The passion of a researcher

By Quince Nye, GEMM Lab Summer Intern, Pacific High School Junior

I have spent a lot of my life surrounded by nature. I like to backpack, bike, dive, and kayak in these natural environments. I also have the luck of having parents who are always planning to take me on another adventure where I get to see nature and its inhabitants in ways most people don’t get to enjoy.

Through my backyard explorations, I have begun to realize that Port Orford has an amazing ecosystem in the coves and rivers that are very tied into our community. I’ve fished and swam in these rivers, gone on kayaking tours in these coves (with a great kayak company called South Coast Tours that we partner with), and I’ve seen the life that dwells in them.

Nathan and Maggie paddle out to Mill Rocks for early morning sample collection

Growing up in a school of less than 100 kids I have learned to never reject an opportunity to be a part of something bigger and learn from that experience. So when one of my close friends told me about an OSU project (a college I’m interested in attending) that needed interns to help collect data on gray whales, and kayak almost every day, I signed up without a doubt in my mind.

The team gets some good practice tracking Buttons (Whale #3).  Left to right; Quince, Nathan, Maggie, Florence.

Fast forward a month, and I wake up at 5:20 am. I eat breakfast and get to the Port Orford Field Station. We make a plan for the operations of both the kayak team and cliff team. Today, I’m part of the cliff team, so I head up above the station to Fort Point. Florence and I set up the theodolite and computer at the lookout point and start taking half hour watch shifts searching the horizon for the spout of a gray whale.  Sometimes you see one right away, but other times it feels like the whales are actively hiding from you. These are the times I wish Maggie was here with her endless supply of Disney soundtracks to help pass the hours.

Imitating a ship’s captain, Quince points toward our whale while shouting “Mark”.

A whale spouts out at Mill Rocks and starts heading across to the jetty. Hurray, its data collection time! I try to quickly move the cross-hairs of the theodolite onto the position of the whale using a set of knobs like those on an etch-a-sketch. As you may understand, it’s not an easy task at first but I manage to do it because I’ve been practicing for three weeks. I say “Mark!” cueing Florence to click a button in the program Pythagoras on the computer to record the whale’s position.

The left hand side of Buttons – notice the scatter of white markings on the upper back.

Meanwhile, Florence sees that the whale has two white spots where the fluke meets the knuckles. Those are identifying marks of the beloved whale, Buttons. This whale has been seen here since 2016 and is a fan favorite for our on-going research program. Florence gets just as excited every time and texts her eagerly awaiting interns of previous years all about the sighting. Of course Buttons is not the only whale to have identifying marks such as scars and pigmentation marks. This is why we make sure to get photos of the whales we spot, allowing us to do photo-ID analysis on them through comparison to our database of pictures from previous years.

Quince practices CPR protocol on a training mannequin on his first day.

So far I have gained skill after skill in this internship. I got CPR certified, took a kayak training class, learned how to use a theodolite, and have spent many educational (and frustrating) hours entering data in Excel. I joined the program because I was interested in all of these things. It surprised me that I was developing a relationship with the whales I’m researching. By the end of August I’m now sure that I will also know many of the whales by name. I will probably be much better at using an etch-a-sketch, and I will have had my first taste at what being a scientist is like. What I strive for, however, is to have the same look in my eyes that appears in Florence’s whenever a familiar whale decides to browse our kelp beds.

Curiosity and Community, new ways of exploring our environment.

By Nathan Malamud, GEMM Lab summer intern, Pacific High School senior

I am someone who has lived in a small town for all his life. Pretty much everyone knows each other by their first name and my graduating class only has around 20 people. Everywhere you look you will find a farm, ranch, or cranberry bog (even our school has two bogs of their own!). Because of my small town life, I have a strong sense of community. However, I have also developed a curiosity about natural and global phenomena. I try to connect these two virtues by participating in scientific efforts that help my community. When I heard that the OSU Port Orford Field Station was offering internships, I knew right away that it would definitely be a great experience for me.

The view from our field site at Fort Point in Port Orford

Port Orford, on Oregon’s southern coast, is a town that is closely tied to the ocean. So naturally, it’s important to understand and monitor our surroundings so that our town can thrive. Last year, my Marine Science class helped me further understand the complexity of the ocean. Our first semester taught us all about marine biology, zoology, and ecology. Our second semester immersed us into oceanography, ocean geology, and ocean chemistry. During the second semester, we also took trips to our town’s marine science center and to the marine reserve near Rocky Point. I loved this course and decided to try to expand my knowledge about the subject by going to the OSU Field Station.

Our safety instructor teaches takes us through basic paddling techniques

As an intern, I am currently working with three teammates to understand the feeding behavior of gray whales – what places they like to eat zooplankton the most and why they like to eat there. This whale project helps our community by Port Orford enabling high school students to perform college-level scientific research and inquiry, as well as allowing us to learn valuable skills such as CPR, surveying using a theodolite, working with chemicals in a lab, and data processing.

We had to learn how to rescue ourselves just in case we have an accident in the boat.
We all made it back in the boat!

This internship with OSU’s GEMM Lab has taught me many new skills and given me new experiences that I have never had before. Before this internship, I had never been in a kayak. Now, I go out on the water nearly every other day! When on the water, I always try to sharpen my navigating skills. I use a GPS to pinpoint the locations of our sampling stations, and I communicate to my partner where we need to go and how we will get there.

Its very important to stretch before kayaking every morning.

