Tag Archives: ocean

The Puzzle of Puffy Snout

Puffy snout syndrome: though it has a cute-sounding name, this debilitating condition causes masses on the face of Scombridae fish (a group of fish that includes mackerel and tuna.) Fish afflicted with puffy snout syndrome (PSS) develop excessive collagenous tumor-like growths around the eyes, snout, and mouth. This ultimately leads to visual impairment, difficulty feeding, and eventual death. PSS is surprisingly confined to just fish raised in captivity – those in aquaculture farms or aquariums, for example. Unfortunately, when PSS is identified in aquaculture, the only option is to cull the entire tank — no treatments or cures currently exist.

Left: a mackerel with puffy snout syndrome. Collagenous growths cover the snout and eye. Right: a healthy mackerel. Photos Emily Miller

PSS was first identified in the 1950s, in a fish research center in Honolulu, Hawaii. Since then, there have only been 9 publications in the scientific literature documenting the condition and possible causes, although the fish community has come to the conclusion that PSS is likely a transmittable condition with an infectious agent as the cause. But despite this conclusion, there’s been no success so far in identifying such a cause – tests for parasites, bacterial growth, and viruses have come up empty-handed. That was until a 2021 paper, using high-resolution electron microscopy, found evidence of viral particles in facial tissues taken from Pacific mackerel. Suddenly, there was a lead: could PSS be caused by a virus that we just don’t have a test for yet?

Electron microscopy images showing viral-like particles (red arrows) in facial tissue from Pacific mackerel (Miller et al 2022).

Putting Together the Pieces

To investigate this hypothesis, this week’s guest Savanah Leidholt (a co-author of the 2021 microscopy study) is using an approach for viral detection known as metatranscriptomics. Leidholt, a fourth year PhD candidate in the Microbiology department, sees this complex approach as a sort of puzzle: “Your sample of RNA has, say, 10 giant jigsaw puzzles in it. But the individual puzzles might not be complete, and the pieces might fit into multiple places, so your job is to reassemble the pieces into the puzzles in a way that gives you a better picture of your story.”

Savanah Leidholt, PhD candidate in Rebecca Vega-Thurber’s lab, is looking for evidence of viruses in the tissues of fish with puffy snout syndrome.

RNA, or ribonucleic acid, is a nucleic acid similar to DNA found in all living organisms, But where DNA is like a blueprint – providing the code that makes you, you; RNA is more like the assembly manual. When a gene is expressed (meaning the corresponding protein is manufactured), the double-stranded DNA is unwound and the information is transcribed into a molecule called messenger RNA. This single-stranded mRNA is now a copy of the gene that can be translated into protein. The process of writing an mRNA copy of the DNA blueprint is called transcription, and these mRNA molecules are the target of this metatranscriptomics approach, with the prefix “meta” meaning all of the RNA in a sample (both the fish RNA and the potential viral RNA, in this case) and the suffix “omics” just referring to the fact that this approach happens on a large scale (ALL of the RNA, not just a single gene, is sequenced here!) When mRNA is sequenced in this manner, the researchers can then conclude that the gene it corresponds to was being expressed in the fish at the time the sample was collected.

The process of transcription: making messenger RNA from DNA. Image from Nature Education.

So far, Leidholt has identified some specific genes in fish that tend to be much more abundant in fish from captive settings versus those found in the wild. Could these genes be related to why PSS is only seen in fish in captivity? It’s likely – the genes identified are immune markers, and the upregulation of immune markers is well-known to be associated with chronic stress. Think about a college student during finals week – stress is high after a long semester, maybe they’ve been studying until late in the night and not eating or sleeping well, consuming more alcohol than is recommended. And then suddenly, on the day of the test, they’re stuck in bed with the flu or a cold. The same thing can happen to fish (well, maybe not the part where they take a test!,) especially in captivity – Pacific mackerel, tuna, and other scombrid species susceptible to PSS are fairly large, sometimes swimming hundreds of miles in a single day in the ocean. But in captivity, they are often in very small tanks, constantly swimming in constrained circles. They’re not exposed to the same diversity of other fish, plankton, prey, and landscape as they would be in the wild. “Captivity is a great place to be if you’re a pathogen, but not great if you’re a fish”, says Leidholt.

