Are Oregon gulls trash birds?

By Stephanie Loredo, MSc student

“Violent” and “greedy” are words often used to describe gulls in populous areas where food or trash are readily available.  Humans are used to seeing gulls in parking lots, parks, and plazas eating left over crumbs. Many people have even experienced menacing gulls ripping food away from their hands. Anecdotes like these have caused people to have negative perceptions of gulls. But could the repulsive attitude towards these birds be changed with evidence that not all gulls are the same? Well, Oregon may be home to an odd bunch.

Last year, the Seabird Oceanography Lab in conjunction with the GEMM Lab began putting GPS trackers on western gulls (Laurus occidentalis) off the Oregon Coast. One of the goals was to determine where gulls scavenge for food while raising chicks: at sea or on land in association with humans. We were particularly interested to see if western gulls in Oregon would behave similarly to western gulls in California, some of which make trips to the nearest landfill during the breeding season to bring not only food but also potentially harmful pathogens back to the colony.

During the 2015 breeding season, 10 commercially brand ‘i-gotU’ GPS data loggers were placed on gulls from ‘Cleft-in-the-Rock’ colony in Yachats, Oregon. The tags provided GPS locations at intervals of two minutes that determined the general habitat use areas (marine vs. terrestrial). After a two-week period, we were able to recapture six birds, remove tags, and download the data.   We found that these western gulls stayed close to the colony and foraged in nearby intertidal and marine zones (Figure 1). Birds showed high site faithfulness by visiting the same foraging spots away from colony. It was interesting to see that inland habitat use did not extend past 1.3 miles from shore and the only waste facility within such boundaries did not attract any birds (Figure 1). Tagged birds never crossed the 101 Highway, but rather occurred at beaches in state parks such as Neptune and Yachats Ocean Road.

Figure 1. Tracks from 6 western gulls, each color representing a unique bird, from the Cleft-in-the-Rock colony carrying micro-GPS units.
Figure 1. Tracks from 6 western gulls, each color representing a unique bird, from the Cleft-in-the-Rock colony carrying micro-GPS units.

While it is hard to determine whether gulls avoided anthropogenic sources of food at the beach, preliminary analysis shows a high percentage of time spent in marine and intertidal habitat zones by half of the individuals (Figure 2). At a first glance, this is not as much as it seemed on the tracking map (Figure 1), but it nonetheless confirms that these gulls seek food in natural areas. Moreover, time spent at the colony is represented as time spent on coastal habitat on the graph, and thus “coastal” foraging values are over represented. To get a more exact estimate of coastal habitat use, future analysis will have to exclude colony locations and distinguish foraging versus resting behaviors.

Figure 2. Bar plot of the percentage of time spent in three distinct habitats for each gull carrying a GPS unit. The three-letter code represents the unique Bird ID.
Figure 2. Bar plot of the percentage of time spent in three distinct habitats for each gull carrying a GPS unit. The three-letter code represents the unique Bird ID.

‘Cleft-in-the-Rock’ is unique and its surroundings may explain why there was high foraging in intertidal and marine zones rather than within city limits. (The Cleft colony can also be tricky to get to, with a close eye on the tide at all times – See video below).  The colony site is close to the Cape Perpetua Scenic Area and surrounded by recently established conservation zones: the Cape Perpetua Marine Reserve Area, Marine Protected Area, and Seabird Protected Area (Figure 1).  Each of these areas has different regulatory rules on what is allowed to take, which you can read about here. The implication of these protected areas in place means there is more food for wildlife!  Moreover, the city of Yachats has a small population of 703 inhabitants (based on 2013 U.S Census Bureau). The small population allows the city to be relatively clean, and the waste facility is not spewing rotten odors into the air like in many big cities such as Santa Cruz (population of 62,864) where our collaborative gull study takes place. Thus, in Yachats, there is more limited odor or visual incentive to attract birds to landfills.

Field crew descends headland slope to reach ‘Cleft-in-the-Rock’ gull island in Yachats, OR (colony can be seen in distance across the water). The team must wear wetsuits and carry equipment in dry bags for protection during water crossing.

