Surprises at Sea

By Rachel Kaplan, PhD student, OSU College of Earth, Ocean and Atmospheric Sciences and Department of Fisheries, Wildlife, & Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

By Renee Albertson, Senior Instructor and Research Associate, OSU Department of Fisheries, Wildlife, & Conservation Sciences, Marine Mammal Institute

Going to sea is always full of surprises, and the most recent Northern California Current (NCC) cruise was no different. We had surprises both logistical and scientific, disappointing and delightful. By the end, what stood out clearly is that with a great team of people like the one aboard the R/V Bell M. Shimada, any challenging situation is made the best of, and any exciting moment is only more so.

Our great science party enjoys the Seattle skyline at the end of the September 2022 NCC cruise.

A few days into the cruise, engine trouble caused the Commanding Officer to decide that we needed to cut the trip short, halt instrument deployment operations, and head in to port. Lucky for us, this new plan included 30 hours of transit to Seattle, and long transits are exactly when we collect marine mammal observations. We were able to keep surveying as we moved up the coast and through the Strait of Juan de Fuca into Seattle. There were many surprises here too – we did not find whales in areas where we have previously sighted many, and overall made fewer sightings than is typical.

For example, we expected to see many whales on the Heceta Head Line (south of Newport), whose shallow depth makes the region a rich underwater garden that supports prey and attracts whales. Instead, we saw hardly any whales in this area. Perhaps they simply weren’t present, or perhaps we missed spotting some whales due to the heavy fog, which makes sighting animals that are not near the ship difficult to impossible. This dearth of animals led us to have to interesting conversations with other researchers as we speculated about what might be going on. The scientists on board these NCC cruises collectively research a wide range of oceanographic fields, including ocean chemistry, phytoplankton, zooplankton, fish, seabirds, and marine mammals. Bringing these data together can provide a better understanding of how the ecosystem is changing over time and help contextualize observations in the moment.

Though we often think about how the distributions of prey structure those of foraging whales, we started to wonder whether a lower trophic level could be at play here. Interestingly, in situ phytoplankton analyses showed a type of diatom called Pseudo-nitzchia along much of our cruise track, with the highest concentration off Cape Meares. In stressful conditions, these diatoms sometimes produce the toxin domoic acid, and we wondered whether this could possibly be related to the low whale counts.

Cells of Pseudo-nitzschia, a genus of microalgae that includes several species that make the neurotoxin domoic acid. NOAA photo courtesy of Vera Trainer.

Along the northern Oregon coast and near the Columbia River, the number of whales we observed increased dramatically. The vast majority were humpbacks, some of which were quite active, breaching and tail slapping the surface of the water. On our best day, we turned into the Strait of Juan de Fuca and sighted about 20 whales in quick succession, as well as a sea otter, and both Steller and California sea lions.

Simultaneously as we surveyed for whales, we were able to continue collecting concurrent echosounder data, which reveals the presence of nearby prey like krill and forage fish. Early in the trip, other researchers also collected krill samples that we could bring back to shore and analyze for their caloric content. Even with a shorter time at sea, we felt lucky to be able to fulfill these scientific goals.

Research cruises always center around two things: science and people. Discussing the scientific surprises we observed with other researchers aboard was inspirational, and left us with interesting questions to pursue. Navigating changes to the cruise plan highlighted the importance of the people aboard even more. Everyone worked together to refine our plans with cooperation and positivity, and we all marveled at what a great group it was, often saying, “Good thing we like each other!”

The cruise ended by transiting under the Fremont Bridge into Lake Union.

On the last day of the cruise, we transited into Seattle, moving through the Ballard Locks and into Lake Union. It was an incredible experience to see the city from the water, and an amazing way to cap off the trip. With the next NCC cruise ahead in a few months, we are excited to get back out to sea together soon and tackle whatever surprises come our way.

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly message when we post a new blog. Just add your name and email into the subscribe box below.

Loading

Bombs Away! A Summer of Bomb Calorimetry

By Hadley Robinson, undergraduate student, OSU College of Earth, Ocean, and Atmospheric Sciences and School of Language, Culture, and Society

My name is Hadley Robinson and I am a sophomore undergraduate at OSU, double majoring in Environmental Science and Spanish. This summer, I had the privilege of working with Rachel on her PhD research project involving bomb calorimetry, a technique that allows you to quantify the caloric content of organisms like the zooplankton krill.

Hadley preparing the bomb calorimetry machine to run a sample (photo by Rachel Kaplan).

Prior to this internship, I had never worked in a lab before, and as an environmental science major, I had no previous exposure to oceanography. The connection that Rachel made between our labwork and the broader goal of helping decrease whale entanglement events sparked my interest in this project. Our work this summer aimed to process a set of krill samples collected off the coast of Oregon and Washington, so that we could find the number of calories in single krill, and then look at patterns in krill caloric content based on their species, sex, and other characteristics. 

We first identified the krill by species and sex (this was my favorite part of the experiment!). I not only loved looking at them under the microscope, but I also loved how it became a collaborative process. We quickly began getting each other’s opinions on whether or not a krill was Euphausia pacifica, Thysanoessa spinifera, male, female, sexless, gravid (carrying eggs), and much more.

Female Thysanoessa spinifera krill (photo by Abby Tomita).

After identification, we weighed and dried the krill, and finally turned them into small pellets that could fit in an instrument called a bomb calorimeter. These pellets were placed individually into in a “bomb cell” that could then be filled with oxygen and receive a shock from a metal wire. When the machine sent an electric pulse through the wire and combusted the krill pellet, the water surrounding the bomb cell warmed very slightly. The instrument measures this minute temperature change and uses it to calculate the amount of energy in the combusted material. With this information, we were able to quantify how many calories each krill sample contained. Eventually, this data could be used to create a seasonal caloric map of the ocean. Assuming that foraging whales seek out regions with calorically dense prey, such a map could play a crucial role in predicting whale distributions. 

