Nobody wants to eat bitter cheese

There are many adjectives used to describe the taste of different kinds of cheese: mild, tangy, buttery, nutty, sharp, smoky, I could continue but I won’t. Our preferences between these different characteristics will then drive what cheese we look for in stores and buy. But I would wager that most people (or dare I say anyone?) are rarely looking for a bitter cheese. I had never thought about how cheese could be bitter; probably because it’s something that I’ve never tasted before and that’s because the cheese production industry actively works to prevent cheese from being bitter. Intrigued? Good, because our guest this week researches why and how cheese can become bitter.

Paige in the lab

Paige Benson is a first year Master’s student advised by Dr. David Dallas in the Food Science Department. For her research, Paige is trying to understand how starter cultures affect the bitterness in aged gouda and cheddar cheeses. The cheese-making process begins with ripening milk, during which milk sugar is converted to lactic acid. To ensure that this process isn’t random, cheese makers use starter cultures of bacteria to control the ripening process. The bitterness problems don’t appear until the very end when a cheese is in its aging stage, which can take anywhere from 0-90 days. During this aging process, casein proteins (one of the main proteins in milk and therefore cheese) are being broken down into smaller peptides and it’s during this step that bitterness can arise. Even though this bitter cheese problem has been widely reported for decades (probably centuries), there are many different hypotheses about what causes the bitterness. Some say it might be the concentration of peptides, while others believe it’s a result of the starter culture used, and a third school of thought is that it’s the specific types of peptides. Paige is trying to bring some clarity to this problem by focusing on the bitterness that might be coming from the peptides.

To accomplish this work, Paige will be making lots of mini cheeses from different starter cultures, then aging them and extracting the peptides from the cheese to investigate the peptide profiles through genome sequencing. Scaling down the size of the cheeses will allow Paige to investigate starter cultures in isolation as well as in combination with different strains to see how this may affect peptide profiles, and therefore potentially bitterness.

Some of the mini cheeses Paige makes for her research

Besides Paige’s research in cheese, we will also be discussing her background which also features lots of dairy! As a Minnesotan, Paige grew up surrounded by the best of the best dairy. In fact, her grandparents owned and ran a dairy farm, where Paige spent many of her summers and holidays. Her passion for food science was solidified when she started working as an organic farmer during her senior year of high school and she hasn’t ever looked back. Join us on Sunday, April 16th at 7 pm live on 88.7 FM or on the live stream. Missed the live show? You can listen to the recorded episode on your preferred podcast platform!

Diving into the Unknown: Exploring the Role of Viruses in Coral Reef Health

When you think of a coral reef, what do you picture? Perhaps you imagine colorful branching structures jutting out of rock and the sea floor, with flourishing communities of fish swimming about. Or if you’ve been paying attention to news about global warming for the past decade or two, maybe you picture desolate expanses of bleached corals, their bone-like structures eerily reminiscent of a mass graveyard.

What you might not picture is a zoomed-in view of the coral ecosystem: the multitude of bacteria, fungi, viruses, and algae that occupy the intricate crevices of every coral. While corals are indeed animals in their own right, they belong to a complex symbiotic relationship with these microorganisms: the algae, which are more specifically dinoflagellates, provide energy to the coral through the process of photosynthesis. Bacteria occupying the mucus layers cycle nutrients and play a role in defense against pathogen invasion through the production of antimicrobial peptides.

One lesser-known member of this community, or the coral ‘holobiont’ as it is called, are the viruses. It’s probable that, like other members of the holobiont, they contribute to the health of the coral in some way, but this role is as of yet unclear. Our guest this week is Emily Schmeltzer, a fifth year PhD student in the Vega Thurber lab in the Department of Microbiology, and these elusive viruses are exactly what she is trying to uncover.

Emily Schmeltzer, PhD candidate in Rebecca Vega-Thurber’s lab, takes a sample of a coral

“We don’t know a ton about viruses on coral reefs,” says Schmeltzer. “ We know that some probably cause disease or mortality through infections, but we don’t really know exactly what a lot of them are doing, because marine viral ecology is such a relatively new field,” she explains.

It’s not surprising: viruses, while the most abundant and diverse entity on earth, are incredibly tiny and difficult to detect in environments where other organisms also thrive. Part of the challenge is that they have no universally conserved genes: that is, no easy way to tell the genes from viruses apart from the genes of other organisms. When studying bacteria, a gene called the 16S rRNA gene can be used as a sort of ‘name tag’ – every bacteria has this gene, whereas other organisms do not. There’s no such thing for viruses, making them difficult to study if you don’t already know what you’re looking for.