Once we are there, it is my job to keep the boat close to the station location so that my partner can get accurate samples. This part is a very tricky task, because not only do I have to pay attention to the GPS to make sure we are within 10 meters of the spot, but I also have to pay attention to my surroundings. I have to look at the ocean, and figure out what direction the waves are coming from. I have to watch how external forces, like wind and currents, can cause the boat to drift far from station, and I have to correct drifting with gentle paddle strokes. This is hard, especially since the kayak is so light and easy to get pushed around by the wind. However, despite the difficulty, I have learned that it is crucial not to panic. Frustration only makes things worse. The key is to maintain a harmonic balance of concentration and zen.

I have also learned that when collecting data in the field, it’s important to observe and document as much as possible. When we are in the kayak, we have 12 stations that we try to visit every day (as long as the weather cooperates). At each station, we first use a secchi disk to test the water clarity, then lower the GoPro to film the water column and see where the zooplankton are. Sometimes we catch other interesting things on the video too, such as siphonophores (my personal favorites are jellies and salps) and rockfish.

A siphonophore
A rockfish captured with our GoPro.

Next we tow a zooplankton net through the water, and let it collect zooplankton of all shapes and sizes, from tiny mysids to skeleton shrimp. Then we proceed to the next station and repeat the process. We have to remember to label everything, and tell the GoPro camera what station we’re at so we can sort all the information correctly when we get back to the field station. At the end of the day, we log our data into a computer, and preserve half our plankton samples with ethanol, so that we can identify the species present.  The other half gets frozen for caloric content analysis by our collaborator Dr. Kim Bernard to help us understand how much zooplankton a whale needs to eat to meet its energy needs each day.

By repeating this entire process every day, we are able to look at daily changes, which also helps us to better understand why whales spend time in certain areas and not others. Be sure to check out my teammate Maggie’s blog post about some of the tools and technologies we use to track the whales!

This whale project has been, and definitely still is, a great experience for me! I have learned a lot and have worked with some amazing people. I believe that I am learning many valuable skills, and that the skills I learn will allow me to help my community.

A Little Slice of Heaven

Guest writer: Maggie O’Rourke-Liggett, GEMM Lab summer intern, Oregon State University,

One of the biggest obstacles an undergraduate can face is fulfilling the degree requirement of completing an internship or research opportunity. With almost every university and degree program requiring it for graduation and many employers requiring prior experience, the amount of pressure and competition is intense.

After being rejected from the internships I applied for earlier in the year, I heard about Dr. Leigh Torres’s research with the Geospatial Ecology of Marine Megafauna (GEMM) Lab . I decided to email her and ask if she had any open positions. Fast-forward a few weeks and I am collaborating with Florence Sullivan, a recent masters graduate from OSU, on the logistics of my Gray Whale Foraging Behavior internship with the GEMM Lab.

 

My workstation while I conduct photo identification analysis in the field station classroom. The photos are displayed and organized in Adobe Bridge. Source: Maggie O’Rourke-Liggett

During my time with the GEMM Lab team, I have been assisting with photo identification analysis of gray whales (Eschrichtius robustus), using a theodolite and Pythagoras computer program to track their movements, collecting samples of the zooplankton they eat, and recording other oceanographic data with our time-depth recorder. This project is hoping to identify the drivers of gray whale fine-scale foraging behavior.  For instance: Why do gray whales spend more time in some areas than others?  Does the type or density of prey affect their behavior? Do the whales use static features like kelp beds to help find their food? As a senior currently studying oceanography, who desires to study whale behavior in the future, this internship is like finding a gold mine.

Nathan Malamud, our other high school intern, and I working together to set up the theodolite in backyard during a practice run. Source: Florence Sullivan

Ever since day one at Hatfield Marine Science Center, I’ve been working with people who share the same passions for marine mammals as me. Spending hours upon hours sorting thousands of pictures may seem like a painful, tedious job, but knowing my work helps others to update existing identification catalogs makes it worthwhile. Plus, who wouldn’t want to look at whales all day?! After a while, you start to recognize specific individuals based on their various pigment configurations and scars. Once you can recognize individuals, it makes the sorting go by faster and helps with recognizing individual whales in the wild faster. It’s always exciting to sort through the photos and observe from the cliff or kayak and recognize a whale from the photo identification work.

After Florence taught me how to set up and operate the theodolite, a survey tool used to track a whale’s movements, we taught a class to undergrads on how to use it. I’ll never get over how people’s faces lit up when we discussed how the instrument works and its role in the overall mission.

Quince Nye, one of our high school interns, using side strokes to stabilize the kayak while I deploy our zooplankton net over the side with a down rigger. Source: Florence Sullivan

These past two weeks at OSU’s Port Orford Field Station have been like living on a little slice of heaven. My days are filled with clear views of the coast and the sound of waves crashing serve as a backdrop on my home for the month, the bed-and-breakfast turned field station. Each morning, the sun fills my room as I gather my gear for the day and help my teammates load the truck. We spend long days on the water collecting zooplankton samples and GoPro video or on the cliff recording whale behavior through the theodolite. To anyone searching for an internship and feeling burnt out from completing application after application, don’t give up. You’ll find your slice of heaven too.

Life in the lab: notes from a lab meeting

By Florence Sullivan, MSc, Oregon State University

One of my favorite parts about working as a member of the GEMM lab is our monthly lab meeting. It’s a chance for everyone to share exciting news or updates about their research, discuss recent advances in our field, and of course, make the schedule for who is in charge of writing the blog each week!  Our fearless leader, Leigh, usually also has an exercise for us to complete. These have varied from writing and editing abstracts for conferences, conducting mock interviews of each other, reading and discussing relevant papers, R coding exercises, and other useful skills. Our most recent meeting featured an exciting announcement, as well as a really interesting discussion of the latest International Whaling Commission (IWC) reports of the scientific committee (SC) that I felt might be interesting to share with our readers.