Working with Rachel taught me how dynamic the world of research really is. There were many variables that we had to control and factor into our process, such as the possibility of high-calorie lipids being lost if the samples became too warm during the identification process, the risk of a dried krill becoming rehumidified if it sat out in the open air, and even the tiny amount of krill powder inevitably lost in the pelletization process. This made me realize that we cannot control everything! Grappling with these realities taught me to think quickly, adapt, and most importantly, realize that it is okay to refine the process of research as it is being conducted. 

Intern Abby (left) pressing the krill powder into a pellet and Hadley (right) prepping the bomb (photo by Rachel Kaplan).

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly message when we post a new blog. Just add your name and email into the subscribe box below.

Loading

Keeping up with the HALO project: Recovering Rockhopper acoustic recording units and eavesdropping on Northern right whale dolphins

Marissa Garcia, PhD Student, Cornell University, Department of Natural Resources and the Environment, K. Lisa Yang Center for Conservation Bioacoustics

It was a June morning on the Pacific Ocean, and the R/V Pacific Storm had come to a halt on its journey back to shore. The night before, the Holistic Assessment of Living marine resources off Oregon (HALO) project team had disembarked from Newport and began the long transit to NH 65, a site 65 nautical miles offshore along the Newport Hydrographic line (NH line). Ever since the 1960s, researchers have been conducting oceanographic studies along the NH line; the HALO project seeks to add the biological dimension to these historical data collections.

We were on a mission to recover our first set of Rockhoppers that we had deployed in October 2021, just nine months earlier. The Rockhopper is an underwater passive acoustic recording unit developed by K. Lisa Yang Center for Conservation Bioacoustics at Cornell University. Earlier versions of underwater recorders were optimized to record baleen whales. By contrast, the Rockhopper is designed to record both baleen whales and dolphins on longer and deeper deployments, making it apt for research endeavors such as the HALO project. Three units, deployed at NH 25, 45, and 65, continuously recorded the soundscape of the Oregon waters for six months. In June, we were headed out to sea to recover these three units, collect the acoustic data, and deploy three new units.

Figure 1: The HALO project routinely surveys the trackline spanning between NH 25 and NH 65 on the NH line. Credit: Leigh Torres.

With the ship paused, our first task was to recover the Rockhopper we had deployed at NH 65. This Rockhopper deployment at NH 65 was our deepest successful deployment to date, moored at nearly 3,000 m.

So, how does one recover an underwater recording unit that is nearly 3,000 m below the surface? When the Rockhopper was deployed, it was anchored to the seafloor with a 60 kg cast iron anchor. It seems improbable that an underwater recording unit — anchored by such heavy weights — can eventually rise to the surface, but this capability is made possible through a piece of attached equipment called the acoustic release. By sending a signal of a numbered code from a box on the boat deck through the water column to the Rockhopper, the bottom of the acoustic release will begin to spin and detach from the weights. The weights are then left on the seafloor, as the Rockhopper slowly rises to the surface, now unhindered by the weights. Since these weights are composed of iron, they will naturally erode, without additional pollution contributed to the ecosystem. At NH 65, it took approximately an hour for the Rockhopper to reach the surface.

Figure 2: A diagram of the Rockhopper mooring. Of particular importance to this blog post is the acoustic release (Edgtech PORT MFE release) and the 60 kg anchor (Source: Klinck et al., 2020).

The next challenge is finding the Rockhopper bobbing amongst the waves in the vast ocean — much like searching for a needle in a haystack. The color of the Rockhopper helps aid in this quest. It’s imperative anyone out on the boat deck wears a life jacket; if someone goes overboard while wearing a life-jacket, on-board passengers can more easily spot a bright orange spot in an otherwise blue-green ocean with white caps. The design of the Rockhopper functions similarly; the unit is contained in a bright orange hard hat, helping researchers on-board to more easily spot the device, especially in an ocean often characterized by high sea state.

We also use a Yagi antenna to listen for the VHF (Very High Frequency) signal of the recovery gear, a signal the Rockhopper emits once it’s surfaced above the waterline. Pointing the antenna toward the ocean, we can detect the signal, which will become stronger when we point antenna in the direction of the Rockhopper; once we hear that strong signal, we can recommend to the boat captain to start moving the vessel in that direction.

Figure 3: Derek Jaskula, a member of the field operations team at the K. Lisa Yang Center for Conservation Bioacoustics, points the Yagi antenna to detect the signal from the surfaced Rockhopper. Credit: Marissa Garcia.

At that point, all eyes are on the water, binoculars scanning the horizon for the orange. All ears are eager for the exciting news: “I see the Rockhopper!”

Once that announcement is made, the vessel carefully inches toward the Rockhopper until it is just next to the vessel’s side. Using a hook, the Rockhopper is pulled upward and back onto the deck.

What we weren’t expecting, however, during this recovery was to have our boat surrounded by two dolphin species: Pacific white-sided dolphins (Lagenorhynchus obliquidens) and Northern right whale dolphins (Lissodelphis borealis).

One HALO team member shouted, “I see Northern right whale dolphins!”

Charged with excitement, I quickly climbed up the crow’s nest to get a birds-eye look at the ocean bubbling around us with surfacing dolphins. Surely enough, I spotted the characteristic stripe of the Pacific-white sided dolphins zooming beneath the surface, in streaks of white. But what I was even more eager to see were the Northern right whale dolphins, flipping themselves out of the water, unveiling their bright white undersides. Because they lack dorsal fins, we on-board colloquially refer to Northern right whale dolphins as “sea slugs” to describe their appearance as they surface.

