Diving Deeper

By Taylor Mock, GEMM Lab intern

Greetings, all!

My name is Taylor Mock. Since February I have been volunteering in the GEMM Lab and am ecstatic to make my online debut as part of the team!

For many years, I had a shallow relationship with Hatfield Marine Science Center. As a Newport native, I would spend mornings and evenings glancing over at the Hatfield buildings while driving over the bridge to and from school. I was always intrigued. Sure, I would hear snippets of research from my peers about what projects their parents were involved in, but the inner workings of the complex mystified me.

Toward the end of my Freshman year in 2012 at Westmont College in Santa Barbara, California, my mom asked me what my summer plans were. I replied with the typical “I don’t know… Get a job?” She insisted that instead of a job I think about getting an internship; experience that will last more than a summer. I inquired through a family friend (because every person in this little community is woven together some way or another) if any internships or volunteer opportunities were available at Hatfield. She pointed me in the direction of the Environmental Protection Agency and thus began my Hatfield volunteering saga. I worked that summer, and the next, at the EPA under the direction of Ted DeWitt and Jody Stecher on denitrification studies in estuarine marshes. That summer provided me a glorious front row seat to field research and a greater understanding of my potential as a person and as a scientist. Now, this experience was marvelous, but I knew shortly after starting that my heart was elsewhere.

It was during my study abroad semester in Belize as part of my internship at the Toledo Institute for Development and Environment (TIDE) that I realized I wanted to work with marine macroorganisms. At TIDE, I engaged in radio telemetry conservation efforts tracking Hicatee (Dermatemys mawii) aquatic turtles. We would spend days on a small boat floating through canals and setting nets in hopes of capturing individuals of this small population to outfit them with radio tracking devices. These would be later used to track foraging, mating, and travel patterns in the region. It was an amazing time, to say the least. I remember waking up on my 21st birthday from my camping hammock and staring up at the lush rainforest above my head with a warm breeze across my face, followed by spending the day in the presence of these glorious creatures. It was heaven. I returned to Westmont the following term and took a Marine Mammal Eco-Physiology course and absolutely fell in love with Cetacea. Yes, I had always been captivated by this clade of beings (and truthfully when I was eight years old had a book on “How to Become a Marine Mammal Trainer”), but this was deeper. Of course, pinnipeds and otters and polar bears and manatees were enjoyable to learn about. There was something about the Cetacea though and how they migrated up and down the coast (just like me!) that I really connected with. My time learning about these animals created an intimate understanding of another group of species that developed into a rich, indescribable empathetic connection. I had to take a couple years away from scholastics and away from biology for health and wellness reasons. One day, though, a couple years after graduating and returning to Newport I rekindled with Jody from the EPA. He asked me if I would like to volunteer under Leigh Torres in the Marine Mammal Institute at HMSC. I do not think I could have possibly said no. I have been enjoying my time in the GEMM Lab ever since!

Though I am available to help anyone with any task they need, the work I do mostly centers around photogrammetry.

Using photogrammetry skills to measure gray whales in the GEMM Lab.

Photogrammetry, essentially, means geo-spatially measuring objects using photographs. What that looks like for me is taking an aerial photograph (extracted from overhead drone video footage) of a whale, running the image through a computer program called “Matlab”, taking a series of measurements from the whale (e.g., tip of the mandible to the notch of the fluke, distance between each tip of the fluke, and several measurements across the midsection of the whale). Several images of individuals are processed in order to find an average set of measurements for each whale.

Final result of the photogrammetry method on a gray whale

You might be wondering, “How can one measure the distance accurately from just a photograph?” I am glad you asked! The drones are outfitted with a barometer to measure the atmospheric pressure and, in turn, altitude. The changing altitudes are recorded in a separate program that is run simultaneously with the video footage. Thus, we have the altitudinal measurements for every millisecond of the drone’s flight. To monitor the accuracy and functionality of the barometer, calibrations are completed upon deployment and retrieval of each drone flight. To calibrate: the initial takeoff height is measured, a board of known length is thrown into the water, the drone will then rise or lower slowly above the board between 10 and 40 m, photographs of the board are then taken from varying altitudes, and are processed in Matlab.