First, the good news – Six GEMM lab members submitted abstracts to the 2017 Society of Marine Mammalogy Conference, and all six were accepted for either a speed talk or an oral presentation! We are very proud and excited to present our research and support each other at the conference in October.

And now, a little science history:

The IWC was originally formed as a management body, to regulate the global catch of great whales. However, it never had much legal power to enforce its edicts, and was largely ineffective in its task.  By 1986 whale populations had been decimated to such low numbers by commercial whaling efforts that a worldwide moratorium on harvest was imposed. The SC of the IWC meets on an annual basis, and is made up of leading experts in the field who give advice and recommendations to the commission.  If you are interested in seeing reports from over the years, follow this link to the IWC Archive.  The reports presented by the various sub committees of the Scientific Committee are dense, packed full of interesting information, but also contain lots of procedural minutiae.  Therefore, for this lab meeting, each of us took one of the 2017 Annexes, and summarized it for the group.

Alyssa and Dawn reviewed Annex J: Report of the working group on non-deliberate human induced mortality of cetaceans.  The report shared new data about scarring rates of bowhead whales in the Bering Sea, notably, that 2.4% of the population will acquire a new scar each year, and that by the time an individual is 25 years old, it has a 40% chance of being scarred from a human derived interaction. The study noted that advances in drone technology may be an effective tool to assess scarring rates in whale populations, but emphasized that it is important to examine stranded carcasses to ground truth the rates we are able to capture from aerial and boat based photography.  The discussion then turned to the section about ship strikes, where we learned that in a comparison of fresh scars on humpback whales, and rates of voluntarily reported ship strikes, collisions were vastly under reported. Here it was noted that injuries that did not cause visible trauma could still be lethal to cetaceans, and that even moderate speed collisions can cause non-immediate lethal injury.

Leila walked us through Annex K: Report of the standing working group on environmental concerns. This subcommittee was the first one formed by the SC, and their report touched on issues such as bioaccumulation of heavy metals in whales, global oil spill emergency response training, harmful algal blooms (HABs), marine debris, diseases of concern, strandings and related mortality, noise, climate change, loss of arctic sea ice, and models of cetacean reaction to these impacts.

A few notes of particular interest:

-PCBs and other toxins are known to accumulate in killer whales, but this report discussed high levels of lead and cadmium in gray whales, leading to the question of what might be the source – sediment deposits? Fish?

-Lots of research has been done on the outfall of HABs involving domoic acid; now there is a need for research on other types of HABs

-A website has been created to increase surveillance, diagnosis and risk management of cetacean diseases, and is currently being refined: https://cdoc.iwc.int

-Changing climate is prompting distribution shifts in a number of species, putting animals at risk of interactions with shipping lanes, and increasing contact with invasive species.

-Models of cetacean bioenergetics have found that being entangled has energy costs equivalent to migration or pregnancy. Another model found that naval noise increased the metabolic rate of individuals by 30%. Models are becoming more and more accurate and complex every year, and each new one helps provide a framework to begin to assess cumulative impacts of human-cetacean interactions.

To wrap things up, I gave a brief overview of Annex N: Report of the subcommittee on whalewatching. This report gave quick updates on a number of different whale watching research projects around the world:

-Humpback whales in Hawaii change their swim speed and dive time when they encounter vessels.

-Endangered humpbacks in the Arabian Sea may need management intervention because there have been minimal advances in standards and attitudes by whale watching outfits or recreational boaters in Oman.

-Increased interactions and close encounters may be eroding the protective social barriers between bottlenose dolphins and the public.  The committee emphasizes that cetacean habituation to humans is a serious conservation cause of concern.

After research updates, the document then details a review from the working group on swim-with-whale operations. They emphasize the need for a global database, and note that the Convention on Migratory Species and the World Cetacean Alliance are both conducting reviews of this section of the whale watching industry and that a collaboration could be beneficial. Finally, this committee often gives feedback to ongoing projects and local management efforts, but is not convinced that their recommendations are being put into practice.

As one reads this litany of issues that face cetaceans in the modern world, it can be quite disheartening. However, reports like these keep researchers up to date on the current state of knowledge, areas of concern, and questions that need answering.  They help us set our priorities and determine which piece of the puzzle we are capable of tackling.  For more on some of the projects that our lab has under taken to help tackle these issues, check out Leila’s work on stress in gray whales, Dawn’s work looking at blue whales in New Zealand, Solene’s work on humpback habitat selection, or my work on vessel interactions. Individually, it’s easy to feel small, but when you look through the archives of the IWC, and realize how far we’ve come from extractive management to active conservation, you realize that every little project adds to those before it, and together, we can make a difference.

 

 

 

Finding the edge: Preliminary insights into blue whale habitat selection in New Zealand

By Dawn Barlow, MSc student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

I was fortunate enough to spend the Austral summer in the field, and so while the winter rain poured down on Oregon I found myself on the water with the sun and wind on my face, looking for blue whales in New Zealand. This spring I switched gears and spent time taking courses to build my analytical toolbox. In a course on technical writing and communication, I was challenged to present my research using only pictures and words with no written text, and to succinctly summarize the importance of my research in an introduction to a technical paper. I attended weekly seminars to learn about the diverse array of marine science being conducted at Oregon State University and beyond. I also took a course entitled “Advanced Spatial Statistics and Geographic Information Science”. In this skill-building course, we were given the opportunity to work with our own data. Even though my primary objective was to expand the tools in my toolbox, I was excited to explore preliminary results and possible insight into blue whale habitat selection in my study area, the South Taranaki Bight region (STB) of New Zealand (Figure 1).

Figure 1. A map of New Zealand, with the South Taranaki Bight (STB) region delineated by the black box. Farewell Spit is denoted by a star, and Kahurangi point is denoted by an X.