In order to determine whether gull habitat use in Yachats is a trend for all western gulls in Oregon, we need to track birds at more sites and for a longer time. That is why during the breeding season of 2016, we will be placing 30 new tags on gulls and include a new colony into the study, ‘Hunters Island’. The new colony is situated near the Pistol River, between Gold Beach and Brookings in southern Oregon, and it is part of the Oregon Islands Wildlife Refuge.

We will have 10 ‘i-gotU’ tags (Figure 3) and 20 CATS tags (Figure 4), the latter are solar powered and can collect data for several weeks, months, and hopefully even years! These tags do not need to be retrieved for data download; rather data can be accessed remotely, providing minimal disturbance to the gulls and colony. With long-term data, we can explore further into the important feeding areas for western gulls, examine rates of foraging in different habitats, and determine how extensive intertidal and marine foraging is throughout the year.

Figure 3. Taping an i-gotU tag for temporary attachment on the tail feathers of a gull.
Figure 3. Taping an i-gotU tag for temporary attachment on the tail feathers of a gull.

 

Figure 4. Rehearsing the placement and harness attachment of a CATS tag which must be secured on the bird‘s back, looping around the wings and hips.

We are excited to kick start our field season in the next couple of weeks and see how well the new tags work. We know that some questions will be solved and many new questions will arise; and we cannot wait to start this gull-filled adventure!

References

Osterback, A.M., Frechette, D., Hayes, S., Shaffer, S., & Moore, J. (2015). Long-term shifts in anthropogenic subsidies to gulls and implications for an imperiled fish. Biological Conservation191: 606–613.

New Zealand’s mega-fauna come to Newport, Oregon.

By Olivia Hamilton, PhD Candidate, University of Auckland, New Zealand.

The week leading up to my departure from New Zealand was an emotional rollercoaster. Excited, nervous, eager, reluctant… I did not feel like the fearless adventurer that I thought I was. D-day arrived and I said my final goodbyes to my boyfriend and mother at the departure gate. Off I went on my three-month research stint at the Hatfield Marine Science Center.

Some thirty hours later I touched down in Portland. I collected my bags and headed towards the public transport area at the airport. A young man greeted me, “Would you like to catch a taxi or a shuttle, ma’am?” “A taxi please! I have no idea where I am”, I responded. He nodded and smiled. I could see the confusion all over his face… My thick kiwi accent was going to make for some challenging conversations.

After a few days in Portland acclimatizing to the different way of life in Oregon, it was time to push on to Newport. I hit a stroke of luck and was able take the scenic route with one of the girls in the GEMM lab, Rachael Orben. With only one wrong turn we made it to the Oregon coast. I was instantly hit with a sense of familiarity. The rugged coastline and temperate coastal forest resembled that of the west coast of New Zealand. However, America was not shy in reminding me of where I was with its big cars, drive-through everything, and RVs larger than some small kiwi houses.

The Oregon Coast. Photo by Olivia Hamilton.
The Oregon Coast. Photo by Olivia Hamilton.

We arrived at Hatfield Marine Science Center: the place I was to call home for the next quarter of a year.

So, what am I doing here?

In short, I have come to do computer work on the other side of the world.

Dr. Leigh Torres is on my PhD committee and I am lucky enough to have been given the opportunity to come to Newport and analyze my data under her guidance.

My PhD has a broad interest in the spatial ecology of mega-fauna in the Hauraki Gulf, New Zealand. For my study, megafauna includes whales, dolphins, sharks, rays, and seabirds. The Hauraki Gulf is adjacent to Auckland, New Zealand’s most populated city and home to one of our largest commercial ports. The Hauraki Gulf is a highly productive area, providing an ideal habitat for a number of fish species, thus supporting a number of top marine predators. As with many coastal areas, anthropogenic activities have degraded the health of the Gulf’s ecosystem. Commercial and recreational fishing, run-off from surrounding urban and rural land, boat traffic, pollution, dredging, and aquaculture are some of the main activities that threaten the Gulf and the species that inhabit it. For instance, the Nationally Endangered Bryde’s whale is a year-round resident in the Hauraki Gulf and these whales spend much of their time close to the surface, making them highly vulnerable to injury or death from ship-strikes. In spite of these threats, the Gulf supports a number of top marine predators.  Therefore it is important that we uncover how these top predators are using the Gulf, in both space and time, to identify ecologically important parts of their habitat. Moreover, this study presents a unique opportunity to look at the relationships between top marine predators and their prey inhabiting a common area.

