Originally printed in Terra Magazine – Courtesy of Nick Houtman

Professor Rich G. Carter (left), co-founder and CEO of Valliscor LLC, confers with Rajinikanth Lingampally, a research associate at Oregon State. (Photo: Chris Becerra)
Professor Rich G. Carter (left), co-founder and CEO of Valliscor LLC, confers with Rajinikanth Lingampally, a research associate at Oregon State. (Photo: Chris Becerra)

A good recipe depends on high-quality ingredients. That’s as true in industry (electronics, food products, chemical manufacturing) as it is in our kitchens. So when two Willamette Valley chemists developed methods for producing industrial chemicals with exceptional purity, they saw a business opportunity. The result is a new company: Valliscor. Co-founded in 2012 by Rich G. Carter, professor and chair of the Oregon State University Department of Chemistry, and industrial chemist Michael Standen, Valliscor produces organic building blocks for the pharmaceutical, electronics and biotech sectors. Its first product is a compound known as bromofluoromethane (BFM). BFM is a critical ingredient in the synthesis of fluticasone propionate, the active component in two popular medications: Flonase, a nasal spray; and Advair, an asthma inhaler. “The company was created to exploit the synergy between industrial know-how and academic innovation,” says Carter. “Valliscor harnesses licensed technology from Oregon State and from industrial partners to provide unique and cost-effective solutions for producing high-value chemicals. We can provide ultra-high purity materials that are superior to those offered by our competitors.” Before founding Valliscor, Carter and Standen had collaborated on numerous projects over the past 10 years, including the commercialization of an “organocatalyst” called Hua Cat, an advance in environmentally friendly chemical manufacturing. The OSU Research Office and the Advantage Accelerator program have been key to the company’s growth, Carter adds. “We’ve had great mentorship and guidance from the Advantage Accelerator leadership: Mark Lieberman, John Turner and Betty Nickerson. When we get stuck on a problem, they are just a phone call away.” The Oregon Nanoscience and Microtechnologies Institute (ONAMI) supported the company in 2012 with proof-of-concept funding and guidance from commercialization specialists Jay Lindquist and Michael Tippie and from Skip Rung, ONAMI executive director.

Who is your PI? – Mas Subramanian

Do you have a Graduate Student/Post-Doc Mentor? – Sean Muir

How did you learn about the position? – My best friend, who had been working in the research group for two terms prior, introduced me to the P.I.

Why did you get into Undergraduate Research? – I wanted to obtain practical, hands-on experience to supplement my didactic learning in the classroom.

What advice might you have for other Undergraduate students thinking of pursuing research or just getting started? – Build good relationships with your research team.  Science is inherently collaborative and as an undergraduate you will be receiving plenty of guidance from the graduate students and P.I.

Who is your PI? – Mas Subramanian

Do you have a Graduate Student/Post-Doc Mentor? – Sean Muir

How did you learn about the position? – After class my chemistry instructor introduced me to a graduate student within the Chemistry department who was researching different kinds of synthesis methods for making superconductors. Since then I have been working with the same person I was introduced to three years ago in Dr. Subramanian’s lab.

Why did you get into Undergraduate Research? – The first time I ever saw magnetic levitation was freshmen year in my general chemistry class – I had to understand how this was possible.  After my chemistry instructor explained to me how this relied on superconductor materials, and that stable levitation was possible due to ‘quantum locking’, I knew I wanted to research these further.

What advice might you have for other Undergraduate students thinking of pursuing research or just getting started? – Expect to be overwhelmed in the beginning of any research experience. I learned more about chemistry in one month of research then I did in one year of taking a class.