Figure 4: The Northern right whale dolphin (Lissodelphis borealis) surfaces during a HALO cruise. Source: HALO Project Team Member. Permit: NOAA/NMFS permit #21678.

In my analysis of the HALO project data for my PhD, I am interested in using acoustics to describe how the distribution of dolphins and toothed whales in Oregon waters varies across space and time. One species I am especially fascinated to study in-depth is the Northern right whale dolphin. To my knowledge, only three papers to date have attempted to describe their acoustics — two of which were published in the 1970s, and the most recent of which was published fifteen years ago (Fish & Turl, 1976; Leatherwood & Walker, 1979; Rankin et al., 2007).

Leatherwood & Walker (1979) proposed that Northern right whale dolphins produced two categories of whistles: a high frequency whistle that turned into burst-pulse vocalizations, and low frequency whistles. However, Rankin et al. (2007) proposed that Northern right whale dolphins may not actually produce whistles, based on two lines of evidence. First, Rankin et al. (2007) combined visual and acoustic survey, and all vocalizations recorded were localized via beamforming methods to verify that recorded vocalizations were produced by the visually observed dolphins. The visual surveying component is key to validating the vocalizations of the species, which also hints that the HALO project’s multi-surveying approach (acoustic and visual) could help arrive at similar results. Second, the Rankin et al. (2007) explored the taxonomy of the Northern right whale dolphin to verify which vocalizations the species is likely to produce based on the vocal repertoire of its close relatives. The right whale dolphin is closely related to dolphins in the genus Lagenorhynchus — which includes white-sided dolphins — and Cephalorhynchus — which includes Hector’s dolphin. The vocal repertoire of these relatives don’t produce whistles, and instead predominantly produced pulsed sounds or clicks (Dawson, 1991; Herman & Tavolga, 1980). Northern right whale dolphins primarily produce echolocation clicks trains and burst-pulses. Although Rankin et al. (2007) claims that the Northern right whale dolphin does not produce whistles, stereotyped burst-pulse series may be unique to individuals, just as dolphin species use stereotyped signature whistles, or they may be relationally shared just as discrete calls of killer whales are.

Figure 5: The Northern right whale dolphin (Lissodelphis borealis) produces burst-pulses. There exists variation in series of burst-pulses. The units marked by (a) and (b) ultimately get replaced by the unit marked by (c). (Source: Rankin et al., 2007).

We have just finished processing the first round of acoustic data for the HALO project, and it is ready now for analysis. Already previewing an hour of data on the Rockhopper by NH 25, we identified potential Northern right whale dolphin recordings . So far, we have only visually observed Northern right whale dolphins nearby Rockhopper units placed at sites NH 65 and NH 45, so it was surprising to acoustically detect this species on the most inshore unit at NH 25. I look forward to demystifying the mystery of Northern right whale dolphin vocalizations as our research on the HALO project continues!

Figure 6: Potential Northern right whale dolphin vocalizations recorded at the Rockhopper deployed at NH 25.

Did you enjoy this blog? Want to learn more about marine life, research and conservation? Subscribe to our blog and get weekly updates and more! Just add your name into the subscribe box below! 

Loading

References

Dawson, S. (1991). Clicks and Communication: The Behavioural and Social Contexts of Hector’s Dolphin Vocalizations. Ethology, 88(4), 265–276. https://doi.org/10.1111/j.1439-0310.1991.tb00281.x

Fish, J. F. & Turl, C. W. (1976). Acoustic Source Levels of Four Species of Small Whales.

Herman, L. M., and Tavolga, W. N. (1980). “The communication systems of cetaceans,” in Cetacean behavior: Mechanisms and functions, edited by L. M. Herman (Wiley, New York), 149–209.

Klinck, H., Winiarski, D., Mack, R. C., Tessaglia-Hymes, C. T., Ponirakis, D. W., Dugan, P. J., Jones, C., & Matsumoto, H. (2020). The Rockhopper: a compact and extensible marine autonomous passive acoustic recording system. Global Oceans 2020: Singapore – U.S. Gulf Coast, 1–7. https://doi.org/10.1109/IEEECONF38699.2020.9388970

Leatherwood, S., and Walker, W. A. (1979). “The northern right whale dolphin Lissodelphis borealis Peale in the eastern North Pacific,” in Behavior of marine animals, Vol. 3: Cetaceans, edited by H. E. Winn and B. L. Olla (Plenum, New York), 85–141.

Rankin, S., Oswald, J., Barlow, J., & Lammers, M. (2007). Patterned burst-pulse vocalizations of the northern right whale dolphin, Lissodelphis borealis. The Journal of the Acoustical Society of America, 121(2), 1213–1218. https://doi.org/10.1121/1.2404919


To biopsy or not to biopsy? Reflecting on the impact of research activities on marine mammals in the wild

By Solène Derville, Postdoc, OSU Department of Fisheries, Wildlife, and Conservation Science, Geospatial Ecology of Marine Megafauna Lab

This blog is motivated by the recent publication I co-authored with my former PhD supervisor in New Caledonia (Garrigue & Derville 2022). As I am about to present our study entitled “Behavioral responses of humpback whales to biopsy sampling on a breeding ground: the influence of age-class, reproductive status, social context, and repeated sampling” as part of the Society for Marine Mammalogy Seminar Editor’s Selected Series, I have been reflecting on how my research impacts the animals I study.

The overwhelming majority of marine mammal scientists around the world agree that lethal sampling of whales and other marine mammals is unnecessary to fill current knowledge gaps and deplorable in a context of global biodiversity loss and habitat degradation (e.g., Clapham et al. 2003; Cote and Favaro 2016). More so, the academic community consistently seeks to improve the ethical framework within which research on live animals is conducted. While the study of free-living marine mammals poses challenges that are quite different than laboratory experiments, these practices are nonetheless discussed and questioned by the general public, managers, and the scientists themselves.

