we utilize scuba equipment to properly place them in a location. When the week is up, we go to recover the cameras to gather the data, replace SD card and batteries, and reset them for another week of underwater video footage. 

Although CamDo deployment is not a required part of this internship, I have been able to use my scientific diving certification to assist this project on the dives. I appreciate the opportunity to take apply skills to assist the project from a different perspective. Before my first week here I had never dove off the Oregon coast from a boat, so this task was daunting, as I was still getting to know everyone around the field station, and get a sense of my environment.

Figure 2. Photo of Natalee geared up for a dive in Mill Rocks. 

Our very first dive at Mill Rocks was intimidating but exciting. Allison and I got up before dawn to prepare the cameras and get to the dive boat the Black Pearl. Allison is our dive tender, handling equipment and logistics, and we worked alongside two other divers — Caroline Rice, an intern with ORKA here at the Port Orford field station, and Kevin Buch, our dive leader and the dive safety officer and scientific diving professor at OSU. Once we rolled off the boat and started our descent I began to feel more in my element as the green waters surrounded us. As we continued further and further to the ocean floor, I realized that visibility was turning from a green you could see rays of sunlight through, into a dark black — barely visible further than five inches from my face. We were able to position the camera lander as needed, but we could not secure the camera because of those black-out conditions. While I waited in the waters for direction on the dive, I put my face as close to the rock as the tides would let me and I saw a purple urchin underwater for the first time, and let me tell you, in the dark waters it was eerie. We finally surfaced and got on the boat to venture off to Tichenor Cove in an attempt to deploy the other CAMDO. Here, I realized that despite the best preparation, scientists need to remain adaptable and determined in the face of challenging ocean conditions.  

Figure 3. A screenshot of CAMDO footage showing fish swimming in the water column.

As we prepared for the next dive and began our descent, I silently wondered what I had gotten myself into. I hoped that not all dives off the Oregon Coast were as dark. While slowly descending into Tichenor Cove, I was pleasantly surprised to see that the waters were beautiful in contrast to the darkness of Mill Rocks. Tichenor seemed to be a safe haven in comparison to Mill Rocks; rather than the strong current pushing me along the rocks and urchins, I was able to calmly swim through the rocks and look at the many sea stars, nudibranch, anemones, and different hues of purple urchins living along them. 

Figure 4. Photos taken from GoPro of Tichenor Cove environment, showing rockfish, urchins, and an anemone. 

More recently, we recovered the camera for data processing. While comparing the footage between the two locations, I have learned the ocean is incredibly variable. From clear blue waters where you can clearly see juvenile and adult fish swimming in the water column, compared to nothing but murky brown and black waters. This variability inspired me to think more deeply about what the gray whales see while they forage for food. Dr. Leigh Torres visited our team and I was able to discuss our dives and inquire about the methods these whales use in order to eat. My basic knowledge of whale anatomy tells me that they have eyes; however, I was curious if they used eyesight to locate zooplankton and other food. Leigh informed me that these whales have whiskers! This was an exciting discovery for me, I googled it later and found that gray whales and many other baleen whales have hair follicles, called vibrissae (watch this NOAA video to learn more!), around their rostrum and mouth they use as tactile sensors. Leigh Torres has hypothesized a “sense-of-scale” that illustrates an interchange of sensory modalities such as vision, audition, chemoreception, magnetoreception and somatosensory perception that allows whales to track and capture of prey (Torres 2017). Research in this sensory field continues to grow to better understand how marine mammals  capture and track prey at various scales.

Figure 5. Image of a gray whale, the spot markings along its jaw and rostrum are hair follicles known as vibrissae. (2016)

Seeing these small segments of their habitat myself while underwater has given me much more respect for how these gray whales are able to forage in such a challenging and changing environment. My teammate Autumn is currently working on quantifying the zooplankton abundance recorded in the footage taken through CAMDO, so stay tuned on the Port Orford blogs to hear more about their project!

Figure 6. Photo of Aly, Natalee, and Autumn before kayak training. Honorable mention to the bucket hats. 

