Keeping up with blue whales in a dynamic environment

By Dawn Barlow, MSc student, Department of Fisheries and Wildlife, Geospatial Ecology of Marine Megafauna Lab

“The marine environment is patchy and dynamic”. This is a phrase I have heard, read, and written repeatedly in my studies of marine ecology, and it has become increasingly tangible during the past several weeks of fieldwork. The presence of the blue whales we’ve come here to study is the culmination of a chain of events that begins with the wind. As we huddle up at anchor or in port while the winds blow through the South Taranaki Bight, the water gets mixed and our satellite images show blooms of little phytoplankton lifeforms. These little phytoplankton provide food for the krill, the main prey item of far larger animals—blue whales. And in this dynamic environment, nothing stays the same for long. As the winds change, aggregations of phytoplankton, krill and whales shift.

When you spend hours and hours scanning for blue whales, you also grow intimately familiar with everything that could possibly look like a blue whale but is not. Teasers include whitecaps, little clouds on the horizon, albatrosses changing flight direction, streaks on your sunglasses, and floating logs. Let me tell you, if we came here to study logs we would have quite the comprehensive dataset! We have had a few days of long hours with good weather conditions and no whales, and it is difficult not to be frustrated at those times—we came here to find whales. But the whale-less days prompt musings of what drives blue whale distribution, foraging energetics, and dreams of elaborate future studies and analyses, along with a whole lot of wishing for whales. Because, let’s admit it, presence data is just more fun to collect.

The view from the flying bridge of R/V Star Keys of Mt. Taranaki and a calm sea with no whales in sight. Photo by D. Barlow.

But we’ve also had survey days filled with so many whales that I can barely keep track of all of them. When as soon as we begin to head in the direction of one whale, we spot three more in the immediate area. Excited shouts of “UP!! Two o’clock at 300 meters!” “What are your frame numbers for your right side photos?” “Let’s come 25 degrees to port” “UUUPPP!! Off the bow!” “POOOOOOP! Grab the net!!” fill the flying bridge as the team springs into action. We’ve now spotted 40 blue whales, collected 8 biopsy samples, 8 fecal samples, flown the drone over 9 whales, and taken 4,651 photographs. And we still have more survey days ahead of us!

A blue whale surfaces just off the bow of R/V Star Keys. Photo by D. Barlow.

In Leigh’s most recent blog post she described our multi-faceted fieldwork here in the South Taranaki Bight. Having a small inflatable skiff has allowed for close approaches to the whales for photo-identification and biopsy sample collection while our larger research vessel collects important oceanographic data concurrently. I’ve been reading numerous papers linking the distribution of large marine animals such as whales with oceanographic features such as fronts, temperature, and primary productivity. In one particular sighting, the R/V Star Keys idled in the midst of a group of ~13 blue whales, and I could see foamy lines on the surface where water masses met and mixed. The whales were diving deep—flukes the size of a mid-sized car gracefully lifting out of the water. I looked at the screen of the echosounder as it pinged away, bouncing off a dense layer of krill (blue whale prey) just above the seafloor at around 100 meters water depth.  As I took in the scene from the flying bridge, I could picture these big whales diving down to that krill layer and lunge feeding, gorging themselves in these cool, productive waters. It is all mostly speculative at this point and lots of data analysis time remains, but ideas are cultivated and validated when you experience your data firsthand.

A blue whale shows its fluke as it dives deep in an area with abundant krill deep in the water column. Photo by L. Torres.

The days filled with whales make the days without whales worthwhile and valuable. To emphasize the dynamic nature of the environment we study, when we returned to an area in which we had seen heaps of whales just 12 hours before, we only found glassy smooth water and no whales whatsoever. Changing our trajectory, we came across nothing for the first half of the day and then one pair of whales after another. Some traveling, some feeding, and two mother-calf pairs.

The dynamic nature of the marine environment and the high mobility of our study species is what makes this work challenging, frustrating, exciting, and fascinating. Now we’re ready to take advantage of our next weather window to continue our survey effort and build our ever-growing dataset. I relish the wind-swept, sunburnt days of scanning and musing, and I also look forward to settling down with all of these data to try my best to compile all of the pieces of this blue whale puzzle. And I know that when I find myself behind a computer screen processing and analyzing photos, survey effort, drone footage, and oceanographic data I will be imagining the blue waters of the South Taranaki Bight, the excitement of seeing the water glow brilliantly just before a whale surfaces off our bow, and whale-filled survey days that end only when the sun sets over the water.

A big moon rises to the east and a bright oil rig on the horizon at the end of a long and fruitful survey day. Photo by L. Torres.
And to the west of the moon and the rig, the sun sets over the South Taranaki Bight. Photo by L. Torres.

 

One thought on “Keeping up with blue whales in a dynamic environment”

  1. Great report, made me jealous and reminded me of my small boat work in the Straits of Florida and Gulf of Mexico. Although often sea sick at the start of the trip, I soon began to enjoy the time at sea and fun I had collecting data (i.e., physical oceanography).
    Thanks for the memories, Bob M.

Leave a Reply

Your email address will not be published. Required fields are marked *