Despite the recent documentation of a foraging ground in the STB, blue whale distribution remains poorly understood in New Zealand. The STB is New Zealand’s most industrially active marine region, and the site of active oil and gas extraction and exploration, busy shipping traffic, and proposed seabed mining. This potential space-use conflict between endangered whales and industry warrants further investigation into the spatial and temporal extent of blue whale habitat in the region. One of my research objectives is to investigate the relationship between blue whales and their environment, and ultimately to build a model that can predict blue whale presence based on physical and biological oceanographic features. For this spring term, the question I asked was:

Is the number of blue whales present in an area correlated with remotely-sensed sea surface temperature and chlorophyll-a concentration?

For the purposes of this exploration, I used data from our 2017 survey of the STB. This meant importing our ship’s track and our blue whale sighting locations into ArcGIS, so that the data went from looking like this:

… to this:

The next step was to get remote-sensed images for sea surface temperature (SST) and chlorophyll-a (chl-a) concentration. I downloaded monthly averages from the NASA Moderate Resolution Imaging Spectrometer (MODIS aqua) website for the month of February 2017 at 4 km2 resolution, when our survey took place. Now, my images looked something more like this:

But, I can’t say anything reliable about the relationships between blue whales and their environment in the places we did not survey.  So next I extracted just the portions of my remote-sensed images where we conducted survey effort. Now my maps looked more like this one:

The above map shows SST along our ship’s track, and the locations where we found whales. Just looking at this plot, it seems like the blue whales were observed in both warmer and colder waters, not exclusively in one or the other. There is a productive plume of cold, upwelled water in the STB that is generated off of Kahurangi point and curves around Farewell Spit and into the bight (Figure 1). Most of the whales we saw appear to be near that plume. But how can I find the edges of this upwelled plume? Well, I can look at the amount of change in SST and chl-a across a spatial area. The places where warm and cold water meet can be found by assessing the amount of variability—the standard deviation—in the temperature of the water. In ArcGIS, I calculated the deviation in SST and chl-a concentration across the surrounding 20 km2 for each 4 km2 cell.

Now, how do I tie all of these qualitative visual assessments together to produce a quantitative result? With a statistical model! This next step gives me the opportunity to flex some other analytical muscles, and practice using another computational tool: R. I used a generalized additive model (GAM) to investigate the relationships between the number of blue whales observed in each 4 km2 cell our ship surveyed and the remote-sensed variables. The model can be written like this:

Number of blue whales ~ SST + chl-a + sd(SST) + sd(chl-a)

In other words, are SST, chl-a concentration, deviation in SST, and deviation in chl-a concentration correlated with the number of blue whales observed within each 4 km2 cell on my map?

This model found that the most important predictor was the deviation in SST. In other words, these New Zealand blue whales may be seeking the edges of the upwelling plume, honing in on places where warm and cold water meet. Thinking back on the time I spent in the field, we often saw feeding blue whales diving along lines of mixing water masses where the water column was filled with aggregations of krill, blue whale prey. Studies of marine mammals in other parts of the world have also found that eddies and oceanic fronts—edges between warm and cold water masses—are important habitat features where productivity is increased due to mixing of water masses. The same may be true for these New Zealand blue whales.

These preliminary findings emphasize the benefit of having both presence and absence data. The analysis I have presented here is certainly strengthened by having environmental measurements for locations where we did not see whales. This is comforting, considering the feelings of impatience generated by days on the water spent like this with no whales to be seen:

Moving forward, I will include the blue whale sighting data from our 2014 and 2016 surveys as well. As I think about what would make this model more robust, it would be interesting to see if the patterns become clearer when I incorporate behavior into the model—if I look at whales that are foraging and traveling separately, are the results different? I hope to explore the importance of the upwelling plume in more detail—does the distance from the edge of the upwelling plume matter? And finally, I want to adjust the spatial and temporal scales of my analysis—do patterns shift or become clearer if I don’t use monthly averages, or if I change the grid cell sizes on my maps?

I feel more confident in my growing toolbox, and look forward to improving this model in the coming months! Stay tuned.

Building scientific friendships: A reflection on the 21st annual meeting of the Northwest Student Chapter of the Society for Marine Mammalogy

By Dawn Barlow, M.Sc. student, Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

I recently had the opportunity to attend and present my research at the 21st meeting of the Northwest Student Chapter of the Society for Marine Mammalogy. This gathering represented a community of graduate and undergraduate students from the Pacific Northwest, networking and discussing their research on the biology of marine mammals. Dr. John Ford, whose name has become synonymous with killer whale research in the Pacific Northwest, delivered a compelling keynote speech on not only the history of his research, but also the history of the relationships he has built in the field and the people that have shaped the past five decades of killer whale research. This theme of cultivating scientific relationships was a thread that carried us through the weekend. Beautiful weather had us all smiling happily as we ate our lunches outside, musing about science in the sunshine. A philosopher’s café event facilitated roundtable discussions with experts in veterinary science, spatial statistics, management consulting, physiology, and marine pollution. Students were given the space to ask questions ranging from manuscript writing advice to the worth of our work in the current political climate (and write notes or doodle drawings on the paper-covered tables as we listened).

The oral and poster presentations were all very impressive. I learned that bowhead whales are likely feeding year-round in the Canadian Arctic, adjusting their dive depth to the vertical location of their copepod prey. I learned that the aerobic dive limit of stellar sea lions is more of a sliding scale rather than a switch as it is for Weddell seals. I learned that some harbor seals are estuary specialists, feeding on salmon smolt. And I learned about the importance of herring to Northeast Pacific marine mammals through an energy-based ecosystem model. I had the opportunity to present my research on the ecology of New Zealand blue whales to an audience outside of Oregon State University for the first time, and was pleased with how my presentation was received.