Among the field methods used to collect data from cetaceans, biopsy sampling is perhaps one of the most common. While it is sometimes possible to skim the water to collect the dead skin that individuals may shed during surface activities, cetaceans are most often biopsied remotely, using a veterinary rifle or a crossbow (Figure 1). The devices propel an arrow or a dart towards the animals to remove a small piece of skin and blubber inside a tip. These pieces can be a few centimeters to less than a centimeter long depending on the size of the species that is targeted (e.g., smaller darts are typically used for dolphins compared to large whales). The tissues sampled in this way are essential to address many biological, ecological, and behavioral questions that can ultimately inform conservation. Yet, biopsy sampling is invasive and a few studies have investigated its potential impact on humpback whales (Cantor et al., 2010; Clapham & Mattila, 1993), among other cetaceans (see review in Noren & Mocklin, 2012).

Figure 1: Conducting biopsy sampling of a humpback whale with a crossbow (above), and sample of skin and blubber collected during biopsy sampling (below). Photo credit: Nicolas Job – Heos Marine (MARACAS expeditions 2017, New Caledonia)

When presenting biopsy sampling to the general public, who hasn’t had to answer the tricky question “but does it hurt?”? Well I wish the whale could pop its head out the water and just tell me if it did! Measuring disturbance or pain is unfortunately extremely challenging in the case of cetaceans. Sophisticated methods that rely on new technologies (hormone analysis, drone video footages etc.) are being developed by the GEMM lab and other research groups to assess the impact of human activities around whales and should allow a better understanding of acute and chronic stress in the near future.

The strength of our study that was just published in the Marine Mammal Science journal is not technology, but rather the application of very standard approach over many years of consistent field work. In New Caledonia, in the southwest Pacific, humpback whales have been monitored as part of a long-term program initiated in the mid ‘90s by Dr. Claire Garrigue. Every austral winter, when whales regroup in these warm subtropical waters to breed and nurse their calves, biopsy samples were collected on individuals of all age-classes: adults, juveniles, and calves. During each of the 2,249 biopsies conducted throughout 20 years of research, the behavioral response of individual whales was qualitatively assessed and recorded. First, the response to the boat approach was recorded (whether the whale avoided the boat or not), then the response to the biopsy immediately after the shot, which was categorized as none, weak, moderate, or strong, based on general definitions provided by Weinrich et al. 1991. We investigated the frequency of these behavioral responses according to age-class, sex, female reproductive status, and social context, as well as the sampling system and habitat. We also assessed the effect of repeated biopsy sampling over time at the individual level.

We found that humpback whales did not show observable behavioral responses in over half of the cases (58.7%). Interestingly, we also discovered that calves did not respond more than adult whales, whereas juveniles stood out as the most sensitive age-class (Figure 2). Mothers with a calf reacted more often to the boat compared to non-lactating females and males, but paradoxically had the weakest responses to the biopsy sampling itself. We interpreted this dual response as the result of individually varying baseline stress levels, with some very shy mothers actively avoiding boats and others displaying a very oblivious attitude to both the boat’s proximity and to the brief impact of the biopsy sampling.

Figure 2: Responses of humpback whales to biopsy sampling according to age-class. Sample sizes are reported on the bar plot, except for strong responses (adults: 7, juveniles: 3, calves: 2). Figure reproduced from Garrigue & Derville 2022.

Although biopsies could have stressed animals in a way that was not measurable with our simple behavioral approach, it is still reassuring to see that most whales did not show a response, which allows us to assume that the impact of the biopsy was very minimal. This sort of methodological research is needed to inform managers responsible for the delivery of research permits and for researchers themselves to keep questioning their practices.

As I was analyzing this data and writing the paper, I became more aware of the value each of these tissue samples had. In the case of biopsy sampling, I believe that the gain in knowledge is ultimately worth the cost, but we should always bear in mind that this conclusion comes from a human perspective. From when I am in the field approaching whales, to when I analyze the hard-won data in my office, I think about the ethics of our work. As a supporter of open science, my take-away message from this research journey was that we have responsibility to use and share this biological data as much as possible. We should always aim at making the most out of data, but even more so when it is acquired by working with live animals. The cost is never null, so let’s make it worth it!

Ethics statement

Research was conducted under annual permits delivered by the competent authorities of the government of New Caledonia, and the Northern Province and Southern Province of New Caledonia. This study was carried out following the marine mammal treatment guidelines of the Society for Marine Mammalogy. The data that support the findings of this study are openly available here (DataSuds repository, doi: 10.23708/QYWDPO).

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly message when we post a new blog. Just add your name and email into the subscribe box below.

Loading

References

Cantor, M., Cachuba, T., Fernandes, L., & Engel, M. H. (2010). Behavioural reactions of wintering humpback whales (Megaptera novaeangliae) to biopsy sampling in the western South Atlantic. Journal of the Marine Biological Association of the United Kingdom, 90(8), 1701–1711. https://doi.org/10.1017/S0025315409991561

Clapham, P. J., & Mattila, D. K. (1993). Reactions of humpback whales to skin biopsy sampling on a West Indies breeding ground. Marine Mammal Science, 9(4), 382–391. https://doi.org/10.1111/j.1748-7692.1993.tb00471.x

Cote, Isabelle M., and Corinna Favaro. “The scientific value of scientific whaling.” Marine Policy 74 (2016): 88-90.