The opportunity to participate in this year’s Gray Whale Foraging Ecology project is something I will not take for granted and will appreciate greatly for years. It has given me the opportunity to grow my knowledge about the marine environment that I have been fascinated with, as well as given me skills and training in methods of field research. I  even got to apply my hard-earned underwater skills and conduct my first official scientific dives! I have been able to interact with the long-time locals of Port Orford, whether it be a fisherman sharing their orca encounter tales to retired photographers that chase the whales along the shore. The field station houses many projects focusing on different aspects of the Oregon coast from sea urchins and kelp to river otters along the shores and to outreach programs within the community. When everyone is settling back into the field station after their long day of work, it is great to be gathered in the kitchen and hear about the progress we’ve made and the experiences we’ve had. I look forward to the remaining three weeks I have in Port Orford with this community and my team! Wish us luck as we prepare to deploy the next round of CamDo cameras next week.

Did you enjoy this blog? Want to learn more about marine life, research and conservation? Subscribe to our blog and get weekly updates and more! Just add your name into the subscribe box below!

References

Torres, L.G. (2017), A sense of scale: Foraging cetaceans’ use of scale-dependent multimodal sensory systems. Mar Mam Sci, 33: 1170-1193. https://doi.org/10.1111/mms.12426

What pushes whales north in the Baja. (2016). iTravel Cabo. Retrieved August 7, 2023, fromhttp://www.itravel-cabo.com/news/cabo-news/what-pushes-whales-north-in-the-baja.

How to be a Zooper Trooper: Getting Comfy with the Uncomfortable

By Aly Covey, Marshfield High School student, GEMM Lab Intern 2023

Hello, everyone! My name is Aly Covey and I am a rising senior, one of two high school interns part of the  TOPAZ/JASPER project this summer. I have the pleasure of introducing the team name for this year. We came up with our name not too long after meeting each other last week, when our team member Autumn started calling the zooplankton samples we collected  “zoop soup”, which then led us to call our team the “zoop troop” (because it rhymes!). We had some other contenders for names, but none of them felt just right. I think this is because Zoop Troop has begun to mean more to us than just the convenient rhyme. We’ve all heard the phrase “being a trooper”, which describes someone who overcomes their struggles and we certainly have embodied that in each task, where we have demonstrated resilience in the face of specific challenges and pushing forward despite discomfort both mentally and physically.

Figure 1: Logo for this year’s team name, created by Autumn Lee.

As a team, we have bonded over this quality of resiliency, and quickly became close during our first week. We go on routine sunset beach walks where we look at interesting sand fleas, baby shrimp, and bring back pocket-fulls of shells and beach glass. As well as our group meals that always lead to fun conversation and a warm, family, feel. Personally, I have enjoyed getting to know everyone on the team and seeing their unique skills. Since the first day, Jonah has constantly been trying to help cook and clean for Zoop Troop whenever he can. Natalee and I have bonded over our daily need to find time for a quick cat nap. We usually find Autumn working on her individual research project in the kitchen. And of course, Allison has earned the name of “Whale Mom” because of her dedication to taking care of the team’s needs outside of the daily training and being the best mentor to all of us. 

Over the last two weeks of training, I learned all the new technology and protocols the team needs to successfully use the gear for our research. Allison has been such a huge help teaching us the in’s and out’s of everything while still letting us make mistakes and allowing us to learn from them. So far, I feel confident in all the things I have learned. That said, I still wonder what it will feel like out in the field without a supervisor helping when something goes wrong. Allison has given us a few “non-data collecting” days to feel out the scene without her there and so far I, and whoever I’m working with that day, seem to be feeling fairly satisfied in our skill level, and it has been a nice opportunity to help each other when needed. 

Figure 2: Team prepping CamDo for deployment underwater

For me, it has been uncomfortable allowing myself to fail at certain tasks and having to restart from the beginning to get it right the next time. Patience is such an important skill needed for the work we do everyday. It’s very exciting to feel myself slowly start enjoying the idea of “trial and error” as I lean into all the new information we have absorbed these past few weeks. 

Although it is frustrating at times, I believe the team does a great job of creating a fun environment for each other while still being able to slow down and take in all the small details needed for each new task Allison teaches us. This experience has shown me that in order to persevere, you need to get comfortable with the uncomfortable.