Aaron Purdy, MSc student with the University of British Columbia’s Marine Mammal Research Unit, moderates the first oral presentation session wearing the designated “fluke tuke”. I may have giggled at the Canadian word for beanie, but I have to admit, “fluke tuke” has a much better ring to it than “fluke beanie”!

But beyond the scientific research itself, I also learned that there is a strong community of motivated and passionate young scientists in the Pacific Northwest studying marine mammals. Our numbers may not be many and we may be scattered across several different universities and labs, but our work is compelling and valuable. At the end of the weekend, it felt like I was saying goodbye to new friends and future colleagues. And, I learned that the magnificent size of a blue whale never fails to impress and amaze, as all the conference attendees marveled over the blue whale skeleton housed in the Beaty Biodiversity Museum at the University of British Columbia.

Left to right: Michelle Fournet, Samara Haver, myself, and Niki Diogou representing Oregon State University at the student conference. Behind us is a blue whale skeleton, housed in the Beaty Biodiversity Museum on the University of British Columbia campus.

Many thanks to the graduate students from the University of British Columbia who organized such a successful event! At the end of the conference, it was decided that the next meeting of the Northwest Student Chapter will be hosted by the Oregon State University students here at Hatfield Marine Science Center in Newport. It is a year away, but I am already looking forward to seeing these newfound peers again and hearing how their research has progressed.

A happy student selfie at the end of a successful conference! We are looking forward to a reunion at Hatfield Marine Science Center next May!

“Marching for Science” takes many forms

By Florence Sullivan, MSc student, Oregon State University.

Earth day is a worldwide event celebrated annually on April 22, and is typically observed with beach, park, or neighborhood clean ups, and outreach events sponsored by environmental groups.  Last year, environmentalists rejoiced when 195 nations signed the Paris Agreement – to “strengthen global response to the threat of climate change by keeping global temperature rise below 2 degrees C”.

GEMM Lab member Dawn Barlow helps carry the banner for the Newport, OR March for Science which over 600 people attended. photo credit: Maryann Bozza

This year, the enviro-political mood is more somber. Emotions in the GEMM Lab swing between anger and dismay to cautious optimism and hope. The anger comes from threatened budget cuts, the dismissal of climate science, and the restructuring of government agencies, while we find hope at the outpouring of support from our local communities, and the energy building behind the March for Science movement.

The Newport March for Science. photo credit: Maryann Bozza

What is perhaps most striking about the movement is how celebratory it feels. Instead of marching against something, we are marching FOR science, in all its myriad forms. With clever signs and chants like “The oceans are rising, and so are we”, “Science, not Silence”, and “We’re nerds, we’re wet, we’re really quite upset” (it rained on a lot of marches on Saturday) echoing around the globe, Saturday’s Marches for Science were a cathartic release of energy, a celebration of like-minded people.

Our competition room for NOSB 2017! Game officials are in the front of the picture, competitors at the first two desks, and parents, coaches and supporters in the back.

While millions of enthusiastic people were marching through the streets, I “Ran for Science” at the 20th annual National Ocean Science Bowl (NOSB) – delivering question sheets and scores between competitors and graders as 25 teams competed for the title of national champion! Over the course of the competition, teams of four high school students compete through rounds of buzzer-style multiple choice questions, worksheet style team challenge questions, and the Scientific Expert Briefing, a mock congressional hearing where students present science recommendations on a piece of legislation.  The challenges are unified with a yearly theme, which in 2017 was Blue Energy: powering the planet with our ocean.  Watching the students (representing 33 states!) compete is exciting and inspiring, because they obviously know the material, and are passionate about the subject matter.  Even more encouraging though, is realizing that not all of them plan to look for jobs as research scientists. Some express interest in the arts, some in policy, or teaching or engineering. This competition is not just about fostering the next generation of leading marine scientists, but rather about creating an ocean-literate, and scientifically-literate populace.  So, congratulations to Santa Monica High School, who took home the national title for the first time this year! Would you like to test your knowledge against some of the questions they faced? Try your luck here!

Santa Monica competes in the final round

The GEMM Lab also recently participated in the Hatfield Marine Science Center’s Marine Science Day.  It’s an annual open house where the community is invited to come tour labs, meet scientists, get behind the scenes, and learn about all the exciting research going on.  For us as researchers, it’s a great day to practice explaining our work and its relevance to many different groups, from school children to parents and grandparents, from artists to fishermen to teachers, fellow researchers, and many others.  This year the event attracted over 2,000 people, and the GEMM Lab was proud to be a part of this uniquely interactive day.  Outreach events like this help us feel connected to our community and the excitement present in all the questions field during this event reassure us that the public still cares about the work that we do.

Lab members Florence, Leila, and Dawn (L to R) answer questions from the public.

Our science is interdisciplinary, and we recognize the strength of multiple complimentary avenues of action to affect change.  If you are looking to get involved, consider taking a look at these groups:

500 Women Scientists: “working to promote a diverse and inclusive scientific community that brings progressive science-based solutions to local and global challenges.” Read their take on the March for Science.

314Action: starting from Pi (3.14), their mission is “to (1) strengthen communication among the STEM community, the public and our elected officials, (2) Educate and advocate for and defend the integrity of science and its use, (3) Provide a voice for the STEM community on social issues, (4) Promote the responsible use of data driven fact based approaches in public policy and (5) Increase public engagement with the STEM Community through media.”

She should run: “A movement working to create a culture that inspires women and girls to aspire towards public leadership. We believe that women of all backgrounds should have an equal shot at elected leadership and that our country will benefit from having a government with varied perspectives and experiences.” https://peoplesclimate.org/

And finally, The March for Science is finishing up it’s week of action, culminating in the People’s Climate March on April 29.