The Hauraki Gulf, New Zealand. The purple lines represent the track lines that aerial surveys were conducted along.

 

Common dolphins in the Hauraki Gulf. Photo by Olivia Hamilton
Common dolphins in the Hauraki Gulf. Photo by Olivia Hamilton

 

A Bryde’s whale, common dolphins, and some opportunistic seabirds foraging in the Hauraki Gulf. Photo by Isabella Tortora Brayda di Belvedere.
A Bryde’s whale, common dolphins, and some opportunistic seabirds foraging in the Hauraki Gulf. Photo by Isabella Tortora Brayda di Belvedere.

 

Australisian Gannets and shearwaters foraging on a bait ball in the Hauraki Gulf. Photo by Olivia Hamilton.
Australisian Gannets and shearwaters foraging on a bait ball in the Hauraki Gulf. Photo by Olivia Hamilton.

To collect the data needed to understand the spatial ecology of these megafauna, we conducted 22 aerial surveys over a year-long period along pre-determined track lines within the Hauraki Gulf. On each flight we had four observers that collected sightings data for cetaceans, sharks, predatory fish, prey balls, plankton, and other rare species such as manta ray. An experienced seabird observer joined us approximately once a month to identify seabirds. We collected environmental data for each sighting including Beaufort Sea State, glare, and water color.

The summary of our sightings show that common dolphins were indeed common, being the most frequent species we observed. The most frequently encountered sharks were bronze whalers, smooth hammerhead sharks, and blue sharks. Sightings of Bryde’s whales were lower than we had hoped, most likely an artifact of our survey design relative to their distribution patterns. In addition, we counted a cumulative total of 11,172 individual seabirds representing 16 species.

Summary of sightings of megafauna in the Hauraki Gulf.

Summary of sightings of megafauna in the Hauraki Gulf.My goal while here at OSU is to develop habitat models for the megafauna species to compare the drivers of their distribution patterns. But, at the moment I am in the less glamorous, but highly important, data processing and decision-making stage. I am grappling with questions like: What environmental variables affected our ability to detect which species on surveys? How do we account for this? Can we clump species that are functionally similar to increase our sample size? These questions are important to address in order to produce reliable results that reflect the megafauna species true distribution patterns.

Once these questions are addressed, we can get on to the fun stuff – the habitat modeling and interpretation of the results. I will hopefully be able to start addressing these questions soon: What environmental and biological variables are important predictors of habitat use for different taxa? Are there interactions (attraction or repulsion) between these top predators? What is driving these patterns? Predator avoidance? Competition? So many questions to ask! I am looking forward to answering these questions and reporting back.

We need all the “Kelp” we can get!

Hello from Hatfield Marine Science Center! This is Justin bringing you the latest and greatest in Gray Whale news. But first, let me fill you folks in with some info about me.  I am an undergraduate student, transitioning into my senior year, with Oregon State University’s Fisheries and Wildlife Department. In addition to my major, I am also minoring in statistics; crazy right? I have hopes and dreams of working in Marine Ecology, and I believe working on this Gray Whale project is a fine start! Which means, this summer, I have had the fortunate opportunity to work alongside the lovely Florence van Tulder, the mastermind behind the project, as well as Cricket and Sarah, the other two charismatic interns.