Schmeltzer is studying the viruses that live on corals and their response to climate change. To do this, her PhD research has involved a massive spatiotemporal study (spatio = across different locations, temporal = across multiple time points) looking at nearly 400 individual coral colonies of three different species over 3 years. All of these colonies are off the coast of the Moorea, a small island in French Polynesia in the South Pacific. The ultimate goal of the project is to contribute to the ongoing data collection for the Moorea Coral Reef Long Term Ecological Research project, and to characterize virus community diversity and potential function  in the health of these corals.

Studying coral reefs is a big leap for Schmeltzer, who hails from the land-locked deserts of New Mexico. She was always interested in biology, which she attributes to her dad bringing home dead scorpions to look at together when she was a child. Arthropods ultimately ended up becoming her first research subjects: as an undergraduate at the University of New Mexico, she worked in an insect and spider taxonomy lab, before pivoting to working on West Nile virus.

So how did this insect-loving desert-dweller end up studying viruses that live on corals in the ocean? To learn more about Schmeltzer’s career trajectory, her love of corals, and the challenges of viral research, tune in to Inspiration Dissemination this Sunday, April 2nd at 7 PM. Listen live at 88.7 FM or on the live stream, or catch the episode after the show wherever you get your podcasts! 

Local Game Developer and OSU Alumni Leads Second Annual TTRPG Fundraiser to Support Trans Advocacy Groups in Florida

Rue Dickey (they/he) is a returning guest to ID this week. You may remember Rue from last year as the organizer who helped raise over $400,000 for two trans rights organizations in Texas via Tabletop Role Playing Games (TTRPGs). Well, they’re back at it this year and we’re here to tell you all about it!

In February, 2022 Texas governor Greg Abbott called for teachers and members of the public to report parents of transgender children to authorities, equating providing support and medical care for trans youth to child abuse. This combined with a climate of increasing anti-trans legislation across the US, led Rue to take action. Rue is an Oregon State University alumnus and a freelance game developer, designing games for Hitpoint Press, Cobalt Press, and publishing independent work on game hosting platforms such as itch.io. Wanting to do something to help children and transgender people living in Texas, Rue decided to turn his passion for TTRPGs into a fundraiser. The online indie game hosting platform itch.io has been used in the past to create fundraisers for charities by bundling together and selling games. A few of Rue’s friends who run a BIPOC tabletop server have had experience with creating profit-sharing bundles using the platform in the past, so after he consulted them and walked through the steps, he set up a bundraiser. By the time of our interview with Rue in April, 2022 they had raised over $400,000 for TENT (Transgender Education Network of Texas, a trans-led group that works to combat misinformation on the community level through the corporate level, offering workshops as well as emergency relief funds for trans folks in need) and OLTT (Organización Latina Trans in Texas, a Latina trans woman-led organization focusing on transgender immigrants in Texas, assisting with the legal processes of immigration, name changes, and paperwork.) In addition to this they had been interviewed by several national news outlets, including NBC, Gizmodo, and The Mary Sue, as well as gaming-centric websites like Polygon, Dicebreaker, and GamesHub

Rue is a 2019 graduate of OSU’s Communications and Microbiology programs.

This year Rue is continuing the fundraiser, but focusing on Florida which has garnered national attention for anti-trans legislation such as the Parental Rights in Education Act, which restricts schools from including LGBTQ+ topics in curricula. The proposed expanded provisions to the act would ban teachers from addressing students by pronouns that differ from those they were assigned at birth, and staff would also be unable to share their own preferred pronouns if they deviate from those assigned at birth. Additionally, the Florida Board of Medicine enacted a rule that bars minors from starting puberty blockers or hormone therapy, essentially banning transition for those under the age of 18.

The organizations benefiting from the bundraiser this year are Zebra Youth Coalition (a network serving youth ages 13-24, that run shelters for youth that need safety and resources) and Transinclusive Group (a trans women of color-led coalition aimed at offering peer support, access to resources like HRT, and educating care providers in how to better take care of trans youth.) The current bundle launched on March 13th and has 505 game supplements and zines, the base price of which is $5 but the top donation is $1000. The fundraising goal for this year’s bundle is $250k, but in the couple of weeks since launching there’s already been $208k raised.

The bundle is live through April 6th, so there is still time to help reach their fundraising goal! To learn more about the fundraiser, tune into Rue’s episode this upcoming Sunday, March 26th at 7 PM! Be sure to listen live on KBVR 88.7FM, or download the podcast if you missed it.