The results of Leidholt’s study are an exciting step forward in the field of PSS research, as one of the biggest challenges currently facing aquaculture farms and aquariums is that there is no way to screen for PSS in healthy fish before symptoms begin to show. Finding these marker genes that appear in fish that could later on develop PSS means that in the future a test could be developed. If vulnerable fish could be identified and removed from the population before they begin to show symptoms and spread the condition, then it would mean fish farmers no longer have to cull the entire tank when PSS is noticed.

The elusive virus

One of the challenges that remains is going beyond the identification of genes in the fish and beginning to identify viruses in the samples. Viruses, which are small entities made up of a DNA or RNA core and a protective protein coating, are thought to be the most abundant biological entities on the planet Earth – and the smallest in terms of size. They usually get a bit of a bad reputation due to their association with diseases in humans and other animals, but there are also viruses that play important positive roles in their ecosystems – bacteriophages, for example, are viruses that infect bacteria. In humans, bacteriophages can attack and invade pathogenic or antibiotic-resistance bacteria like E. coli or S. aureus (for more information on phages and how they are actually studied as a potential therapy for infections, check out this November 2021 interview with Miriam Lipton!) Across the entire planet there are estimated to be between 10^7 to 10^9 distinct viral species – that’s between 10 million and 10 billion different species. And fish are thought to host more viruses than any other vertebrate species. Because of technological advancements, these viral species have only really been identified very recently, and identification still poses a significant challenge.

As a group, viruses are very diverse, so one of the challenges is finding a reliable way to identify them in a given sample. For bacteria, researchers can use a marker gene called the 16S rRNA gene – this gene is found in every single bacterial cell, making it universal, but it also has a region of variability. This region of variability allows for identification of different strains of bacteria. “Nothing like 16S exists for viruses,” Leidholt says. “Intense sequencing methods have to be used to capture them in a given sample.” The metatranscriptomic methods that Leidholt is using should allow her to capture elusive viruses by taking a scorched earth approach – targeting and sequencing any little bit of RNA in the sample at all, and trying to match up that RNA to a virus. 

To learn more about Savanah’s research on puffy snout syndrome, her journey to Oregon State, and the amazing outreach she’s doing with high school students in the Microbiology Department, tune in to Inspiration Dissemination on Sunday, November 20th at 7 PM Pacific!

Schmitty Thompson wears glasses and a sweater, and smiles at the camera while standing in front of a vast field.

What ice sheets can teach us about ancient ocean shorelines

Around 80,000 years ago, the Earth was in the middle of the late Pleistocene era, and much of Canada and the northern part of the United States was blanketed in ice. The massive Laurentide Ice Sheet covered millions of square miles, and in some places, up to 2 miles thick. Over vast timescales this ice sheet advanced its way across the continent slowly, gouging out what we now know as the Great Lakes, carving the valleys, depositing glacial tills, and transforming the surface geology of much of the southern part of Canada and northern US. Further west, the Cordilleran ice sheet stretched across what is now Alaska, British Columbia, and the northern parts of the Western US, compressing the ground under its massive weight. As these ice sheets depressed the land beneath them, the Earth’s crust bulged outwards, and as the planet warmed and the ice sheets began to melt, the pressure was released, returning the crust underneath to its previous shape. As this happened, ocean water flowed away, resulting in lower sea levels locally, but higher levels across the other side of the planet.

The effects of massive bodies of ice forming, moving, and melting are far from negligible in their impact on the overall geology of the region, the sea level throughout history, and the patterns of a changing climate. Though there are only two ice sheets on the planet today, deducing the ancient patterns and dynamics of ice sheets can help researchers fill the geological record and even make predictions about what the planet might look like in the future. Our guest on Inspiration Dissemination this week is PhD candidate and researcher Schmitty Thompson, of the Department of Geology in CEOAS. Thompson is ultimately trying to answer questions about ice distribution, sea levels, and other unknown parameters that the geologic record is missing during two different ice age warming periods. Their research is very interdisciplinary – Thompson has degrees in both math and geology, and also uses a lot of data science, computer science, and physics in their work. They are using computer modeling to figure out just what the shorelines looked like during this time period around 80,000 years ago. 

Schmitty Thompson, fourth year PhD candidate with Jessica Creveling in the Geology Department.