How will you carry the cause of science forward?

 

The best field season ever

By Dawn Barlow, MSc student, OSU Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

8:35pm on February 20th found the blue whale team smiling, singing, and dancing on the aft deck of the R/V Star Keys as the light faded and the sky glowed orange and we marked our final waypoint of the 2017 blue whale field season. What preceded was a series of days so near perfect that we had barely dared dream of the like. Sighting after sighting, and our team of scientists and the wonderful Star Keys crew began to work like a well-oiled machine—approach the whale gently and observe its behavior, fly the drone, deploy the CTD and echosounder, approach for photos, launch the small boat, approach for biopsy, leave the whale, re-apply sunscreen, find another whale, repeat. This series of events continued from sunrise until sunset, when the sky and water were painted brilliant colors. The sound of big blue whale breaths broke the silence over the glassy water, and the plumes of exhaled air lit up in the last bits of sunlight, lingering there without even a puff of wind to blow them away.

A blue whale mother and calf surface in front of Farewell Spit in calm conditions as the daylight starts to fade. Photo by Leigh Torres.
The small boat returns to R/V Star Keys after collecting the final biopsy sample of the season. Photo by Dawn Barlow.

Despite coming to New Zealand during the “worst summer ever”, I’m pleased to say that this has been the most fruitful field season the New Zealand blue whale project has had. We covered a total of 1,635 nautical miles and recorded sightings of 68 blue whales, in addition to sightings of killer whales, pilot whales, common dolphins, dusky dolphins, sharks, and many seabirds. Five of our blue whale sightings included calves, reiterating that the South Taranaki Bight appears to be an important area for mother-calf pairs. Callum and Mike (Department of Conservation) collected 23 blue whale biopsy samples, more than twice the number collected last year. Todd flew the drone over 35 whales, observing and documenting behaviors and collecting aerial imagery for photogrammetry. We took 9,742 photos, which will be used to determine how many unique individuals we saw and how many of them have been sighted in previous years.

A blue whale surfaces with R/V Star Keys in the background. Photo taken from the small boat by Leigh Torres.

It is always hard to see a wonderful thing come to an end, and we agreed that we would all happily continue this work for much longer if funding and weather permitted. But as the small skiff returned to the Star Keys with our final biopsy sample and the dancing began, we all agreed that we couldn’t have asked for a better note to end on. There has already been plenty of wishful chatter about future field efforts, but in the meantime we’re still floating from this year’s success. I will certainly have my hands full when I return to Oregon, and in the best possible way. It feels good to have an abundance of data from a project I’m passionate about.

A blue whale comes up for air in a calm sea. Photo by Leigh Torres.

Thank you to Western Work Boats and Captain James “Razzle-Dazzle” Dalzell, Spock, and Jason of the R/V Star Keys for their hard work, patience, and good attitudes. James made it clear at the beginning of the trip that this was to be our best year ever, and it was nothing less. The crew went from never having seen a blue whale before the trip to being experts in maneuvering around whales, oceanographic data collection, and whale poop-scooping. Thank you to Callum Lilley and Mike Ogle from the Department of Conservation for their time, impressive marksmanship, and enthusiasm. And once again thank you to all of our colleagues, funders, and supporters—this project is made possible by collaboration. Now that we’ve wrapped up, blue whale team members are heading in different directions for the time being. We’ll be dreaming of blue whales for weeks to come, and looking forward to the next time our paths cross.

Blue whale team members in front of R/V Star Keys in port in Nelson.
The team rejoices after a magnificent final survey day!

 

….aaaand we’re off! The blue whale team heads to New Zealand

By Dawn Barlow, MSc Student, Geospatial Ecology of Marine Megafauna Lab, Department of Fisheries and Wildlife, Oregon State University

Today we are flying to the other side of the world and boarding a 63-foot boat to study the largest animals ever to have inhabited this planet: blue whales (Balaenoptera musculus). Why do we study them, and how will we do it? Before I tell you, first let me say that no fieldwork is ever straightforward, and consequently no fieldwork lacks exciting learning opportunities. I have learned a lot about the logistics of an international field season in the past month, which I will share with you here!

The South Taranaki Bight, which lies between the north and south islands of New Zealand, is the study area for this survey.
Research vessel Star Keys will be our home for the month of February as we look for whales.

Unmanned aerial systems (UAS, a.k.a. “drones”) are becoming more prevalent in our field as a powerful and minimally invasive tool for studying marine mammals. Last year, our team was able to capture what we believe is the first aerial footage of nursing behavior in baleen whales, in addition to feeding and traveling behaviors. And beyond behavior, these aerial images contain morphological and physiological information about the whales such as how big they are, whether they are pregnant or lactating, and if they are in good health. I’ll start making a packing list for you to follow along with. So far it contains two drones and all of their battery supplies and chargers.

Aerial image of a blue whale mother and calf captured by a drone during the 2016 field season.

Perhaps you read my first GEMM Lab blog post, about identifying individual blue whales from photographs? Using these individual IDs, I plan to generate an abundance estimate for this blue whale population, as well as look at residency and movement patterns of individuals. Needless to say, we will be collecting photo-ID images this year as well! Add two large pelican cases with cameras and long lenses to the packing list.

Blue whale photo-ID image, showing the left and right sides of the same whale. I have identified 99 unique individuals so far, and look forward to adding to our catalog this year!

Now wouldn’t it be great to capture video of animal behavior in some way other than with the UAS? Maybe even from underwater? Add two GoPros and all of their associated paraphernalia to the mounting gear pile.