Our team name is derived from the scientific name of the gray whale: E. robustus, and the colorful "buff" scarves you can see us wearing on most days.
Our team name is derived from the scientific name of the gray whale: E. robustus, and the colorful “buff” scarves you can see us wearing on most days. (Left to right: Sarah, Florence, Cricket, Justin)

As we were wrapping up our two week stint in Port Orford, We observed the Gray Whales exhibiting some interesting behavior; they seemed to move from kelp patch to kelp patch, almost as if they were searching for something. What could be hiding under the luscious stands of Nereocystis luetkeana, otherwise known as bull kelp? Well, with the presence of defecation ( whale droppings) left behind from diving whales near many of the floating kelp patches, one culprit came to mind- mysid shrimp. Mysid shrimp are believed to be a primary prey source of the Gray whales.

Calmly approaching the kelp, this whale takes his time to observe his surroundings
Calmly approaching the kelp, this whale takes his time to observe his surroundings

Naturally, my curiosity got the best me and I ended up spending hours on end conducting literature searches and looking for bathymetry maps, thanks to Florence. All joking aside, I asked Florence if we could use our fancy Theodolite to assess or roughly map the distribution of the kelp patches. We would create polygonal shapes of the kelp on a map and observe how the whales move with respect to the kelp. The idea being, to get a better of picture of the relationship between the whales and the kelp, if any relationship exists at all. It is still a work in progress, due to our survey sites getting all kinds of “fogged” up. When the kinks are worked out and we have some useful visual data, we will post an awesome photo.

A quick breather before heading down into the depths near the kelp. (it's even heart shaped!)
A quick breather before heading down into the depths near the kelp. (it’s even heart shaped!)
This large  white tailed beauty bounced between kelp patches  like a pinball!
This large white tailed beauty bounced between kelp patches like a pinball!

Port Orford didn’t just bring us sweet whales, it brought the heat! Temperatures were up to almost the nineties the last week in July! We beat the heat with plenty of hydration and sun block and the predicable wind patterns became a savior on those sweltering days giving us temporary relief.  The heat seemed to tease out other critters as well. We saw a variety of birds, from turkey vultures, Peregrine Falcons, Ospreys, Bald Eagles, and even Egrets!  In the water we saw baby Harbor seals, and some bonus River Otters.

This is our "tripod" of river otters!
This is our “tripod” of river otters!

In more recent news, August 8th marked our first full month of surveying between our two whale hotspots. However, the term “hotspot” doesn’t always seem to be fitting. This past week has been a tough one for the team and I up in Boiler Bay due to less than optimal weather conditions and our survey site has been exposed to an abnormal cycle of fog. Our friendly “neighborhood” grays have been a bit sparse, and yet, we have had Humpback Whales grace us with their presence and these whales have been spotted during several survey days this week! ( In the tradition of opportunistic data, we even tracked one of them.)

The track-line for whale 118 - a humpback who has been hanging out near Boiler Bay all week.
The track-line for whale 118 – a humpback who has been hanging out near Boiler Bay all week.

This summer has been very fun because not only do we get to watch whales every day, but when we are in Boiler Bay, we have the opportunity to meet fascinating people from all over the world! The positive support for the project coming from the community is quite a nice touch to our days in the field. If you are ever in the neighborhood, stop by and say hello, maybe share a whale’s tale or two!

 

Gray whales do not "fluke" very often, so its always a treat when we get a picture of one!
Gray whales do not “fluke” very often, so its always a treat when we get a picture of one!

Gray Whale Goofs

Hello there!  Florence here, signing in from Newport.  We had a fantastic trip south to Port Orford, and tracked another 53 whales bringing our season total up to 117 so far! This morning, we were back out at Boiler Bay and spent 5 hours staring at empty water – in keeping with the theme of this post, field work does not always go as planned.