Garrigue, C., & Derville, S. (2022). Behavioral responses of humpback whales to biopsy sampling on a breeding ground : the influence of age-class , reproductive status , social context , and repeated sampling. Marine Mammal Science, 38, 102–117. https://doi.org/10.1111/mms.12848

Noren, D. P., & Mocklin, J. A. (2012). Review of cetacean biopsy techniques: Factors contributing to successful sample collection and physiological and behavioral impacts. Marine Mammal Science, 28(1), 154–199. https://doi.org/10.1111/ j.1748-7692.2011.00469.x

Phillip J. Clapham, Per Berggren, Simon Childerhouse, Nancy A. Friday, Toshio Kasuya, Laurence Kell, Karl-Hermann Kock, Silvia Manzanilla-Naim, Giuseppe Notabartolo Di Sciara, William F. Perrin, Andrew J. Read, Randall R. Reeves, Emer Rogan, Lorenzo Rojas-Bracho, Tim D. Smith, Michael Stachowitsch, Barbara L. Taylor, Deborah Thiele, Paul R. Wade, Robert L. Brownell, Whaling as Science, BioScience, Volume 53, Issue 3, March 2003, Pages 210–212, https://doi.org/10.1641/0006-3568(2003)053[0210:WAS]2.0.CO;2

Weinrich, M. T., Lambertsen, R. H., Baker, C. S., Schilling, M. R., & Belt, C. R. (1991). Behavioural responses of humpback whales (Megaptera novaeangliae) in the southern gulf of Maine to biopsy sampling. Reports of the International Whaling Commission, Special Issue 13,91–97

Experiencing a Physical Manifestation of my PhD at Sea in the NCC

Rachel Kaplan, PhD student, Oregon State University College of Earth, Ocean, and Atmospheric Sciences and Department of Fisheries, Wildlife, and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

I always have a small crisis before heading into the field, whether for a daytrip or a several-month stint. I’m always dying to go – up until the moment when it is actually time to leave, and I decide I’d rather stay home, keep working on whatever has my current focus, and not break my comfortable little routine.

Preparing to leave on the most recent Northern California Current (NCC) cruise was no different. And just as always, a few days into the cruise, I forgot about the rest of my life and normal routines, and became totally immersed in the world of the ship and the places we went. I learned an exponential amount while away. Being physically in the ecosystem that I’m studying immediately had me asking more, and better, questions to explore at sea and also bring back to land. 

Many of these questions and realizations centered on predator-prey relationships between krill and whales at fine spatial scales. We know that distributions of prey species are a big factor in structuring whale distributions in the ocean, and one of our goals on this cruise was to observe these relationships more closely. The cruise offered an incredible opportunity to experience these relationships in real time: while my labmates Dawn and Clara were up on the flying bridge looking for whales, I was down in the acoustics lab, watching incoming echosounder data in order to identify krill aggregations. 

From left, Clara and Dawn survey for marine mammals on the flying bridge.

We used radios to stay in touch with what we were each seeing in real time, and learned quickly that we tended to spot whales and krill almost simultaneously. Experiencing this coherence between predator and prey distributions felt like a physical manifestation of my PhD. It also affirmed my faith in one of our most basic modeling assumptions: that the backscatter signals captured in our active acoustic data are representative of the preyscape that nearby whales are experiencing.

Being at sea with my labmates also catalyzed an incredible synthesis of our different types of knowledge. Because of the way that I think about whale distributions, I usually just focus on whether a certain type of whale is present or not while surveying. But Clara, with her focus on cetacean behavior, thinks in a completely different way from me. She timed the length of dives and commented on the specific behaviors she noticed, bringing a new level of context to our observations. Dawn, who has been joining these cruises for five years now, shared her depth of knowledge built through returning to these places again and again, helping us understand how the system varies through time.

Observing whale behavior, such as for these humpbacks, provides valuable information on how they are using a given area.

One of the best experiences of the cruise for me was when we conducted a targeted net tow in an area of foraging humpbacks on the Heceta Head Line off the central Oregon coast. The combination of the krill signature I was seeing on the acoustics display, and the radio reports from Dawn and Clara of foraging dives, convinced me that this was an opportunity for a net tow,  if possible, to see exactly what zooplankton was in the water near the whales. Our chief scientist, Jennifer Fisher, and the ship’s officers worked together to quickly turn the ship around and get a net in the water, in an effort to catch krill from the aggregation I had seen.  

This unique opportunity gave me a chance to test my own interpretation of the acoustics data, and compare what we captured in the net with what I expected from the backscatter signal. It also prompted me to think more about the synchrony and differences between what is captured by net tows and echosounder data, two primary ways for looking at whale prey. 

Collecting tiny yet precious krill samples associated with foraging humpbacks!

Throughout the entire cruise, the opportunity to build my intuition and notice ecological patterns was invaluable. Ecosystem modeling gives us the opportunity to untangle incredible complexity and put dynamic relationships in mathematical terms, but being out on the ocean provides the chance to develop a feel for these relationships. I’m so glad to bring this new perspective to my next round of models, and excited to continue trying to tease apart fine-scale dynamics between whales and krill.

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly message when we post a new blog. Just add your name and email into the subscribe box below.

Loading

Yonder Whales and Nearby Prey: A New Look at a Familiar System

Rachel Kaplan1, Dawn Barlow2, Clara Bird3

1PhD student, Oregon State University College of Earth, Ocean, and Atmospheric Sciences and Department of Fisheries, Wildlife, and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

2Postdoctoral Scholar, OSU Department of Fisheries, Wildlife, and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

3PhD Candidate, OSU Department of Fisheries, Wildlife, and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

What do peanut butter m&ms, killer whales, affogatos, tired eyes, and puffins all have in common? They were all major features of the recent Northern California Current (NCC) ecosystem survey cruise. 

The science party of the May 2022 Northern California Current ecosystem cruise.

We spent May 6–17 aboard the NOAA vessel Bell M. Shimada in northern California, Oregon, and Washington waters. This fabulously interdisciplinary cruise studies multiple aspects of the NCC ecosystem three times per year, and the GEMM lab has put marine mammal observers aboard since 2018.