Grouper groupie: studying climate change and the Nassau grouper

During winter months, a few days after the full moon, thousands of fish make their way to the warm tropical waters off the west coast of Little Cayman, Cayman Island. Nassau Grouper are typically territorial and don’t interact often, but once per year, they gather in the same spot where they all spawn to carry on the tradition of releasing gametes, in the hopes that some of them will develop to adulthood and carry on the population.

Our guest this week is Janelle Layton, a Masters (and soon to be PhD) student in Dr. Scott Heppel’s lab in the Department of Fisheries, Wildlife, and Conservation Sciences. Janelle’s research focuses on this grouper, which is listed as near threatened under the Endangered Species Act. Overfishing has been the largest threat to Nassau Grouper populations, but another threat looms: warming waters due to climate change. This threat is what Janelle is interested in studying – how does the warming water temperature affect the growth and development of grouper larvae?

Janelle with a curious sea turtle

Each winter Janelle travels to this aggregation site in the Cayman Islands, where these large groups of grouper (grouper groups?) aggregate for a few days to reproduce. During this time, she collects thousands of fertilized Nassau Grouper eggs to take back to the lab and study. These eggs will develop in varying water temperatures for 6 days, where each day a subset of samples are preserved for future analysis.

Spawning groupers

So far, Janelle is finding that the larvae raised in higher temperatures tend to demonstrate not only an increase in mortality, but an increase in variability in mortality. What does this mean? Basically, eggs from some females are able to survive and develop under these stressful conditions better than eggs from other females – so is there a genetic component to being able to survive these temperature increases?

The answer may lie in proteins

Aside from development and mortality, Janelle is investigating this theory by measuring the expression of heat shock proteins in the fertilized eggs and larvae. Heat shock proteins are expressed in response to environmental stressors such as increased temperatures, and can be measured through RNA sequencing. The expression of these proteins might hold the key to understanding why some grouper are more likely to survive than others. Janelle’s work is a collaborative effort between Oregon State University, Scripps Institute of Oceanography, Reef Environmental Education Foundation and the Cayman Islands Department of Environment.

To learn more about Nassau Grouper, heat shock proteins, and what it’s like being a Black woman in marine science, tune into Janelle’s episode this upcoming Sunday, March 12th at 7 PM! Be sure to listen live on KBVR 88.7FM, or download the podcast if you missed it. You can also catch Janelle on TikTok or at her website.

Finicky Fish: Investigating the impact of dams on the John Day White Sturgeon

This week we have a Fisheries and Wildlife Master’s student and ODFW employee, Gabriella Brill, joining us to discuss her research investigating the impact of dams on the movement and reproduction habits of the White Sturgeon here in Oregon. Much like humans, these fish can live up to 100 years and can take 25 years to fully mature. But the similarities stop there, as they can also grow up to 10 ft long, haven’t evolved much in 200 million years, and can lay millions of eggs at a time (makes the Duggar family’s 19 Kids and Counting not seem so bad).   

Despite being able to lay millions of eggs at a time, the White Sturgeon will only do so if the conditions are right. This fish Goldilocks’ its way through the river systems, looking for a river bed that’s just right. If it doesn’t like what it sees, the fish can just choose not to lay the eggs and will wait for another year. When the fish don’t find places they want to lay their eggs, it can cause drastic changes to the overall population size. This can be a problem for people whose lives are intertwined with these fish: such as fishermen and local Tribal Nations (and graduate students).

The white sturgeon was once a prolific fish in the Columbia River and holds ceremonial significance to local Tribal Nations, however, post-colonialization a fishery was established in 1888 that collapsed the population just four years later in 1892. Due to the long lifespan of these fish, the effects of that fishery are something today’s populations have still not fully recovered from.

Image of white sturgeon in a river. It is a large bluish grey fish. The river is a murkey dark green color.
White Sturgeon

Can you hear me now

Gabriella uses sound transmitters to track the white sturgeon’s movements. Essentially, the fish get a small sound-emitting implant that is picked up by a series of receivers – as long the receivers don’t get washed away by a strong current. By monitoring the fish’s journey through the river systems, she can then determine if the man-made dams are impacting their ability to find a desirable place to lay eggs. 