Our two study areas couldn’t be more different.  At the Boiler Bay State Wayside, we are approximately 18 meters off the water.  In Port Orford, we are perched on the side of a 63 meter tall cliff. This extra height greatly increases our range and accuracy as well as changing the angle of our photography and the type of photo analysis we can do.  We’re quite excited to have a top down view of our whales, because the photos we are capturing will allow us to use certain photogrammetry techniques to measure the length and girth of the individuals.  With luck, when we compare the photos from the beginning of the season (now) to the end of our study (September) we may be able to see a change in the height of the post-cranial fat deposit, which would indicate a successful foraging season.  Gray whales do not eat from the beginning of their southward migration, through the breeding and calving season, until they reach productive foraging grounds at the end of their northward migration.  This means that all their sustenance for 6+ months is derived from their summer foraging success.  Did you know that they even generate their own water through an oxidation reaction which creates ‘metabolic water’ from their blubber stores?  So it will be rather fantastic if we manage to measure the change in whale body condition over the course of the summer – particularly if we are able to spot any mother-calf pairs who will have had an especially grueling journey north.

A foraging behavior where the whale turns on its side in shallow water. The triangle of the fluke resembles a shark fin
Sharking: A foraging behavior where the whale turns on its side in shallow water. The triangle of the fluke resembles a shark fin

So, while our photo database is advancing nicely, technical difficulties are to be expected when you’re in the field, and sometimes, troubleshooting takes longer than you would like it to.  This evening, let me introduce you to the elusive species known as ‘the Chinese land whale.’  It is a very rare breed which spontaneously generates itself from misaligned computer files.

When the theodolite beeps as we ‘mark’ a whale, a pair of horizontal and vertical angles are getting sent from the machine to a program called ‘Pythagoras’ on the laptop. Given our starting coordinates and a few other variables, the program auto-calculates for us the latitude and longitude of that whale.  While we hoped it would be a simple matter to upload these coordinates to Google Earth to visualize the tracklines, it turns out that Pythagoras stores the East/West hemisphere information in a separate column, so if we just plot the raw numbers, our whale tracks end up in the middle of a field in rural China! Hence, the rare ‘Chinese land whale’.  Now that we know the trick, it is not so difficult to fix, but we were quite surprised the first time it happened!

If you dont have your hemisphere correctly labeled, you end up in China instead of Oregon.
If you don’t have your hemisphere correctly labeled, you end up in China instead of Oregon.

Of course, that is not the only thing that has gone wrong with visualizing the tracklines.  When we first got to Graveyard Point survey site, it turns out that we had set our azimuth (our reference angle) the wrong direction from true north, so all our whales seemed to be foraging near the fish and chips restaurant in the middle of town.

If the azimuth is incorrectly referenced, you might end up on land instead of in the water.
If the azimuth is incorrectly referenced, you might end up on land instead of in the water.

After discovering that in order to rotate something 180degrees, you simply need to alter the azimuth angle by 90degrees, (we’re still not sure why this is working), the whales left the fish and chips to us and returned to the harbor.  Anyways, now that we’ve figured out these glitches, we can focus on identifying individual whales, and figuring out which track-lines might be repeat visitors.

Once all the kinks got worked out - the real trackline!  Dont worry, whale 60 did not go through the jetty, thats an artifact of the program wanting to draw straight lines from point a to b.  more likely we simply missed a surface as it transited around the point of the jetty.
Once all the kinks got worked out – the real trackline! Dont worry, whale 60 did not go through the jetty, thats an artifact of the program wanting to draw straight lines from point a to b. more likely we simply missed a surface as it transited around the point of the jetty.

In other outreach news, the OSU media department came out to the field and interviewed us a few weeks ago (on a day that the theodolite and computer were refusing to talk to each other due to a faulty connector cable – which is always delightful when one is trying to showcase research in progress). The resulting article has been posted should you wish to take a look:

http://oregonstate.edu/ua/ncs/archives/2015/aug/researchers-studying-oregon%E2%80%99s-%E2%80%9Cresident-population%E2%80%9D-gray-whales

More shallow sharking behavior
More shallow sharking behavior
Well known for having the shortest, toughest baleen of any of the great whales, here you can see the plates in its mouth!
Well known for having the shortest, toughest baleen of any of the great whales, here you can see the plates in its mouth!