“I use models because the geologic record is pretty incomplete – the further back you go, the less complete it is. So by matching my models to the existing data, we can then infer more information about what the shoreline was like,” they explain. To do this accurately, Thompson feeds the model what the ice sheets looked like over the course of around 250,000 years. They also need to incorporate other inputs to the model to get an accurate picture – variables such as the composition of the interior of the Earth, the physics of Earth’s interior, and even the ice sheets’ own gravitational pull (ice sheets are so massive they exert a gravitational pull on the water around them!)

Using math to learn about ice

The first equation to describe global changes in sea level was published in 1976, with refining throughout the 90s and early 2000s. Thompson’s model builds on these equations in two versions: one which can run in about 10 minutes on their laptop, and another which can take multiple weeks and must run on a supercomputer. The quicker version uses spherical harmonics as the basis function for the pseudospectral formulation, which is basically a complex function that does math and incorporates coefficient representations of the earth’s radius, meridional wave numbers, variation across north/south and east/west, and a few other variables. The short of it is that it can perform these calculations across a 250k time span relatively quickly, but it makes assumptions about the homogeneity of the earth’s crust and mantle viscosity. Think of it like a gumball: a giant, magma-filled gumball with a smooth outer surface and even layers. So while this method is fast, the assumptions that it makes means the output data is limited in its usefulness. When Thompson needs a more accurate picture, they turn to collaborators who are able to run the models on a supercomputer, and then they work with the model’s outputs.

While the model is useful for filling in gaps in the historical record, Thompson also points out that it has uses in predicting what the future will look like in the context of a changing climate. After testing out these models and seeing how sensitive they are, they could be used by researchers looking at much smaller time scales and more sensitive constraints for current and future predictions. “There are still lots of open questions – if we warm the planet by a few degrees, are we going to collapse a big part of Antarctica or a small part? How much ice will melt?”


To learn more about ice sheets, sea levels, and using computer models to figure out how the shoreline looked thousands of years ago, tune in to Schmitty Thompson’s episode on Inspiration Dissemination this upcoming Sunday evening at 7 PM PST. Catch the show live by streaming on https://kbvrfm.orangemedianetwork.com/, or check out the show later wherever you get your podcasts!

Thompson was also recently featured on Alie Ward’s popular podcast Ologies. You can catch up with all things geology by checking out their episode here.

Warming waters, waning nutrition

Here at Inspiration Dissemination, we are fascinated by the moments of inspiration that lead people to pursue graduate studies. For our next guest, an experience like this came during a boat trip accompanying the National Oceanic and Atmospheric Administration (NOAA) on a research expedition. Becky Smoak, an M.S. student in OSU’s Marine Resource Management program, remembers feeling in awe of the vibrant array of marine life that she saw, including whales, sunfish, and sharks. Growing up on a farm in eastern Washington, Becky had always wanted to be a veterinarian. During her undergraduate studies at Washington State University, she came to feel that the culture of pre-veterinary students was too cutthroat. In search of something more collaborative, she came to Oregon State in summer 2019 for a Research Experience for Undergrads (REU) and was impressed by the support and inclusivity of her research mentors. A couple years later, Becky is now on the cusp of graduation after her time spent studying marine life.

Becky’s graduate work is the continuation of a long-running collaboration between Oregon State and NOAA out of the Hatfield Marine Science Center in Newport. Beginning in 1996 under the direction of Bill Peterson, a team of researchers has monitored oceanic conditions along a route called the Newport Hydrographic, which extends in a straight line eastward from the Oregon Coast and intersects the northern part of the vast Californian Current. The team takes samples of ocean water at fixed points along the route and analyzes the concentrations of plankton and other organisms or compounds of interest. 

Becky Smoak, teaching on the OSU research vessel The Elakha.