Walt Loveland, et. al, recently published a paper in Physical Review Letters.  As part of the publication and promotion, Physical Review Letters, requested a short summary of the article be written in layman’s terms.  Below is that summary:

OSU Scientists Explain Synthesis of New Chemical Elements
Exploring the limits of existence of the chemical elements is a driving force for chemists and physicists. OSU scientists (Yanez et al.) have reported (in Physical Review Letters) an important step in understanding
the production of the heaviest chemical elements and their survival.  Their novel approach, data and interpretation are ” of key importance for a better understanding”,  of the synthesis reactions.

The heaviest elements have been produced by hot fusion reactions at unexpectedly high rates.  The authors have measured the survival probability of one of these nuclei, 274Hs, at high excitation energy, finding a unusually high survival and have shown that survival is due to dissipative effects during de-excitation. These dissipative effects decrease the probability of fission occurring in these nuclei and thus increase their survival.  This finding helps explain the paradox of hot fusion reactions that make nuclei at high excitation energies (where the effect of nuclear shell structure is “washed out”,  and the apparent stabilizing effects of “the island of stability”  in these synthetic reactions.

Congratulations all!

Please stay tuned for links to the article!

 

 

Who is your PI? – David Ji

How did you get into Undergraduate Research? – I got into UG research because I heard of it from a T.A. at the Mole Hole.  He, like me, had a scholarship requiring a certain amount of credits, and he told me that it was a nice way to help fulfill that requirement while gaining real work experience and helping others.

What advice might you have for other Undergraduate students thinking of pursuing research or just getting started? – I am very happy with my UG research position. I enjoy going in for UG research, and learn a lot from it.  I also really like the UG research system, as it is a symbiosis, with both parties benefiting. It is difficult to tell others what to expect in the position, because that will vary greatly depending on what T.A. he/she works for, and what department of chemistry he/she works under.  In general, you should expect to aid the graduate student with their experiments in any way he/she asks, be it preparation work, clean up, experiment assistance, individual conduction of experiments, etc.
The best advice I have regarding UG research is to meet with the T.A. that you will be working for during the first week of the term and set up a timetable detailing what days and how many hours you will be coming in to work, fitting this timetable around both you and your T.A.’s schedule.  This assures that there will be no time conflicts for either of you, and will allow the research to run smoothly.

Undergraduate of the Quarter - Winter 2014
Undergraduate of the Quarter – Winter 2014

Chadd Armstrong has been selected as one of our Undergrads of the Quarter for Fall 2013.  Chadd is a non-traditional student who returned to school after the 2008 economic downturn. Having moved around the Pacific Northwest growing up, he graduated from Lebanon Union High before following a professional career in other states. Embarking initially at LBCC seeking a diagnostics imaging certificate, his General Chemistry Instructor there (Ron Backus) inspired him – “Chemistry is the physics of the small.”  He went on to take Organic Chemistry from Brigid Backus who further motivated him to pursue a higher level of education.  Since transferring to OSU, Chadd states that he has especially enjoyed KC Walsh in Physics and Claudia Maier in Chemistry.  Professor Maier’s CH 422 course was “very clear, precise” and “methodical.” He has also enjoyed ATS 320 “Man’s Impact on Climate” which he describes as a very interesting and worthwhile class.  He became involved in research, while still at LBCC, during a summer research fellowship at Trillium Fiber Fuels where became acquainted with Professor & Reser Faculty Scholar Vince Remcho (one of the four co-founders of this company). While at OSU, Chadd has been conducting research in Professor Remcho’s lab. Research provides Chadd with that day to day exposure to real-world chemistry problems that helps to tie everything together.  He enjoys working with grad students because the experience has helped grow his confidence in his own abilities. From his prior work experiences, he has brought more computer programming into the Remcho lab.  Graduating this June, he will have been fortunate enough, from scholarships and fellowships, to finish without having taken on any debt.  After graduation, he plans to go on to Grad School to get a PhD in Chemistry on the west coast.  He really enjoys research in applied fields and his long term goal is to work in a national lab or a university where he can conduct research and teach.  In his free time, Chadd likes to travel, visiting family and friends, all of who are very important to him.