This cruise was a bit different than usual for the GEMM lab: we had eyes on both the whales and their prey. While Dawn Barlow and Clara Bird observed from sunrise to sunset to sight and identify whales, Rachel Kaplan collected krill data via an echosounder and samples from net tows in order to learn about the preyscape the whales were experiencing. 

From left, Rachel, Dawn, and Clara after enjoying some beautiful sunset sightings. 

We sailed out of Richmond, California and went north, sampling as far north as La Push, Washington and up to 200 miles offshore. Despite several days of challenging conditions due to wind, rain, fog, and swell, the team conducted a successful marine mammal survey. When poor weather prevented work, we turned to our favorite hobbies of coding and snacking.

Rachel attends “Clara’s Beanbag Coding Academy”.

Cruise highlights included several fin whales, sperm whales, killer whales, foraging gray whales, fluke slapping and breaching humpbacks, and a visit by 60 pacific white-sided dolphins. While being stopped at an oceanographic sampling station typically means that we take a break from observing, having more time to watch the whales around us turned out to be quite fortunate on this cruise. We were able to identify two unidentified whales as sei whales after watching them swim near us while paused on station. 

Marine mammal observation segments (black lines) and the sighting locations of marine mammal species observed during the cruise.

On one of our first survey days we also observed humpbacks surface lunge feeding close to the ship, which provided a valuable opportunity for our team to think about how to best collect concurrent prey and whale data. The opportunity to hone in on this predator-prey relationship presented itself in a new way when Dawn and Clara observed many apparently foraging humpbacks on the edge of Heceta Bank. At the same time, Rachel started observing concurrent prey aggregations on the echosounder. After a quick conversation with the chief scientist and the officers on the bridge, the ship turned around so that we could conduct a net tow in order to get a closer look at what exactly the whales were eating.

Success! Rachel collects krill samples collected in an area of foraging humpback whales.

This cruise captured an interesting moment in time: southerly winds were surprisingly common for this time of year, and the composition of the phytoplankton and zooplankton communities indicated that the seasonal process of upwelling had not yet been initiated. Upwelling brings deep, cold, nutrient-rich waters to the surface, generating a jolt of productivity that brings the ecosystem from winter into spring. It was fascinating to talk to all the other researchers on the ship about what they were seeing, and learn about the ways in which it was different from what they expected to see in May.

Experiencing these different conditions in the Northern California Current has given us a new perspective on an ecosystem that we’ve been observing and studying for years. We’re looking forward to digging into the data and seeing how it can help us understand this ecosystem more deeply, especially during a period of continued climate change.

The total number of each marine mammal species observed during the cruise.

Did you enjoy this blog? Want to learn more about marine life, research, and conservation? Subscribe to our blog and get a weekly message when we post a new blog. Just add your name and email into the subscribe box below.

Loading

Back to the Future: The return of scientific conferences

By Rachel Kaplan, PhD student, Oregon State University College of Earth, Ocean, and Atmospheric Sciences and Department of Fisheries, Wildlife, and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

The pandemic has taught me that certain skills – including ones I never recognized as such – can atrophy. How do I construct an outfit that involves actual pants instead of gym shorts? How do I make a lunch that is portable and can be eaten outside my home?

These are things that I’ve had to relearn over the last year, as I increasingly leave my virtual work world and move back into the physical world. Recently, the new ways in which the world is opening up again have pushed me to brush off another skill – how do I talk to other people about my work?

The pandemic has necessarily made the world a bit more insular. A year and a half into my graduate career, I’ve mostly discussed my work within the cozy cocoon of my lab groups and cohort. In particular, I’ve lived the last few months in that realm of research that is so specific and internal that almost no one else fully understands or cares about what I’m doing: I’ve spent days tangled up in oodles of models, been woken up at night by dreams about coding, and sweated over the decimal points of statistical deviance-explained values. 

This period of scientific navel gazing abruptly ended this February. In the space of ten days, I presented at my first in-person conference during graduate school, gave a short talk at my first international conference, and gave my longest talk yet to a public audience. After reveling in the minutiae of research for months, it was so valuable to be forced to take a step back, think about the overarching narrative of this work, and practice telling that story to different audiences. 

A February talk for the Oregon chapter of the American Cetacean Society gave me the chance to tell the story of my research to a broad audience.

Presenting this work to an in-person audience for the first time was especially rewarding. With a physical (!) poster in hand, I headed out to Newport for the annual meeting of the Oregon Chapter of The Wildlife Society. The GEMM Lab really took this conference by storm – Leigh gave a plenary talk on the meeting’s theme of “Dynamic Oceans, Shifting Landscapes”, Lisa chaired a session and gave a talk about trophic relationships between kelp and whales, and Miranda presented a poster on the new Holistic Assessment of Living marine resources off the Oregon coast (HALO) project.

This great GEMM Lab presence gave me the opportunity to reference everyone else’s work as I shared my own, and to think about the body of work we do as a group and the coherence in research themes that different projects share. I almost lost my voice by talking for the entire duration of the poster session, and was energized by the opportunity to share this work with so many interested people.

The GEMM Lab and other OSU Marine Mammal Institute members presented alongside terrestrial researchers on the theme of “Dynamic Oceans, Shifting Landscapes”.

Just a few days later, the biennial Ocean Sciences Meeting began. Dawn presented on forecasting the distribution of blue whales in New Zealand’s South Taranaki Bight region, and several members of the Krill Seeker Lab, led by my co-advisor Dr. Kim Bernard, presented their own zooplankton ecology research.

Originally scheduled for Hawaii, this meeting was instead held virtually as a safety precaution against Covid-19. Nevertheless, the diversity of talks and time spent gathering online still gave me the sense of being part of an international ocean science community. People attended from every time zone, and watching early-morning talks while wearing pajamas with Solene, Dawn, and Quin the dog is officially one of my new favorite conference experiences.