Journey to researching a sturgeon’s journey

Gabriella always gravitated towards ecology due to the ways it blends many different sciences and ideas – and Fish are a great system for studying ecology. She started with studying Salmon in undergrad which eventually led to a position with the ODFW. Working with the ODFW inspired her to get a Master’s degree so that she could gain the necessary experience and credentials to be a more effective advocate for changes in conservation efforts that are being made. One way to get clout in the fish world: study a highly picky fish with a long life cycle. Challenge accepted.

Gabriella Brill holding a smaller sturgeon while on a boat.

To hear more about these finicky fish be sure to listen live on Sunday February 26th at 7PM on 88.7FM, or download the podcast.

Global swarming: getting robot swarms to perform intelligently

This week we have a robotics PhD student, Everardo Gonzalez, joining us to discuss his research on coordinating robots with artificial intelligence (AI). That doesn’t mean he dresses them up in matching bow ties (sadly), but instead he works on how to get a large collective of robots, also called a swarm, to work collectively towards a shared goal. 

Why should we care about swarming robots? 

Aside from the potential for an apocalyptic robot world domination, there are actually many applications for this technology. Some are just as terrifying. It could be applied to fully automated warfare – reducing accountability when no one is to blame for pulling the trigger (literally).

However, it could also be used to coordinate robots used in healthcare and with organizing fleets of autonomous vehicles, potentially making our lives, and our streets, safer. In the case of the fish-inspired Blue Bots, this kind of coordinated robot system can also help us gather information about our oceans as we try to resolve climate change.

Depiction of how the fish-inspired Blue Bots can observe their surroundings in a shared aquatic space, then send that information and receive feedback from the computer system. Driving the Blue Bots’ behavior is a network model, as depicted in the Agent A square.

#Influencer

Having a group of intelligent robots behaving intelligently sounds like it’s a problem of quantity, however, it’s not that simple. These bots can also suffer from there being “too many cooks in the kitchen”, and, if all bots in the swarm are intelligent, they can start to hinder each other’s progress. Instead, the swarm needs both a few leader bots, that are intelligent and capable of learning and trying new things, along with follower bots, which can learn from their leader. Essentially, the bots play a game of “Follow the Leaders”.

All robots receive feedback with respect to a shared objective, which is typical of AI training and allow the bots to infer which behaviors are effective. In this case, the leaders will get additional feedback on how well they are influencing their followers. 

Unlike social media, one influencer with too many followers is a bad thing – and the bots can become ineffective. There’s a famous social experiment in which actors in a busy New York City street stopped to stare at a window to determine if strangers would do the same. If there are not enough actors staring at the window, strangers are unlikely to respond. But as the number of actors increases, the likeness of a stranger stopping to look will also increase. The bot swarms also have an optimal number of leaders required to have the largest influence on their followers. Perhaps we’re much more like robots than the Turing test would have us believe. 

Dot to dot

We’re a long way from intelligent robot swarms, though, as Everardo is using simplified 2D particle simulations to begin to tackle this problem. In this case the particles replace the robots, and are essentially just dots (rodots?) in a shared environment that only has two dimensions. The objectives or points of interest for these dot bots are more dots! Despite these simplifications, translating system feedback into a performance review for the leaders is still a challenging problem to solve computationally. Everardo starts by asking the question “what if the leader had not been there”, but then you have to ask “what if the followers that followed that leader did something else?” and then you’ve opened a can of worms reminiscent of Smash Mouth where the “what if”’s start coming and they don’t stop coming.

Everardo Gonzalez

What if you wanted to know more about swarming robots? Be sure to listen live on Sunday February 26th at 7PM on 88.7FM, or download the podcast if you missed it. To learn a bit more about Everardo’s work with swarms and all things robotics, check out his portfolio at everardog.github.io

No longer a torrent of salamanders

We are pleased to introduce our upcoming guest, Christopher Cousins, a fourth-year PhD student in the Department of Fisheries and Wildlife, advised by Prof. Tiffany Garcia. Cousins is  researching torrent salamanders, a family of small amphibians endemic to the Pacific Northwest.

Chris is also an amateur photographer, check out his Instagram to see more wildlife pics!

The habitat for torrent salamanders stretches from the far north of California up through the Washington coast and includes distinct populations in the Cascade Range and the Oregon Coast Range. Torrent salamanders inhabit cold streams at relatively high altitude — the kind where few or no fish live, leaving the amphibians near or at the top of the local food chain. Such streams can be ephemeral, disappearing at times throughout the year and leaving salamanders vulnerable to desiccation. This problem is only expected to worsen as climate change further upends these water systems. Torrent salamanders are currently candidates for classification under the Endangered Species Act (ESA), the federal law which grants protections to threatened species. Logging presents another danger to salamander habitats, as reduced tree canopy cover can contribute to higher water temperatures. Under the ESA, officials could prohibit logging in buffer zones around small streams, granting salamander habitats the same protection as the larger streams where salmon live.