Chadd describes OSU as a “fantastic school” and he feels very invested here.  We are so grateful to have talented students like Chadd as Chemistry majors and we want to congratulate him on his successes.  It is future alumni like Chadd that make OSU Chemistry an amazing place!

Guest Bloggers: Kim Thackray & Mike Lerner

Have you looked around and noticed that more and more items are powered by lithium ion batteries?  All cell phones and laptops use lithium ion batteries, and automobiles and even ships are moving toward this technology.  Advances in technology are making these batteries (and the products they power) smaller, lighter, and longer-lasting—but what happens to the batteries once they have outlived their usefulness?

Dr. Sloop battery researcher
Dr. Sloop enjoys football too.

The current technology for handling used batteries follows 2 tracks:  batteries are either ground up in order to extract the expensive components (nickel, cobalt), or…they go to the landfill.  Good earth stewardship demands a better, lower-energy alternative.  Dr. Steve Sloop (OSU, 1996), founder of OnTo Technology, is in the forefront of this field, helping to change the battery waste flow into a battery resource flow.

Working closely with researchers and students at Willamette University and OSU, OnTo Technology is developing direct recycling processes that entail disassembling used batteries into their reusable components, ensuring component quality, and then introducing these components back into the battery manufacturing process.  The associated recovery technologies, which must continually evolve as lithium-ion battery technology evolves, use much less energy and create much less waste than current recycling methods.  Although their new procedures are somewhat more labor-intensive, Steve calculates they use 1/62 as much energy (based on the Hess cycle calculation for smelting, boiling, and purifying the valuable components).  If the energy used to originally extract these materials from the earth is included, the savings are even greater.

OnTo Technology came into being as a company in 2004, starting with a loan from the Oregon Department of Energy.  This loan allowed Steve to hire a staff and to purchase equipment for pilot-plant scale research.  A battery recall by Apple provided the raw materials required for initial testing.  Interestingly, one of the first revenue streams for this fledgling company was reselling perfectly functional batteries (obtained in the recall but not on the recall list) on eBay.  Since that time, OnTo Technology has largely moved away from the small consumer electronics batteries to work with automobile and ship batteries; a grant from the US Department of Energy, Vehicles Division supports this newer focus.

When asked about the business model for his company, Steve explains that OnTo Technologies is not planning to become a battery manufacturer.  Instead, their goal is to license battery recycling technology to a manufacturing partner; currently they are working with XALT, a major US based manufacturer of large format batteries for cars and boats, and other manufacturers as well.  The scientists at OnTo are working to keep up with rapidly evolving battery technologies, in order to keep their partners in the forefront.  Their main product is knowledge and expertise in this exciting field.

Mike Lerner researches batteries full time at OSU
OSU’s Mike Lerner

In addition, OnTo works with OSU Chemistry’s Dr. Mike Lerner and his group to characterize material structures and compositions at different points in the recycling process. This information helps guide OnTo’s process development.  Collaborating for several years now on battery chemistry, Dr. Lerner and Dr. Sloop met 20 years ago when Steve was a doctoral student working with Mike.

Battery companies are not only interested in Steve’s ideas in order to save money on minerals.  There is momentum in local and state governments to require battery recycling, in order to reduce the toxic load in landfills; California already has such laws.  In addition, the marketing value of being considered a “green” manufacturer cannot be overstated.  Steve believes recycling is inevitable; he is leading the way in developing the best way to do it.

Many challenges remain; some manufacturers still think it is crazy to consider processes that are so labor intensive when it is easier/cheaper to grind and smelt, or discard, old batteries.  In the future, an automated disassembly line may reduce the required labor.  Right now, the scientists at OnTo Technologies continue to work on these challenges.