The specific biochemicals that Becky studies are Omega-3 fatty acids. In a set of experiments from the 1930s, rats fed with a diet poor in Omega-3 fatty acids eventually died, demonstrating that these compounds are essential to life and are not produced by mammals. Two types of Omega-3 fatty acids, called EPA and DHA, can only be synthesized by phytoplankton, microscopic photosynthetic organisms that live in the ocean. The ability of phytoplankton to produce fatty acids is intimately linked with oceanic temperature. Studies have shown that increases in sea surface temperature and decreases in nutrient availability can decrease the quality of fatty acids in phytoplankton, thus decreasing food availability and quality in the marine environment. Fatty acid levels have downstream effects on the ecosystem, for example on copepods, a type of zooplankton that feeds on phytoplankton. Becky’s team affectionately refers to the copepod colony of the chilly northern Pacific as the “cheeseburger” copepods, in contrast to the “celery” copepods of the southern Pacific colony. The present-day effect of temperature also points to a key ecological challenge, as warming oceans due to climate change could disrupt the supply of this vital nutrient.

In her thesis work, Becky seeks to untangle the contributions of phytoplankton community structure to oceanic Omega-3 fatty acid levels. She uses a set of statistical methodologies called nonmetric multidimensional scaling to uncover correlations in the datasets. A particularly interesting instrument used to collect her data is a flow cytometry robot dubbed ‘Lucy’. Lucy uses advanced imaging to count individual plankton and characterize their sizes. This yields an improvement in accuracy over older monitoring techniques that assumed a fixed size for all plankton. Becky’s goal for finishing her thesis is to create a statistical procedure for predicting fatty acid availability given information on phytoplankton population structure.

To hear more about Becky’s journey to OSU, her experiences as a first-generation college student, and the fascinating role of Omega-3s in marine ecosystems, be sure to tune in this Sunday October 9th at 7pm on KBVR.

This article was written by Joseph Valencia.

The non-Ghostbusting Venkman: a virus that “eats” marine bacteria

Have you ever considered that a virus that eats bacteria could potentially have an effect on global carbon cycling? No? Me neither. Yet, our guest this week, Dr. Holger Buchholz, a postdoctoral researcher at OSU, taught me just that! Holger, who works with Drs. Kimberly Halsey and Stephen Giovannoni in OSU’s Department of Microbiology, is trying to understand how a bacteriophage (a bacteria-eating virus), called Venkman, impacts the metabolism of marine bacterial strains in a clade called OM43.

Bacteria that are part of the OM43 clade are methylotrophs, in other words, these bacteria eat methanol, a type of volatile organic compound. It is thought that the methanol that the OM43 bacteria consume are a by-product of photosynthesis by algae. In fact, OM43 bacteria are more abundant in coastal waters and are particularly associated with phytoplankton (algae) blooms. While this relationship has been shown in the marine environment before, there are still a lot of unknowns surrounding the exact dynamics. For example, how much methanol do the algae produce and how much of this methanol do the OM43 bacteria in turn consume? Is methanol in the ocean a sink or a source for methanol in the atmosphere? Given that methanol is a carbon compound, these processes likely affect global carbon cycles in some way. We just do not know how much yet. And methanol is just one of many different Volatile Organic Carbon (VOC) compounds that scientists think are important in the marine ecosystem, and they are probably consumed by bacteria too!

Depiction of the carbon cycle within the marine food web. DOM means Dissolved Organic Material, POM stands for Particulate Organic Material. This refers to all the things that are bound within cells that gets released when for example viruses destroy cells. 

All of this gets even more complicated by the fact that a bacteriophage, by the name of Venkman, infects the OM43 bacteria. If you are a fan of Ghostbusters and your mind is conjuring the image of Bill Murray in tan coveralls at the sound of the name Venkman, then you are actually not at all wrong. During his PhD, which he conducted at the University of Exeter, part of Holger’s research was to isolate the bacteriophage that consumes OM43 bacteria (which he successfully did). As a result, Holger and his advisor (Dr. Ben Temperton, who is a big Ghostbusters fan) were able to name the bacteriophage and called it Venkman. Holger’s current work at OSU is to try and figure out how the Venkman bacteriophage affects the metabolism of methanol in OM43 bacteria and the viral influence on methanol production in algae. Does the virus increase the bacteria’s methanol metabolism? Decrease it? Or does nothing happen at all? At this point, Holger is not entirely sure what he is going to find, but whatever the answer, there would be an effect on the amount of carbon in the oceans, which is why this work is being conducted.