Now, bear with me. There is a wealth of physiological information contained in blue whale fecal matter. And when hormone analysis from fecal samples is paired with photogrammetry from UAS images, we can develop a valuable picture of individual and population-level health, stress, nutrition, and reproductive status. So, say we are able to scoop up lots of blue whale fecal samples – wouldn’t that be fantastic? Yes! Alright, add two nets, a multitude of jars, squirt bottles, and gloves to the gear list. And then we still need to bring them back to our lab here in Newport. How does that happen? Well, we need to filter out the sea water, transfer the samples to smaller tubes, and freeze them… in the field, on a moving vessel. Include beakers, funnels, spatulas, and centrifuge tubes on the list. Yes, we will be flying back with a Styrofoam cooler full of blue whale “poopsicles”. Of course, we need a cooler!

Alright, and now remember the biopsy sampling that took place last season? Collecting tissue samples allows us to assess the genetic structure of this population, their stable isotopic trophic feeding level, and hormone levels. Well, we are prepared to collect tissue samples once again! Remember to bring small tubes and scalpel blades for storing the samples, and to get ethanol when we arrive in Wellington.

An important piece in investigating the habitat of a marine predator is learning about the prey they are consuming. In the case of our blue whales, this prey is krill (Nyctiphanes australis). We study the prey layer with an echo sounder, which sends out high frequency pings that bounce off anything they come in contact with. From the strength of the signal that bounces back it is possible to tell what the composition of the prey layer is, and how dense. The Marine Mammal Institute here at OSU has an echo sounder, and with the help of colleagues and collaborators, positive attitudes, and perseverance, we successfully got the transducer to communicate with the receiver, and the receiver to communicate with the software, and the software to communicate with the GPS.  Add one large pelican case for the receiver. Can we fit the transducer in there as well? Hmmm, this is going to be heavy…

Blue whale team members and colleagues troubleshoot and test the Simrad EK60 echo sounder before packing it to take to New Zealand.

Now the daunting, ever-growing to-do lists have been checked off and re-written and changed and checked off again. The mountain of research gear has been evaluated and packed and unpacked and moved and re-evaluated and packed again. The countdown to our departure date has ended, and this evening Leigh, Todd, and I fly out of Portland and make our way to Wellington, New Zealand. To think that from here all will be smooth and flawless is naïve, but not being able to contain my excitement seems reasonable. Maybe it’s the lack of sleep, but more likely it’s the dreams coming true for a marine ecologist who loves nothing more than to be at sea with the wind in her face, looking for whales and creatively tackling fieldwork challenges.

In the midst of the flurry of preparations, it can be easy to lose sight of why we are doing this—why we are worrying ourselves over poopsicle transport and customs forms and endless pelican cases of valuable equipment for the purpose of spending several weeks on a vessel we haven’t yet set foot on when we can’t even guarantee that we’ll find whales at all. This area where we will work (Figure 1) is New Zealand’s most industrially active region, where endangered whales share the space with oil rigs, shipping vessels, and seismic survey vessels that have been active since October in search of more oil and gas reserves. It is a place where we have the opportunity to study how these majestic giants fit into this ecosystem, to learn what about this habitat is driving the presence of the whales and how they’re using the space relative to industry. It is an opportunity for me as a scientist to pursue questions in ecology—the field of study that I love. It is also an opportunity for me as a conservation advocate to find my voice on issues of industry presence, resource extraction, and conflicts over ocean spaces that extend far beyond one endangered species and one region of the world.

Fieldwork preparations have made clear to me once again the strength and importance of collaboration in science. Kim Bernard from OSU’s College of Earth, Ocean, and Atmospheric Sciences and Craig Hayslip from the Marine Mammal Institute’s Whale Telemetry Group spent half a day troubleshooting the echosounder with us. Western Work Boats has manufactured a pole mount for the echosounder transducer, and Kristin Hodge is joining us from Cornell University’s Bioacoustics Research Program to assist with data collection. Callum Lilley and Mike Ogle from the New Zealand Department of Conservation will join us in Wellington to collect the biopsy samples, and Rochelle Constantine and Scott Baker will facilitate the archiving and transport of the tissue samples back to Newport for analysis. Scientific colleagues at NIWA will collaborate on oceanographic aspects and conduct stable isotope analysis of tissue samples. We are also grateful to the indispensable logistical support from Kathy Minta and Minda Stiles in the OSU Marine Mammal Institute. And, of course we could not do any of this work without the generous funding support from The Aotearoa Foundation, The New Zealand Department of Conservation, Greenpeace Aotearoa New Zealand, OceanCare, The International Fund for Animal Welfare Oceanea Office, Kiwis Against Seabed Mining, the OSU Marine Mammal Institute, and the Thorpe Foundation. Our science is stronger when we pool our energy and expertise, and I am thrilled to be working with this great group of people.

Stay tuned, the next several blogs will be posted from the field by the New Zealand blue whale team!

GEMM Lab 2016: A Year in the Life

By Dawn Barlow, MSc Student, Department of Fisheries and Wildlife, Oregon State University

The year is rapidly coming to a close, and what a busy year it has been in the Geospatial Ecology of Marine Megafauna Lab! In 2016, our members have traveled to six continents for work (all seven if we can carry Rachael’s South African conference over from the end of 2015…), led field seasons in polar, temperate, and tropical waters, presented at international conferences, processed and analyzed data, and published results. Now winter finds us holed up in our offices in Newport, and various projects are ramping up and winding down. With all of the recent turmoil 2016 has brought, it is a nice to reflect on the good work that was accomplished over the last 12 months. In writing this, I am reminded of how grateful I am to work with this talented group of people!

The year started with a flurry of field activity from our southern hemisphere projects! Erin spent her second season on the Antarctic peninsula, where she contributed to the Palmer Station Long Term Ecological Research Project.