Guest Blogger: Mike Lerner

Dr. Lerner's booth before the other staffers arrived.  (photo courtesy of Mike Lerner)
Dr. Lerner’s booth before the other staffers arrived. (photo courtesy of Mike Lerner)

I attended the 31st International Battery Seminars in March. One the one hand, I presented a short review of current academic research on graphene in energy storage applications. My conclusions were that “gen-2” graphenes, with tailored functional edges and basal surfaces, present a possible route towards dense, electrically and thermally conductive composite hierarchical structures for battery or supercapacitor electrodes. And also that this is no secret, there is a lot of research activity ongoing all over the globe.

On the other hand, I manned an OSU exhibitor booth extolling the virtues of our soon-to-be-offered online course called “Chemistry and Materials of Batteries and Supercapacitors”.  There was an encouraging level of interest from large and small companies, governmental agencies, and other academics. I hope we’ll get a mix of students from these sources; among other advantages it will make for interesting class discussions.

Finally, the conference itself was fantastic. One could feel, almost palpably, the pull from industry for better batteries to meet the demands of the electric vehicle and smart grid markets. At the same time, we heard from many contributors that the existing technology and its logical extensions will not likely get us there — that major and fundamental advances in materials and chemistry are needed. What does this all mean? For one thing, it’s a very good time to be a battery chemist!

“Reprinted with permission from the February 2014 issue of TLT, the official monthly magazine of the Society of Tribologists and Lubrication Engineers, a not-for-profit professional society headquartered in Park Ridge, Ill., www.stle.org.”

Aluminum is continuing to be an important metal used in the manufacture of automobiles. Its  lighter weight (as compared to steel alloys), good strength and ability to elongate are important factors that enable automobiles to be produced with higher levels of fuel economy.

But aluminum does not have the mechanical strength of steel. In a previous TLT article, a new process  known as high-pressure torsion was discussed that increases the strength of aluminum to a level  comparable to carbon steel without sacrificing ductility. A well-known alloy, 7075 aluminum, was solution treated at 480 C for five hours followed by quenching in room temperature water. The resulting metal was found to display a strength of 1.0 GPa in a tensile strength test, which is comparable to a typical hardened and tempered carbon-steel alloy.

Key ConceptsAluminum is fabricated into components used in automobiles through a series of metalworking operations that occur mainly with water-based fluids. There are a number of challenges in finding optimum machining conditions for specific aluminum alloys.

But one of the intriguing issues is what happens to the aluminum alloy when it comes into contact with water, which is the primary component in a water-based  metalworking fluid. Aluminum can readily form a series of metal salts with other additives used in MWFs such as fatty acids. These salts can become water insoluble and form residues that are similar to greases.  Such contaminants are undesirable because they can degrade the performance of the MWF.

Chong Fang, assistant professor of chemistry at Oregon State University in Corvallis, Ore., says, “Addition of aluminum to water leads to the formation of a variety of complex species that include monomeric, oligomeric and polymeric hydroxides. These species are present in water as colloidal solutions and gels, but they can also form precipitates and crystals.”

Gaining a better understanding of the composition of these species is extremely difficult. Fang says, “Many of these species cannot be readily identified because they are difficult to detect using techniques such as  27Al nuclear magnetic resonance (NMR) and conventional Raman spectroscopy. The problem is water  binds in many different positions with respect to aluminum, leading to the formation of different types of highly coordinated structures, and there may be transient species involved. The elucidation of aqueous aluminum speciation pathways demands a technique capable of monitoring molecular choreography.”

Some of these aluminum water species are known as hydroxide clusters that contain multiple aluminum atoms. Fang says, “Formation of aluminum clusters is dependent on factors such as reagent concentration and the method and rate of solution pH change.”

If specific aluminum clusters can be selectively synthesized, then these clusters can be studied to gain an  understanding of their respective properties and how they may form when water contacts aluminum metal. One specific “flat” aluminum cluster has now been synthesized through a pHcontrolled process monitored by a novel analytical technique.