Holger is currently in the process of setting up experiments to answer these questions. He has been at OSU since February 2022 and has funding to conduct this work for three years from the Simons Foundation. Join us live on Sunday at 7 pm PST on 88.7 KBVR FM or https://kbvrfm.orangemedianetwork.com/ to hear more about Holger’s research and how a chance encounter with a marine biologist in Australia set him on his current career path! Can’t make it live, catch the podcast after the episode on your preferred podcast platform!

Microbial and biochemical community dynamics in low-oxygen Oregon waters

Much like Oregon’s forests experience wildfire seasons, the waters off the Oregon coast experience what are called “hypoxia seasons”. During these periods, which occur in the summer, northern winds bring nutrient-rich water to the Eastern Current Boundary off the Oregon Coast. While that might sound like a good thing, the upwells bring a bloom of microscopic organisms such as phytoplankton that consume these nutrients and then die off. As they die off, they sink and are then decomposed by marine microorganisms. This process of decomposition removes oxygen from the water, creating what’s called an oxygen minimum zone, or OMZs. These OMZs can span thousands of square miles. While mobile organisms such as fish can escape these areas and relocate, place-bound creatures such as crabs and bottom-dwelling fish can perish in these low oxygen zones. While these hypoxia seasons can occur due to natural phenomena, stratification of the water column due to other factors such as climate change can increase the frequency or severity of these seasons.

2021 was one of the worst years on record for hypoxic waters off the Western coast of the United States. A major contributing factor was the extremely early start to the upwelling triggered by strong winds. Measurements of dissolved oxygen and ocean acidity were high enough to be consistent with conditions that can lead to dead zones, and this is exactly what happened. Massive die-offs of crabs are concerning as the harvesting of Dungeness crab is one of the most lucrative fishing industries in the state. Other species and organisms move into shallower waters, disturbing the delicate balance of the coastal ecosystems. From the smallest microbe to the largest whale, almost every part of the coast can be affected by hypoxia season. 

Our guest this week is Sarah Wolf, a fourth year PhD candidate in the Department of Microbiology here at Oregon State. Sarah, who is co-advised by Dr. Steve Giovannoni and Dr. Francis Chan, studies how microbes operate in these OMZs. Her work centers around microbial physiology and enzyme kinetics, and how these things change over time and in varying oxygen concentrations. To do this, she spent her second year developing a mesocosm, which is a closed environment that allows for the study of a natural environment, which replicates conditions found in low oxygen environments. 

Sarah Wolf, a fourth year PhD Candidate in the department of Microbiology, in her lab

Her experiments involve hauling hundreds of liters of ocean water from the Oregon coast back to her lab in Nash Hall, where she filters and portions it into different jugs hooked up to a controlled gas delivery system which allows her to precisely control the concentration of oxygen in the mesocosm. Over a period of four months Sarah samples the water in these jugs to look at the microbial composition, carbon levels, oxygen respiration rates, cell counts, and other measures of the biological and chemical dynamics occurring in low oxygen. Organic matter can get transformed by different microorganisms that “eat” different pieces through the use of enzymes, but many enzymes which can break down large, complex molecules require oxygen, and in low oxygen conditions, this can be a problem for the breakdown and accumulation of organic matter. This is the kind of phenomenon that Sarah is studying in these mesocosms, which her lab affectionately refers to as the “Data Machine”. 

Sarah’s journey into science has been a little nontraditional. A first generation college student, she started out her education as a political science major at Montana State before moving to the University of the Virgin Islands for a semester abroad. At the time she wasn’t really sure how to get into research or science as a career. During this semester her interest in microbiology was sparked during an environmental science course which led to her first research experience, studying water quality in St. Thomas. This experience resulted in an award-winning poster at a conference, and prompted Sarah to change her major to Microbiology and transfer to California State University Los Angeles. Her second research experience was very different – an internship at NASA’s Jet Propulsion Laboratory studying cleanroom microbiology, which resulted in a publication identifying two novel species of Bacillus isolated from the Kennedy Space Center. Ultimately Sarah’s journey brought her here to Oregon State, which she was drawn to because of its strong marine microbiology research program.