Until next time,

Team Ro”buff”stus

Familiar Flukes and Faces

Greetings fellow marine enthusiasts! My name is Cricket, and I am one of the interns working on Florence’s Gray Whale project! I’m preparing to graduate from Oregon State University in a couple of months with a Bachelors of Science in Biology with the marine option. Before I graduate, I wanted to get some extra experience in the field this summer, which is how I ended up here with Florence, Justin, and Sarah, having surprisingly crazy whale adventures along the Oregon coast!

Panorama of Graveyard Point
Panorama of Graveyard Point

Today marks the end of our first week in Port Orford. We weren’t sure what we were going to get when we switched sites, though of course we had a few fears: No whales, low visibility, bad weather, etc. Depoe Bay had been good to us so far, and we were slightly worried about the transition. In actuality, Port Orford has been amazing!

Our sampling set-up on Graveyard point - above the port of Port Orford
Our sampling set-up on Graveyard point – above the port of Port Orford

Day one was foggy, and we only visited the site briefly to figure out a good location for the theodolite. One of our sites is located on a terrifyingly high cliff, but the view is stellar. We were only there for about an hour and we saw two whales, one of which came up into the cove just beneath us. In fact, one of our concerns with this site is that the whales actually get too close to view through the theodolite. What an unexpected problem to have!

Titchener Cove, Port Orford. Credit: Cricket Carine
Whale 63 Titchener Cove, Port Orford. Credit: Cricket Carine

From our vantage point, we can get some incredible photos of these whales. Photo identification is a breeze if the whale decides to come into the cove closest to us. We can watch them under the water, as opposed to in Depoe Bay where we could only really observe them when they surface.

Whale 59 Surfaces in Titchener Cove, Port Orford credit: Cricket Carine
Whale 59 Surfaces in Titchener Cove, Port Orford credit: Cricket Carine

We all get particularly excited when we see the same whale more than once. In Depoe Bay, we had at least four different whales appear on multiple days. We can verify this using the photos we manage to get of the whales, and comparing them between days.

For example, in Port Orford, we spotted a whale on the 20th with a particularly large white spot on the fluke. This spot made the whale easily identifiable, so we were able to get a good focal follow (because we could track this whale amongst other whales with confidence that we were tracking the same one the entire time), which in turn allowed us to create a track line of this whale’s dive patterns. This whale happened to be whale sixty (the 60th whale we’ve seen since the start of our data collection).

While this is a trackline of whale 82, photo ID confirms that 82,60, and 78 are all the same whale!
While this is a track-line of whale 82, photo ID confirms that 82, 60, and 78 are all the same whale! (The beginning of the track is labeled with the whale ID)

Then, days later, we spotted another whale. This was whale 78, and after a few surfaces, we realized this whale had the same white spot! We hesitantly referred to this whale as “sixty” but couldn’t be sure until we compared photos from the days before. And sure enough, it was!

Seen on July 24
Whale 82, Seen on July 24
Seen on July 20.
Whale 60, Seen on July 20.

I am particularly enthusiastic about our whale resights, and actively enjoy going through the photos and comparing each one to previous whales to try and identify individuals. It’s tedious, but rewarding when we can begin to learn individuals and identify them in the field. As a sort of rough guide to help us when scrounging through photo ID, I’ve put some of our good comparative photos into a google doc to use as reference. Here’s an example of some of the repeat whales we’ve seen:

https://docs.google.com/document/d/1KSB67m1julnk2KmH70b9u91OqDqCT4zicuqPHI7ojms/edit

Tomorrow will be day two at our second Port Orford site. Today was day one, and we managed to spot two whales, which is definitely promising. We hope we have as much luck finding and tracking whales there as we did on our cliffside!

Panorama from Humbug State Park survey site
Panorama from Humbug State Park survey site
Surveying our new Humbug site this morning
Surveying our new Humbug site this morning

 

Have a nice Gray!
Cricket

A Week-Full of Whales

Hello and greetings from the sort of sunny Oregon Coast! Sarah reporting in to offer an update on Florence’s Gray Whale study now that we’re about ten days into sampling. If you’re new to our blog you can read up on the preliminary field season right here.