Figure 3: Aly and Natalee learning kayak sampling skills

While completing tasks on my own, I am vigilant to catch errors and run over each protocol in my head multiple times before going out into the field. For example, our theodolite is a very important but delicate piece of equipment we use on the cliff to track and fix on the whales we see out in the water. It is incredibly tedious to set up Theota (our nickname for the theodolite) in a sufficient amount of time without messing up the leveling, cords, or measuring needed to properly run the program. During training, we get up to the cliff around 8am and are able to take as much time as we need to correctly level, connect the telescope to the computer, and reach each fix point without feeling rushed. However, during a “real” workday, we are up on the cliff as early as 6am, held to a standard of having all our gear fully charged and ready to go for the day, as well as being able to efficiently set everything up and ready to watch the whales and be the safety watch for kayak team. The first few times I put up Theota, I got very annoyed with having trouble leveling out everything, but after my 4th or 5th set up, I was feeling very confident in my ability and also being able to quickly move from one place to another to fix on something out in the water. 

Figure 3:  Aly fixing on a whale through the theodolite  

Like cliff site tasks, on-the-water protocols call for adaptability when things get rough; and the kayak is, in my opinion, more rigorous in protocol requirements, with much more room for error than the cliff work. This is likely because of the many types of gear we use while sampling from the kayak: we conduct visibility measurements, RBR Concerto and GoPro deployments, zooplankton net sampling — all while navigating in tricky ocean conditions. During our training, Allison took us out in the morning and taught us each how to properly navigate with the GPS and use all the sampling equipment like a pro. While it was a nice opportunity to double check everything with her, I knew going out without her wouldn’t be so easy. My first morning without Allison’s support, I had to redo multiple stations but was able to correct myself and learn from my mistakes. 

It is incredibly tiresome, but so rewarding to go out in the field early in the morning and come back to the lab in the afternoon with a tote full of new zooplankton samples or pictures of high-quality whale flukes to show everyone. The protocols in the lab are extensive, but the team has done a great job of taking tasks into their own hands and finishing processing data on their own accord.

Figure 4:  Zoop Troop on a beach walk 

So far, this internship has been an incredible opportunity for me, not just in my career but also in my personal life. I have learned so much from my team, everyone staying in the field station, and all the amazing people that I’ve had the pleasure to meet in the community. It has been so intriguing to learn about another small town in my home state of Oregon and compare all the similarities and differences from my home, Coos Bay. I’m so excited for what is to come in these next 4 weeks of research and for the team to keep you all informed. Having another summer to learn about the Pacific Ocean and solidify my love for marine life is such an endearing opportunity and I’m very grateful. I’m most excited for the first day I am able to complete all 12 sampling stations with ease. I believe my skills will continue to improve and I don’t expect any day to be dull working on this project. 

Zoop Troop team member, Aly, signing off!

Did you enjoy this blog? Want to learn more about marine life, research and conservation? Subscribe to our blog and get weekly updates and more! Just add your name into the subscribe box below!

Updates from the 2023 Port Orford Gray Whale Foraging Ecology Project (team name TBD!)

Allison Dawn, Master’s student, OSU Department of Fisheries, Wildlife and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

Greetings from the South Coast Outpost, aka the Port Orford Field Station! Long-time GEMM lab blog readers will know that by this time of the year, our TOPAZ and JASPER projects are fully underway. We have officially entered our 9th consecutive year of these two integrated projects, which provides experiential learning internships to high school and undergraduate students while conducting long-term monitoring of gray whale foraging ecology in our small study region.

Much like last year, the Port Orford Field Station is at full capacity, with our team of five plus six other NSF REU, MSI, and Sea Grant interns. The research efforts here span a wide-range of subjects, including the long-standing ORKA kelp-urchin monitoring projects, river otter predation, science communication initiatives with the Redfish Rocks Marine Reserve, and more. This diversity in subject matter makes for excellent discussion during our communal dinners, and keeps the field station’s labs bustling with a variety of samples, gear, and equipment being transported in-and-out on a daily basis. Needless to say, it is a thriving environment for young scientists who are passionate about the community and ecosystems of the southern Oregon Coast. 

This is my third year participating in the project, and my second time as the solo graduate team leader. After having defended my master’s thesis this past June, I have been so excited to return to this incredible study site and share what I have learned about the system here with a new group of interns. I will write about my thesis work in a separate blog soon, but for now, I’d like to introduce you to the excellent group of motivated students that are on the team this year!