Sarah works on the “Data Machine”

But Sarah’s passion for science doesn’t stop at the lab: during the Covid-19 pandemic, she began creating and teaching lessons for children stuck at home. During this time she taught over 60 kids remotely, with lessons about microbes ranging from marine microbiology to astrobiology and even how to create your own sourdough starter at home. Eventually she compiled these lessons onto her website where parents and teachers alike can download them for use in classrooms and at home. She also began reviewing children’s science books on her Instagram page (@scientist.sarahwolf), and inviting experts in different fields to participate in livestreams about books relating to their topics. A practicing Catholic, she also shares thoughts and resources about religion and science, especially topics surrounding climate science. With around 12k followers, Sarah’s outreach on Instagram has certainly found its audience, and will only continue to grow. 

If you’re curious about microbes in low oxygen conditions, what it’s like to be a science educator and social media influencer, or want to hear more about Sarah’s journey in her own words, tune in at 7 PM on March 13th to catch the live episode at 7 PM PST on 88.7 FM Corvallis, online at https://kbvrfm.orangemedianetwork.com – or you can catch this episode after the show airs wherever you get your podcasts! 

Global ocean modeling, with a microscope on Micronesia

How could an equation developed by a German mathematician in 1909 help Micronesian conservation networks plan for the future in the face of climate change? 

In this week’s episode, we interview Dr. Steven Johnson, a graduate of Oregon State University’s Geography graduate program. Steven completed his doctorate earlier in 2021, under the guidance of Dr. James Watson, a professor in the College of Earth, Ocean, and Atmospheric Sciences. He’s now a postdoctoral fellow at Arizona State University. During his time at Oregon State, the focus of his work was oceans. “I study the ocean – in particular, people’s relationship with the ocean. The condition of the ocean has implications for people all over the world and millions depend on it for their livelihood,” he explains.

Steven Johnson, a recent graduate of OSU and now a postdoctoral fellow at Arizona State University

“There used to be this idea that the ocean was ‘too big to fail’, but Oregon State University Distinguished Professor and White House Deputy Director for Climate and the Environment Jane Lubchenco made the point that ‘the ocean is too big to fail, but too big to ignore,’” Steven recounts. “Not a single part of the ocean has not been impacted by people.” Plastic waste, rising temperatures, increasing acidification, and other byproducts of human activity have been changing the ocean as we know it, and it will continue to worsen if the problem can’t be solved. One challenge that arises as a result of these changes is the future of aquatic resource management and conservation programs, which are designed to work in current ocean and climate conditions.

So how does Steven’s research tackle these problems? In the first chapter of his thesis, he developed a novel model for predicting the way the ocean will change due to climate change. This approach is titled the Ocean Novelty Index, or the ONo Index. The Ocean Novelty Index quantifies the relative impact of climate change across all parts of the ocean, using a statistical metric applied to six different ocean surface variables (chlorophyll, O2, pH, sea surface temperature, silica, and zooplankton.) The metric is derived from the Hellinger distance, developed by a German mathematician in 1909, which is a nonparametric analysis that measures the similarity and dissimilarity between two distributions and their overlap. The baseline, or ‘normal’, conditions are derived from the period between 1970-2014, a 50 year period which recognizes 1970 as the birth of the modern Western climate movement. The model can then be used to assess and predict what climate change will do to one part of the ocean, and compare it to how that part of the ocean looked previously. The model better encapsulates the dynamic and unpredictable changes of the ocean resulting from climate change, as opposed to just rising temperatures. 

In addition to the development of this climate change index, Steven’s research also focused on conservation networks and initiatives across Micronesia, the Caribbean, and Southeast Asia. These networks and cooperatives are collaborative efforts between regional governments to meet certain conservation goals, taking into account the differing social, cultural, and economic needs of the different countries involved. Part of Steven’s work has focused on applying the ONo index on a local scale, to help determine what changes may occur in the regions as well as where. What will the regions of these networks look like at different points as the climate changes, and how can we create strong policies and political relationships in these cooperatives and their respective countries to ameliorate potential issues in the future? Steven discusses these topics and more with us on this week’s ID podcast.

If you are interested in learning more about the ONo index and Steven’s work, you can read his paper here.