In addition to the chance to discuss science with other students and researchers, it was great to have the opportunity to step back from our normal routines a bit. The Krill Seeker Lab did the conference-organized 5K walk together (in intermittent rain, of course) and our team even came within one point of winning the trivia contest. All the while, we were hopping in and out of poster sessions and talks, realizing that virtual conferences can be just as busy as in-person ones.

Taking a 5k-long break from watching talks! From left to right: Rachel Kaplan, Kim Bernard, Giulia Wood, and Kirsten Steinke.

Over the last two years, one of the things the pandemic has made me appreciate the most is the ability to gather. Dinner with friends, holidays with family – the ability to be together is far more tentative and precious than I realized during the “before times.” Now, as we start tiptoeing back into normal life a bit more, I’m appreciating the ability to gather for science and looking forward to more conferences in the future.

Did you enjoy this blog? Want to learn more about marine life, research and conservation? Subscribe to our blog and get a weekly email when we make a new post! Just add your name into the subscribe box on the left panel.

It Takes a Village to Raise a PhD Student

By Rachel Kaplan, PhD student, Oregon State University College of Earth, Ocean, and Atmospheric Sciences and Department of Fisheries, Wildlife, and Conservation Sciences, Geospatial Ecology of Marine Megafauna Lab

This year in late February is the 2022 Ocean Sciences Meeting, an interdisciplinary bonanza of ocean scientists from all over the world. The conference will be held online this year as a precaution against Covid-19, and a week of virtual talks and poster sessions will cover new research in diverse topics from microbial ecology to ocean technology to whale vocalizations.

The meeting will also include my first poster presentation at a major conference, and so I have the typical grad student jitters that accompany each new thing I do (read more about the common experience of “imposter syndrome” here). This poster is the first time since starting graduate school and joining Project OPAL that I’m trying to craft a full science story that connects whales, their prey, and oceanographic conditions.

Learning how to do the analyses to assess and quantify these connections has involved plenty of head-scratching and periodic frustration on my part, but it has also offered a surprisingly joyful and even moving experience. In my efforts to troubleshoot a problem with my prey analysis, I’ve reached out to nearly everyone who works with krill acoustic data on the West Coast. Every single person has been incredibly welcoming and ready to help me, and excited to learn about my work in return. This experience has made me realize how many people I have on my team, and that even strangers are willing to support me on the whacky journey that is a PhD.

Through these collaborations, I am learning to analyze the acoustic signal of krill, small animals that are important food for whales foraging off the coast of Oregon and beyond. As part of Project OPAL, we plan to compare krill swarms with whale survey data to learn about the types of aggregations that whales are drawn to. From the perspective of a hungry whale, not all krill are created equal.

Analysis of a layer of krill in the upper ocean. The blue color in the top panel indicates scattering of acoustic signal by the krill, and the outline in the bottom panel shows the results of an algorithm programmed to detect krill aggregations.

In addition to developing great remote relationships through this work, the ability to meet in person as we continue adapting to life during the pandemic has absolutely not lost its thrill. After over a year of meetings and collaborating on Zoom, I was delighted to meet GEMM Lab postdoc Solène Derville this January, after she journeyed from her home in New Caledonia to Oregon. It was so exciting to see her in real life (we’re more similar in height than I knew!) and a few minutes into our first lunch together she was already helping me refine my analysis plans and think of new approaches.

Our interaction also made me think about how impressive the GEMM Lab is. The first two people Solène saw upon her arrival in Oregon were me and fellow GEMM Lab student Allison Dawn, two newer members who joined the lab after her last trip to Oregon. Without a moment of hesitation, Allison stepped up to give Solène a ride to Newport from Corvallis to finish her long journey. The connection our lab has developed and maintained during a pandemic, across borders and time zones, is special.

Hiking on gorgeous days is just one of the many benefits of being in the same place! This adventure included spotting a whale blow off the coast and a lot of GEMM excitement.

As I look out at the next few weeks until the Ocean Sciences meeting, and out towards the rest of my PhD, I inevitably feel worried about all I need to accomplish. But, I know that the dynamics in our lab and the other collaborative relationships I’m forming are what will carry me through. Every meeting and new connection reminds me that I’m not doing this alone. I’m grateful that there’s a team of people who are ready and willing to help me muddle my way through my first Principal Components Analysis, puzzle over algorithm errors, and celebrate with me as we make progress.

Coming full circle

By Rachel Kaplan, PhD student, OSU College of Earth, Ocean, and Atmospheric Sciences and Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

Returning to a place you once lived always shows how much you and the world around you have changed, offering a new perspective on the time away and where you are now. I’m writing this from my old office at Bigelow Laboratory for Ocean Sciences in East Boothbay, Maine, where I worked before moving out to Oregon to join the GEMM Lab and start graduate school at OSU. Being back in Maine has made me reflect on how much I’ve learned over the last year, and given me the opportunity to think about what’s ahead.

As a science communications specialist at Bigelow for three years, much of my work involved quickly getting up to speed on new research and writing articles for a general audience about important ocean processes. My first year of grad school has both deepened and broadened my perspective on the ocean, prodding me to think at telescoping temporal and spatial scales. I can tell that I think about the ocean differently now.

In 2019, writing this feature-length article about impacts of changing climate on North Atlantic right whales and their prey was my first introduction to research using environmental models to help mitigate entanglement issues. Now, I’m excited to be pursuing research with these themes as part of the GEMM Lab’s Project OPAL.

Over the last year, my coursework in ocean ecology and biogeochemistry surveyed the physical and chemical workings of the ocean, marine ecosystem dynamics, and the global cycles that control much of life on earth. Through lab activities and fieldwork, I began learning about whales and the marine system off the coast of Oregon, and how to ask questions that occupy the intersection between whales and their environment.