FEMTOSECOND RAMAN SPECTROSCOPY
Figure 3Fang and his fellow researchers synthesized an aqueous aluminum nanocluster known as Al13 by slowly raising the pH of a solution and following the reaction using an emerging technique known as Femtosecond Stimulated Raman Spectroscopy (FSRS). He says, “We chose to produce Al13 because this species  represents a naturally occurring mineral that is octahedral in configuration. We have also pioneered a novel technique that enables thin metal-oxide films that are a few atomic layers thick to be prepared directly from solution instead of using more expensive methods. This integrated platform will enable Al13 potentially to be used as a green solution in broad applications such as transistors, solar energy cells, catalytic converters and corrosion inhibitors.”

The researchers used an electrochemical process to slowly and precisely raise the pH of the reaction  mixture to produce Al13. Fang says, “In Stage I, we started at a pH of 2.2 where the dominant aluminum species prepared from a 1 molar aluminum nitrate solution is the monomeric aluminum hexa-aqua ion.”

The solution is placed in a two-compartment electrochemical cell, which contains an anode compartment and a cathode compartment. Nitrate ions migrate into the anode compartment where oxygen is produced.

Aluminum ions migrate into the cathode compartment where hydrogen is produced. The charge balance is maintained. An electric current is used to control the process, which exhibits a net reduction in proton  (hydrogen ions) concentration in the cathode compartment as the pH is slowly increased, wherein  condensation of aluminum species occurs to produce larger aluminum nanoclusters.

FSRS was used to follow the reaction because of the limitation of conventional Raman spectroscopy. Fang says, “We needed to detect small changes in Raman vibrational modes down to between 300 and 500 cm-1. Unfortunately, this frequency is too close to the fundamental pulse. Instead, we used non-resonant (800 nanometer) FSRS spectroscopy with a newly developed Raman probe pulse based on our photonic  advances to cover that spectral range.”

FSRS reveals that the reaction moves to stage II at a pH between 2.4 and 2.7 due to the formation of an  intermediate identified as Al7. Fang says, “As the pH increases to between 2.7 and 3.2, further  deprotonation strips positive charges at the outer shell of Al7, leading to the formation of the larger Al13 cluster, which represents Stage III of the process. The key is to catch a glimpse of aluminum speciation as the chemistry proceeds in water.”

Figure 3 shows the two-compartment electrochemical cell and the reaction process as it moves from  monomeric aluminum in Stage I to Al13 Stage III via an octahedrally coordinated Al7 intermediate in Stage II.

The researchers deliberately ran this reaction sequence at a low pH because the involving aluminum clusters could be identified using FSRS aided by computations, and they represent the onset of larger  aluminum cluster formation. Fang says, “Work is underway to characterize the different types of clusters and species that form in aqueous solution at pH values above 7. This effort might also bring us closer to the regime where dehydration and annealing yield metal oxide thin films with versatility.”

This work is also of interest to formulators of MWFs because they are designed to operate at a pH of 9. Potentially, the aluminum clusters identified at this alkaline pH may help formulators better understand how to prepare products that will minimize such concerns as staining.

Additional information can be found in a recent article2 or by contacting Dr. Fang at chong.fang@oregonstate.edu.

REFERENCES
1. Canter, N. (2011), “Super-Strong, Ductile Aluminum,” TLT, 67 (1), pp. 10-11.
2. Wang, W., Liu, W., Chang, I., Wills, L., Zakharov, L., Boettcher, S., Cheong, P., Fang, C. and Keszler, D. (2013), “Electrolytic Synthesis of Aqueous Aluminum Nanoclusters and In Situ Characterization by  Femtosecond Raman Spectroscopy and Computations,” Proc. Natl. Acad. Sci. U.S.A. 110 (46), pp.  18397-18401.

Neil Canter heads his own consulting company, Chemical Solutions, in Willow Grove, Pa. Ideas for Tech  Beat can be submitted to him at neilcanter@comcast.net.