This little gray was incredibly frustrating to follow due to its irregular surfacing and tiny spouts that were hard to see. We affectionately named it Ninja.
This little savior came through on the day all our technology failed and cheered us up with his rainbow spouts.  Thankfully, he’s a repeat visitor and though we may have missed him on the 14th, we were able to get a good focal follow on him today.

Before I get to the project though, let me introduce myself a bit further. As I said, my name’s Sarah – one of the three interns on our whale surveying team. I got my Bachelor of Science in Oceanography at the University of Washington a few years back and have since worked as a lab tech at UW’s Friday Harbor Labs and as an Americorps volunteer serving as a teacher’s aide. Eventually I plan to become a science teacher, but thought a little more field work this summer would be a nice break after two years of service.

Cricket and Justin pondering the challenges of whale watching.
Cricket and Justin pondering the challenges of whale watching.

Thus, I moved to Newport last week just in time to catch the first day of our main surveying season. And what a season it’s been. We’ve tracked 48 whales since I’ve arrived, averaging about six a day. Of course, those aren’t all 48 different whales. If we lose sight of a whale for longer than 20 minutes, we assume it has left our study area and pronounce it lost, and unless we can identify the next sighting as the same whale based on markings (which we’re getting pretty good at), we give it a new number to keep track. We also give whales we’ve already seen new numbers when we see them on a different day.

Table for two: these whales caused some confusion among the team as they began to forage together before we could tell the difference between the two.
Table for two: these whales caused some confusion among the team as they began to forage together before we could tell the difference between the two.

You might be wondering how we can tell gray whales apart when they’re mostly, well, gray and underwater. And the short answer is we have a pretty difficult time doing so at first sight. Gray whales aren’t like orcas, whose saddle patch just behind the dorsal fin serves as a fingerprint, nor are they humpbacks, whose patterned flukes are cataloged for easy matching. Gray whales have more of a dorsal hump than a fin, followed by five or six ridges we call knuckles. They aren’t famous for showing their flukes above water either, so unless you get several views of a particular whale’s sides, dorsal, and, if you’re lucky, fluke, it’s hard to have a positive ID for the whale. The good news is, that part of our sampling equipment is a camera with a massive zoom lens, so we can take photos of most of the whales we track with the theodolite (see the previous post to learn about theodolites). From those photos (at least 400 a day) we can look at scars from barnacles and killer whales, pigmentation spots that are part of the whales’ coloring, and parasites like barnacles and amphipods to recognize whales we’ve seen before. Eventually we’ll send all the photos we take to the Cascadia Research Group in Olympia, Washington, that keeps a database of all identified gray whales.

Sitting on a clifftop photographing whales might sound more like a vacation than science, so here's some (very peliminary) data of one whale. This is Mitosis on three different days. The first day is red, second is yellow, and the third is green.
Sitting on a clifftop photographing whales might sound more like a vacation than science, so here’s some (very peliminary) data of one whale. This is Mitosis on three different days. The first day is red, second is yellow, and the third is green.

Anyways, thanks for keeping with me to the bottom of the page. It’s been a fun first week-or-so and I’m excited to be heading to our second study site in Port Orford tomorrow after surveying. We’ll be there for 15 days, so next time you hear from us, we’ll be a bit further down the coast.

Yes, we named a whale after cell replication, because look at those overlapping spots!
Yes, we named a whale after cell replication, because look at those overlapping spots!

Best Fishes!

 

Sarah

International Collaborations: What do the Oregon Coast and Maui’s dolphins have in common?

My name is Solène Derville and I am a master’s student in the Department of Biology at the Ecole Normale Supérieure of Lyon, France. As part of my master’s, I am spending a few months in Newport, where I am working under Dr Leigh Torres’s supervision in the GEMM Lab. Hopefully, this will be the starting point for a longer term collaboration, for a PhD project about the spatial ecology of humpback whales in New-Caledonia (South Western Pacific Ocean) which I am currently preparing.