This work and learning have made me think in a new way about whales as agents of biogeochemical cycling: how do they shuttle nutrients across large distances and affect global cycles? In what ways is the biogeography of whales an expression of the global patterns of light availability and nutrient fluxes that support their prey? How is it possible to detangle and encapsulate all of the relevant variability of a natural system into a mathematical model?

All these questions were churning in my mind at the start of this trip, as I spent the bus ride from Boston to Maine reading papers for our monthly GEMM lab meeting. I also remembered the first meeting that I joined, when I was so intimidated that I couldn’t imagine discussing research with this impressive group. This time, I was just as in awe as ever of the lab, but a bit more confident in wielding acronyms and sharing ideas.

I actually attended my first GEMM Lab meeting while still working in Maine, in July 2020. I was joined by my friends’ one-year-old daughter, who alternately tried to chime in on the meeting and shut my laptop. Now, she is a chatty two-year-old kid and newly a big sister. The new baby became part of my PhD this week too, snoozing in my lap as I edited an abstract.

Only 16 days old and already helping write an abstract!

Often, it’s only seeing my friends’ children grow that shows me how much time has passed. This time, I can feel it in myself, as well. I’m excited to have made it through the first year of coursework and to be learning to formulate research questions and think about ocean systems in new ways. I’m happy to be back in this place that inspired me to pursue a PhD, and to be able to share my own work and knowledge with former colleagues.

I gained so much during my time here at Bigelow: the communication and outreach skills in my job, inspiration from the scientific curiosity and passion of my colleagues, and the support of all these people who reassured me that I would get into grad school and that doing a PhD is a good idea. I’m so happy to be able to carry this support and momentum forward with me through the rest of grad school, and excited to return to Oregon and keep going.

Into the Krillscape: A Remote Expedition in Research and Mentorship

By Rachel Kaplan, PhD student, Oregon State University College of Earth, Ocean, and Atmospheric Sciences and Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

What are the most unexpected things you’ve done on Zoom in the last year? Since the pandemic dramatically changed all our lives in 2020, I think we’ve all been surprised by the diversity of things we’ve done remotely. I’ve baked bagels with a friend in Finland, done oceanography labs from my kitchen, had dance parties with people across the country, and conducted an award ceremony for my family’s Thanksgiving scavenger hunt – all on Zoom. Over the last several months, I’ve also mentored an Undergraduate Research, Scholarship, & the Arts (URSA) Engage student, named Amanda. Although we haven’t met in person yet, we’ve been connecting over Zoom since October. 

Amanda is an Ocean Sciences student working with me and Dr. Kim Bernard (CEOAS) to conduct a literature review about the two species of krill found off the coast of Oregon. Thysanoessa spinifera and Euphausia pacifica are an important food source for many of the animals that live off our coast — including blue, humpback, and fin whales. I am trying to learn how krill distributions shape those of humpback and blue whales as part of project OPAL, as well as which oceanographic factors drive krill abundances and distributions.

Thysanoessa spinifera (source: Scripps Institute of Oceanography). 

We’re also interested in T. spinifera and E. pacifica for the crucial roles they serve in ecosystems, beyond providing dinner for whales. Krill do many things that are beneficial to ecosystems and people, termed “ecosystem services.” These include facilitating carbon drawdown from the surface ocean to the deep, supporting lucrative fisheries species like salmon, flatfish, and rockfish, and feeding seabirds like auklets and shearwaters. We want to understand more fully the niche that T. spinifera and E. pacifica each fill off the coast of Oregon, which will help us anticipate how these important animals can be impacted by forces such as global climate change and marine management efforts.

Trying to understand the ecosystem services fulfilled by krill is inherently interdisciplinary, which means we have to learn a lot of new things, making this project a lot of fun. The questions Amanda and I have pursued together have ranged from intensely specific, to surprisingly broad. How many calories do blue whales need to eat in a day? How many krill do salmon need to eat? How big are krill fecal pellets, and how fast do they sink?

Trying to answer these questions has basically amounted to a heroic scouring of the internet’s krillscape by Amanda. She has hunted down papers dating back to the 1960s, pulled together findings from every corner of the world, and pursued what she refers to as “treasure troves” of data. In the process, she has also revealed the holes that exist in the literature, and given us new questions. This is the basis of the scientific process: understanding the current state of knowledge, identifying gaps in that knowledge, and developing the questions and methods needed to fill those gaps.

Euphausia pacifica (source: University of Irvine California, Peter J. Bryant).

Filling in knowledge gaps about T. spinifera and E. pacifica can help us better understand these animals, the ecosystems where they live, and the whales and other animals that depend on them for prey. It’s exciting to know that we will have the opportunity to help fill some of these gaps, as both Amanda and I continue this research over the course of our degrees.

Being able to engage in remote research and mentorship has been really rewarding, and it has shown me how far we’ve all come over the last year. Learning how to work together remotely has been crucial as we have adjusted to the funny new normal of the pandemic. As much as I miss working with people in person, I’ve learned that there’s a lot of great connection to be found even in remote collaboration – I’ve loved meeting Amanda’s pets on Zoom, learning about her career goals, and seeing her incredibly artistic representations of the carbon cycle held up to the camera.

Even though most of our conversations take place on Zoom from our homes, this research still feels plugged into a bigger community. Amanda and I also join Kim’s bigger Zooplankton Ecology Lab meetings, which include two other graduate students and eight undergraduate students, all of whom are working on zooplankton ecology questions that span from the Arctic to the Antarctic. Even though we’ve never met in person, a supportive and curious community has developed among all of us, which I know will persist when we can move back to in-person research and mentorship.