Chris’s work with salamanders takes many different forms. He has extensive experience in fieldwork, spending six months traveling throughout Oregon and Washington. He has used environmental DNA from water samples to detect torrent salamander populations in various streams. In another project, he collected DNA directly from approximately 150 salamanders. Chris performed both the lab work to process these samples and the bioinformatics analysis to assemble their DNA sequences. This summer, he plans to conduct a detailed survey of the streams of the streams in the H.J. Andrews Experimental Forest. The overarching goal of his PhD is to document the genetic diversity among torrent salamanders and characterize their population structure across the region, which he hopes will help inform the ESA decision-making process.

Chris remembers catching frogs and salamanders as a child – proof of his fascination with amphibians at a young age. His father was in the Navy, so the family moved around repeatedly, but Chris grew up mostly in Japan. Upon moving back to the US, he felt drawn to Oregon and enrolled at Lane community college before transferring to Oregon State to earn his bachelor’s degree as a first-generation college graduate. He remained at OSU for his graduate work due to the community of scientific mentors he had built. To hear more about his journey, what it is like to explore the Mt. St. Helens eruption zone, and what motivates him to work with this threatened species, tune in to KBVR 88.7 FM this this Sunday, Feb 19th, at 7pm.

Lasers and lipids : in search of a mechanism for dysferlin

This week on Inspiration Dissemination, we are looking forward to chatting with Andrew Carpenter, a postdoctoral fellow working in the lab of Professor Joe Baio in the School of Chemical, Biological, and Environmental Engineering.

Andrew’s research seeks a better understanding of a protein called dysferlin, which plays a critical role in repairing muscle cells.  Muscles undergo constant strain as they expand and contract, leading to tears in the sarcolemmas — thin membranes that surround muscle fibers. Dysferlin is responsible for recruiting vesicles to the site of these tears for a process called vesicle fusion to take place. Andrew likens this mechanism to using a denim patch to fix a hole in jeans, if the patch could become fully absorbed into the fabric in the way that vesicles eventually do into sarcolemmas. Dysferlin is clinically important because certain mutations (dysferlinopathies) to the gene encoding dysferlin lead to a disease called muscular dystrophy. The symptoms of dysferlinopathy typically include muscle weakness and damage to the musculoskeletal system, especially in the limbs.

Andrew working in the lab

The general importance of dysferlin to cell repair is well-established, but the molecular details of its mechanism of action are relatively unknown.  Andrew uses an advanced experimental method called sum-frequency spectroscopy to study the protein at high resolution. This procedure uses two lasers — one infrared and one visible green — and points them at the sample of interest. When the lasers hit the sample, a third beam of light is generated at the surface, carrying information about the vibrations of the molecules. Quantum mechanical calculations are used to examine the intensity of this light as a function of frequency. In Andrew’s research, a synthetic lipid monolayer serves as an in-vitro model of the sarcolemma, and he introduces the dysferlin protein either in its healthy form or with various mutations. Then he uses spectroscopy data to infer changes in protein orientation and binding. In the future, he intends to correlate his experiments with data from live cells.

Andrew first discovered his fascination with laser instrumentation as an undergraduate at Linfield University. After that, he obtained a PhD in Chemistry at the University of Oregon, where he used small oil droplets called nano-emulsions to study the oil-water interface. His background in physical chemistry and expertise in the sum-frequency spectroscopy method have enabled him to readily adapt to studying biological lipid interfaces. His research, including a recent publication, is currently supported by the National Science Foundation.

To hear more about Andrew’s research journey and the differences and similarities in being a postdoc and a graduate student, tune in after the Super Bowl this Sunday, February 12th, at 7pm on 88.7 FM KBVR.


A Gut Feeling: Examining Whale Ecology Using Number-Two Genetics

This week we have a MS (but soon to be PhD) student from the department of Fisheries and Wildlife, Charles Nye, joining us to discuss their work examining the dietary and environmental DNA of whales. So that begs the question – how exactly does an environment, or a diet, have DNA? Essentially, the DNA of many organisms can be isolated from samples of ocean water near the whales, or in the case of dietary DNA, can be taken from the whales’ fecal matter – that’s right, there’s a lot more you can get from poop than just an unpleasant smell.

Why should we care about what whales eat?