Erin collecting a crabeater seal scat sample.
Erin in action collecting a crabeater seal scat sample along the West Antarctic Peninsula.

 

Aerial image of the research vessel and a pair of blue whales during the 2016 New Zealand survey.
Aerial image of the research vessel and a pair of blue whales during the 2016 New Zealand survey.

The New Zealand blue whale project launched a comprehensive field effort in January and February, and it was a fruitful season to say the least. The team deployed hydrophones, collected tissue biopsy and fecal samples, and observed whales feeding, racing and nursing. The data collected by the blue whale team is currently being analyzed to aid in conservation efforts of these endangered animals living in the constant presence of the oil and gas industry.

Midway atoll is home to one of the largest albatross colony in the world, and Rachael visited during the winter breeding season. In addition to deploying tracking devices to study flight heights and potential conflict with wind energy development, she became acutely aware of the hazards facing these birds, including egg predation by mice and the consumption of plastic debris.

Laysan albatross equipped with a GPS data logger.
Laysan albatross equipped with a GPS data logger.
Fledgling from last year with a stomach full of plastic.
Fledgling from last year with a stomach full of plastic.

Early summertime brought red-legged kittiwakes to the remote Pribilof Islands in Alaska to nest, and Rachael met them there to study their physiology and behavior.

Rachael with a noosepole on St. George Island, Alaska
Rachael with a noosepole on St. George Island, Alaska
Solene with Dr. Claire Garrigue during fieldwork at the Chesterfield Reefs, New Caledonia.
Solene with Dr. Claire Garrigue during fieldwork at the Chesterfield Reefs, New Caledonia.

As the weather warmed for us in the northern hemisphere, Solene spent the austral winter with the humpback whales on their breeding grounds in New Caledonia. Her team traveled to the Chesterfield Reefs, where they collected tissue biopsy samples and photo-IDs, and recorded the whale’s songs. But Solene studies far more than just these whales! She is thoroughly examining every piece of environmental, physical, and oceanographic data she can get her hands on in an effort to build a thorough model of humpback whale distribution and habitat use.

A humpback whale in New Caledonia's South Lagoon.
A humpback whale in New Caledonia’s South Lagoon.

Summertime came to Oregon, and the gray whales returned to these coastal waters. Leigh, Leila, and Todd launched into fieldwork on the gray whale stress physiology project. The poop-scooping, drone-flying team has gotten a fair bit of press recently, follow this link to listen to more!

The overhead drone captures a pair of gray whales surfacing between kelp beds off Cape Blanco, Oregon, with the research vessel nearby. Take under NOAA/NMFS permit #16111 given to John Calambokidis.
The overhead drone captures a pair of gray whales surfacing between kelp beds off Cape Blanco, Oregon, with the research vessel nearby. Take under NOAA/NMFS permit #16111 given to John Calambokidis.

And while Leigh, Leila, and Todd followed the grays from the water, Florence and her team watched them from shore in Port Orford, tracking their movement and behavior. In an effort to gain a better understanding of the foraging ecology of these whales, Florence and crew also sampled their mysid prey from a trusty research kayak.

13
Florence and the summer 2016 gray whale field team.
DSCF0758
Kelli Iddings sampling mysid near Port Orford.

With the influx of gray whales came an influx of new and visiting GEMM Lab members, as Florence’s team of interns joined for the summer season. I was lucky enough to join this group as the lab’s newest graduate student!

All summer 2016 GEMM Lab members.
All of the summer 2016 GEMM Lab members.

Our members have presented their work to audiences far and wide. This summer Leigh, Amanda, and Florence attended the International Marine Conservation Congress, and Amanda was awarded runner-up for the best student presentation award! Erin traveled to Malaysia for the Scientific Convention on Antarctic Research, and Rachael and Leigh presented at the International Albatross and Petrel Conference in Barcelona. With assistance from Florence and Amanda, Leigh led an offshore expedition on OSU’s research vessel R/V Oceanus to teach high school students and teachers about the marine environment.

Amanda with her award!
Amanda with her award!
Science Party musters in the dry lab for safety debrief aboard R/V Oceanus.
Science Party musters in the dry lab for safety debrief aboard R/V Oceanus.

Courtney fledged from the GEMM Lab nest before 2016 began, but the work she did while here was published in Marine Mammal Science this year. Congrats Courtney! And speaking of publications, additional congratulations to Solene for her publication in Marine Ecology Progress Series, Rachael for her four publications this year in PLOS ONE, Marine Ecology Progress Series, Marine Ornithology, and the Journal of Experimental Biology, and Leigh for her five publications this year in Polar Biology, Diversity and Distributions, Marine Ecology Progress Series, and Marine Mammal Science!

Wintertime in Newport has us tucked away indoors with our computers, cranking through analyses and writing, and dreaming about boats, islands, seabirds, and whales… Solene visited from the South Pacific this fall, and graced us with her presence and her coding expertise. It is a wonderful thing to have labmates to share ideas, frustrations, and accomplishments with.

No heat in the lab can't stop us from solving a coding problem together on a wintery evening!
Solving a coding problem together on a wintery evening.

As the year comes to a close, we have two newly-minted Masters of Science! Congratulations to Amanda and Erin on successfully defending their theses, and stay tuned for their upcoming publications!

Amanda's post-defense celebration!
Amanda’s post-defense celebration!
Erin's post-defense celebration!
Erin’s post-defense celebration!

We are looking forward to what 2017 brings for this team of marine megafauna enthusiasts. Happy holidays from the GEMM Lab!

Happy GEMM Lab members.
Happy GEMM Lab members, enjoying one another’s company and playing Evolution.