Figure 1: Autumn draws a pyramid while learning the equation for estimating zooplankton patch density, as provided in Hermanson, 2019.

First up, we have Autumn Lee.  Autumn is one of the GEMM Lab’s three REU students and together we are diligently working to automate the detection of zooplankton and predator occurrence from our in situ underwater cameras using the program VIAME. We hope to describe the predator-prey dynamics in Port Orford and a new, calculated metric for zooplankton patch density. Autumn moved to Mount Holyoke College, MA after celebrating their high school graduation with a drive-through commencement in Spring 2020. Despite the challenging start to undergrad due to COVID, Autumn is now a rising senior with a major in Neuroscience and Behavior with a certificate in Coastal Marine Sciences. Initially Autumn wanted to be a neurosurgeon or do veterinary medicine, but has always loved the ocean. After taking a few marine science classes back home, they decided to apply for our REU project in hopes of gaining their first marine science fieldwork experience. Autumn is excited to connect with like-minded students, the community, and volunteer with Port Orford Sustainable Seafood with the goal of consuming as much fresh, local seafood as possible in these six weeks.

Figure 2: Natalee beams after having captured two separate whales on camera for the first time.

Next on our team is Natalee Webster! Natalee is originally from St. Helens, OR and has her associates degree from Portland Community College. Natalee was on a nursing track but slowly accumulated environmental and marine biology classes that led her to obtain her first SCUBA diving certification. After this, she was hooked and decided to major in biology with a focus in marine biology. Now, Natalee has earned both her dive master and AAUS scientific dive certifications, and has already helped us deploy our underwater in situ cameras. Like Autumn, Natalee is excited to get involved with the community, meet other interns, and get her first scientific fieldwork experience. In addition to her water sport skills, she is already quite a natural at taking photos from the cliff site.

Figure 3: Aly enjoying a sunny morning on the cliff site with our high-powered binoculars.

Aly is a rising senior at Marshfield High School in Coos Bay, Oregon where her favorite subject is science. In particular, her favorite class is AP environmental where she first learned how to read dissolved oxygen graphs and was fascinated by how this metric can describe water quality for public health considerations. As of now, Aly is considering several colleges, including Oregon State University, with aspirations to major in marine science. Interestingly enough, she used to be afraid of the water. Despite this fear, and being the intrepid person she is, Aly taught herself how to surf during COVID and has since found a new-found respect for the ocean — so much so that she is now ready to make marine conservation her career. Aly is excited for our kayak training session next week and is ready to get in the water to start collecting zooplankton samples. Aly has had a consistently positive attitude during training week, even when learning the most tedious tasks, and can always make our team laugh. 

Figure 4: Jonah poses near Port Orford Sustainable Seafood while listening to the Junket audio tour of the town. 

Jonah is a junior at Pacific High School here in Port Orford where his favorite classes are math and woodshop, and he also loves to get involved in sports such as track and field, soccer, and basketball. As a freshman, Jonah took a 3-D printing class which affirmed his desire to learn more engineering techniques. While considering a summer job, Jonah was excited to watch our recruitment presentation and learn that he could use specialized equipment for marine science applications. He is now considering Oregon State University and Oregon Institute of Technology for his undergraduate career. Jonah has been a quick learner with excellent attention to detail, and is also an excellent cook — which myself and the others are grateful for. He is excited to spend more time on the cliff and wants to perfect his theodolite techniques to track whale movements.

Figure 5: First team photo! We were all very excited and grateful to have been greeted by two whales on our first day together.

In just this first week, we have deployed underwater cameras, tracked multiple whales in one day from the cliff, obtained Basic Life Safety/CPR certifications, and practiced kayak sampling methods from the dock. Next week, we have our kayak safety training, and will have many more days of practicing the cliff and kayak methods before we jump into official data sampling days. I know the team is just as excited as I am for the rest of the season, especially because of this increase in whale activity. It is heartening to see so many whales after our low occurrence year in 2021. Stay tuned for more updates, including what we decide for this year’s team name!

Did you enjoy this blog? Want to learn more about marine life, research and conservation? Subscribe to our blog and get weekly updates and more! Just add your name into the subscribe box below!