As the climate changes, so too does the composition of creatures and plants in the oceans. Examining environmental DNA gives Charles information on the nearby ecological community – which in turn gives information about what is available for the whale to eat plus what other creatures they may be in resource competition with. He is working to identify the various environmental DNA present to assist with conservation efforts for the right whale near Cape Cod – a whale that they hold as dear to their hearts on the East Coast as the folks of Depoe Bay hold the grey whale to theirs.

By digging into the whale poop to extract dietary DNA, Charles can look into how the whales’ diets shift over seasonal and yearly intervals – and he is doing precisely that with the West Coast grey whales. These dietary shifts may be important for conservation purposes, and may also be applied to studying behavior. For example, by looking at whether or not there are sex differences in diet and asking the ever-important question: do whales also experience bizarre pregnancy cravings?

two people underwater in scuba gear. Some tall kelp in the background. One person is holding a light which emits a beam into the water.
Scuba diving underwater.

How does someone even get to study whales?

Like many careers, it starts with an identity crisis. Charles originally thought they’d go into scientific illustration, but quickly realized that they didn’t want to turn a hobby he enjoyed into a job with deadlines and dread. A fortunate conversation with his ecology professor during undergrad inspired him to join a research lab studying intertidal species’ genetics – and eventually become a technician at the Monterey Bay Aquarium Research Institute. 

After a while, simply doing the experiments was not enough and they wanted to be able to ask his own questions like “does all the algae found in a gray whale’s stomach indicate they may actually be omnivores, unlike their carnivorous whale peers?” (mmm, shrimp).

Turns out, in order to study whales all you have to do is start small – tiny turban snail small. 

Image of Charles working in the lab and using a micropipette. They are wearing a lab coat and white rubber gloves. He is holding a small tube into which the tip of the micropette is inserted.
Working in the lab.

Excited for more whale tales? Us too. Be sure to listen live on Sunday, February 5th at 7PM on 88.7FM, or download the podcast if you missed it. Want to stay up to date with the world of whales and art? Follow Charles @thepaintpaddock on Twitter/Instagram for his art or @cnyescienceguy on Twitter for his marine biology musings. 

What to do with all the whey?

You probably already know that skim milk and buttermilk are byproducts of cheese-making. But did you know that whey is another major byproduct of the cheese-making process? Maybe you did. Well, did you know that for each 1 kg of cheese obtained, there are about 9 kg of whey produced as a byproduct?! What in the world is done with all of that whey? And what even is whey? In this week’s episode, Food Science Master’s student Alyssa Thibodeau tells us all about it!

Alyssa making cheese!

Whey is the liquid that remains after milk has been curdled and strained to produce cheese (both soft and hard cheeses) and yoghurt. Whey is mainly water but it also has lots of proteins and fats, as well as some vitamins, minerals, and a little bit of lactose. There are two types of whey: acid-whey (byproduct of yoghurt and soft cheese production) and sweet-whey (byproduct of hard cheese production). Most people are probably familiar with whey protein, which is isolated from whey. The whey protein isolates are only a small component of the liquid though and unfortunately the process of isolating the proteins is very energy inefficient. So, it is not the most efficient or effective way of using the huge quantities of whey produced. This is where Alyssa comes in. Alyssa’s research at OSU is focused on trying to develop a whey-beverage. Because of the small amounts of lactose that are in whey, yeast can be used to ferment the lactose, creating ethanol. This ethanol can then be converted by bacteria to acetic acid. Does this process sound a little familiar? It is! A similar process is involved when making kombucha and the end-product in Alyssa’s mind isn’t too far off of kombucha. She envisions creating an organic, acid-based or vinegar-type beverage from whey. 

Morphology of yeast species Brettanomyces anomalus which Alyssa is planning on using for her whey-beverage.

How does one get into creating the potentially next-level kombucha? Alyssa’s route to graduate school has been backwards, one that most students don’t get to experience. While the majority of students get a degree, get a job and then start a family, Alyssa started a family, got a job, and then went to graduate school. On top of being a single mother in graduate school, she is also a first-gen student and Hispanic. To quote Alyssa: “It makes me proud every day that I am able to go back to school as a single mom. In the past, this would have maybe been too hard to do or wouldn’t have been possible for older generations but our generations are progressing and people are making decisions for themselves.”.

Intrigued by Alyssa’s research and personal journey? You can hear all about it on Sunday, January 29th at 7 pm on https://kbvrfm.orangemedianetwork.com/. Missed the live show? You can listen to the recorded episode on your preferred podcast platform!