During my time in the GEMM Lab, I have had the pleasure of completing photogrammetry assignments for both Leila on the Oregon Coast gray whale and for Dawn on the New Zealand blue whale projects. These ladies, and the other members of the GEMM Lab, have been so patient and gracious in educating me on the workings of Matlab and the video processing systems. It is a distinct honor working with them and to delight in the astounding nature of these creatures together. Each day I am struck in sheer awe of how beautiful and powerful these whales truly are. Their graceful presence and movement through the water rivals even the most skillful dancer.

Over the last 6 years, I am delighted to say that my relationship with Hatfield has become much deeper. The people and the experiences I have encountered during my time here, especially in the GEMM Lab, have been nothing short of incredible. I am sincerely grateful for this continued opportunity. It fills my soul with joy to engage in work that contributes to the well being of the ocean and its inhabitants.

Thank you, Leigh and all of the GEMM Lab members. I hope to continue volunteering with you for as long as you will have me.

On learning to Code…

By Amanda Holdman, MSc student, Dept. Fisheries and Wildlife, OSU

I’ve never sworn so much in my life. I stared at a computer screen for hours trying to fix a bug in my script. The cause of the error escaped me, pushing me into a cycle of tension, self-loathing, and keyboard smashing.

The cause of the error? A typo in the filename.

When I finally fixed the error in my filename and my code ran perfectly – my mood quickly changed. I felt invincible; like I had just won the World Cup. I did a quick victory dance in my kitchen and high-fived my roommate, and then sat down and moved on the next task that needed to be conquered with code. Just like that, programming has quickly become a drug that makes me come back for more despite the initial pain I endure.

I had never opened a computer programming software until my first year of graduate school. Before then Matlab was just the subject of a muttered complaint by my college engineering roommate. As a biology major, I blew it off as something (thank goodness!) I would never need to use. Needless to say, that set me up for a rude awakening just one year later.

The time has finally come for me to, *gulp*, learn how to code. I honestly think I went through all 5 stages of grief before I realized I was at the point where I could no longer put it off.

By now you are familiar with the GEMM Lab updating you with photos of our charismatic study species in our beautiful study areas. However, summer is over. My field work is complete, and I’m enrolled in my last course of my master’s career. So what does this mean? Winter. And with winter comes data analysis. So, instead of spending my days out on a boat in calm seas, watching humpbacks breach, or tagging along with Florence to watch gray whales forage along the Oregon coast, I’ve reached the point of my graduate career that we don’t often tell you about: Figuring out what story our data is telling us. This stage requires lots of coffee and patience.

However, in just two short weeks of learning how to code, I feel like I’ve climbed mountains. I tackle task after task, each allowing me to learn new things, revise old knowledge, and make it just a little bit closer to my goals. One of the most striking things about learning how to code is that it teaches you how to problem solve. It forces you to think in a strategic and conceptual way, and to be honest, I think I like it.

For example, this week I mapped the percent of my harbor porpoise detections over tidal cycles. One of the most important factors explaining the distribution and behavior of coastal marine mammals are tides. Tidal forces drive a number of preliminary and secondary oceanographic processes like changes in water depth, salinity, temperature, and the speed and direction of currents. It’s often difficult to unravel which part of the tidal process is most influential to a species due to the several covariates related to the change in tides , how inter-related those covariates are, and the elusive nature of the species (like the cryptic harbor porpoise). However, while the analysis is preliminary, if we map the acoustic detections of harbor porpoise over the tidal cycle, we can already start to see some interesting trends between the number of porpoise detections and the phases of the tide. Check it out!


Now, I won’t promise that I’ll be an excellent coder by the end of the winter, but I think I might have a good chance at being able to mark the “proficient” box next to Matlab and R on my first job application. Yet, whatever your reason for learning code – whether you are an undergraduate hoping to get ahead for graduate school, a graduate student hoping to escape the inevitable (like me), or just someone who thinks getting a code to work properly is a fun game – my advice to you is this:

Google first. If that fails, take mental breaks. Revisit the problem later. Think through all possible sources of error. Ask around for help. Then, when you finally fix the bug or get the code to work the way you would like it to, throw a mini-party. After it’s all over, take a deep breath and go again. Remember, you are not alone!

Happy coding this winter GEMM Lab readers – and I wish you lots of celebratory dancing!