Solene at Crater lake

On an early morning of February 2015, I am waiting at the airport for my flight to PORTLAND/PDX. I’ve had only one day to pack but I feel confident that I’ve made the right choices as my 23kg luggage contains mainly jumpers, sweatshirts, thick socks, and a brand new umbrella. I’ve got everything I need to face my four months internship in rainy Newport, Oregon.

A few disillusionments await me when I finally land: 1) my “saucisson” (fancy sausage) can’t pass customs and ends up in a bin despite my attempts to negotiate with the customs official, and 2) as soon as I am out of the airport, it starts raining. At first sight this looks like the harmless kind of drizzle I’ve experienced in England, until I realize it’s raining sideways! So much for buying a new umbrella…

Luckily, these small inconveniences don’t affect my spirits for long as I get to discover the richnesses Oregon has to offer.

My mouth drops open the first time someone tells me that I can see elk around Newport and that gray whales are commonly observed next to the jetty at this time of year. It’s difficult to describe to someone who’s always been living in this environment how exciting it is to me. I am not used to all this wilderness and certainly not to living so close to it. It’s a thrill to think that I only need to ride my bike for a few miles to meet the amazing local fauna.

Oregon Coast by Solene
Oregon Coast by Solene

Of course, the beauty of Oregon’s landscapes and the richness of its wildlife is not the only thing that catches my attention. I am immediately touched by the kindness of people, the sense of sharing and the deeply rooted sense of community. I feel welcomed at HMSC, and by my colleagues in the GEMM lab and I am eager to start my internship.

So what is my work here exactly?

Well, believe it or not, I’ve crossed the Atlantic Ocean and came to the US to actually work on a species of dolphins endemic to New-Zealand! Dr Leigh Torres, and I are investigating the fine-scale distribution and habitat selection patterns of Maui’s dolphin (Cephalorhyncus hectori maui). This subspecies of the more common Hector’s dolphin (Cephalorhyncus hectori, also endemic to New-Zealand) is the smallest dolphin in the world and unfortunately among the most endangered (listed as “critically endangered” by the IUCN). The Maui’s dolphin population is thought to have decreased to under 100 individuals in the past decades.

Maui's dolphin credit: Will Rayment
Maui’s dolphin credit: Will Rayment

In practice, this means I am doing data analysis so I spend my days in front of my computer. This may sound a bit dull, but computer work is actually a great part of research in ecology (apart from awesome field work stage, but this is only the tip of the iceberg). Speaking for myself, I’ve always found it very exciting to put together all this hard-won data to answer important questions, especially when the conservation of species as emblematic as the Maui’s dolphin is at stake. To tell the truth, the nerdy code writing work is also a lot of fun!

My data set consists of boat-based observations of Maui dolphin groups made during the 2010, 2011, 2013 and 2015 summer surveys. Overall about a hundred groups were observed. Based on these observations we would like to know: WHERE are the Maui dolphins (distribution pattern)? And WHY (habitat preferences)?

New Zealand
New Zealand

My job is first to describe the spatial distribution patterns of these observations given the year, composition of groups, or group behaviour (whether animals were feeding, resting etc.). This can be done using kernel density estimates: a very good method for “smoothing” a distribution in 2 dimensions and highlighting its main characteristics (extent, core areas etc.). This allows us to answer (or try to answer) the “WHERE” question.

Kernel density maps
Kernel density maps

The second stage of my analysis is to describe the environmental conditions at each of the dolphin group locations and compare them with the environmental conditions in surveyed areas where Maui dolphins where not observed. This allows us to better understand the environmental cues that Maui dolphins might be following to find “suitable” places for their every-day activities and therefore try answer the “WHY” question. In statistical jargon, we are exploring the relationship between probability of presence of Maui dolphins and environmental predictors such as: sea surface temperature, turbidity of the water, distance to closest river mouths, distance to the coast and depth.

The resulting models will be used to predict seasonal variations in Maui’s dolphin distribution, notably in winter when direct surveying is difficult because of weather conditions. Based on the resulting dynamic distribution models, we finally aim to predict how Maui’s dolphins might interact with anthropogenic activities or react to changes in their environment.

So far, preliminary results are very promising and I am hoping to share these soon!