This post was written by Grace Deitzler

The Evolving Views of Plastic Pollution

Oceans cover more than 70% of the Earth’s surface and some studies suggest we still have over 91% of marine species that await discovery. Even as far back as 2010 some NASA scientists admit we knew more about the surface of Mars than we did about the bottom of our own oceans! Despite the fact we may not know everything about our oceans just yet, one thing is certain: plastics are becoming part of ecosystems that have never experienced it and we’re beginning to understand its massive impact. One estimate suggests that even if you had 100 ships towing for 10 hours a day, with 200 meters of netting and perfectly capturing every large and tiny piece of plastic, we could only clean up 2% of the Great Pacific Garbage Patch every year. It would take 50 years to clean everything up, assuming we magically stopped using plastics on Earth. As one Nature research article suggests, the problems lies mostly with local municipalities; but that means with targeted local action, individuals can make a real difference and limit how much plastic makes it to our oceans. So you may be thinking “let’s tell all our friends these plastic facts and then everyone will stop using plastic, right?”. Not so fast, unfortunately a host of studies show just informing people about the scope of the problem doesn’t always make them change their behavior to ameliorate the problem in question.

Katy getting a seal kiss from Boots the harbor seal at the Oregon Coast Aquarium

Our guest this evening is Katy Nalven, a 2nd year Masters student in the Marine Resources Management program, who is using a community based social marketing approach to ask people not only IF they know about the problem of plastics in oceans, but she also seeks to understand how people think about this problem and what could be individual hurdles to decreasing plastic usage. Using a survey based approach administered at the Oregon Coast Aquarium, Katy plans to examine a few specific communities of interest to identify how the views around plastic usage from Aquarium visitors and local community members may differ and hopefully where they overlap.

This community based social marketing approach has many steps, but it’s proven more effective in changing behaviors for beneficial outcomes rather than just mass media information campaigns by themselves. By identifying a target goal for a community of interest you can tailor educational material that will have the greatest chance of success. For example, if your goal is to decrease plastic usage for coastal communities in Oregon, you may find that a common behavior in the community you can target to have the greatest impact such as bringing your own mug to coffee shops for a discount, or automatically saying “no straw please” whenever going out to eat. Katy is beginning to pin down how these Oregon coast communities view plastic usage with the hope that a future student can begin implementing her recommended marketing strategies to change behaviors for a more positive ocean health outlook.

Hugs from Cleo, the Giant Pacific Octopus, at the Oregon Coast Aquarium

Katy grew up in the landlocked state of Arizona constantly curious about animals, but on a childhood visit to SeaWorld San Diego she became exposed to the wonders of the ocean and was wonderstruck by a close call with a walrus. Near the end of a Biology degree in her undergraduate years, simultaneously competing as an NAIA Soccer player for Lyons College, Katy was looking for career options and with a glimpse of her stuffed walrus she got at the San Diego Zoo, she decided to look at Alaska for jobs. After a few summers being a whale watching guide in Juneau, an animal handling internship in Florida, and then another internship in Hawaii Katy decided she wanted to formally revisit her science roots but with a public policy perspective. Oregon State University’s Marine Resource Management Program was the perfect fit. In fact, once she was able to connect with her advisor, Dr. Kerry Carlin-Morgan who is also the Education Director for the Oregon Coast Aquarium, Katy knew this was the perfect step for her career.

Meeting Jack Johnson at the 6th International Marine Debris Conference. He and his wife are the founders of the Kokua Hawaii Foundation whose mission is to “provide students with experiences that will enhance their appreciation for and understanding of their environment so they will be lifelong stewards of the earth.”

 

 

Be sure to tune in to Katy’s interview Sunday August 19th at 7PM on 88.7FM, or listen live, to learn more about her findings about how we view plastic pollution, and how we can potentially make local changes to help the global ecosystem.

The Mold That Keeps On Giving

All around us, plants, fungi, and bacteria are waging chemical warfare against one another to deter grazing, prevent against infection, or reduce the viability of competitor species. Us humans benefit from this. We use many of these compounds, called secondary metabolites, as antibiotics, medicines, painkillers, toxins, pigments, food additives, and more. We are nowhere close to finding all of these potentially useful compounds, particularly in marine environments where organisms can make very different types of chemicals. Could something as ordinary as a fungus from the sea provide us with the next big cancer breakthrough?

Paige Mandelare with one of the many marine bacteria she works with

Paige Mandelare thinks so. As a fourth-year PhD student working for Dr. Sandra Loesgen in OSU’s Chemistry department, she has extracted and characterized a class of secondary metabolites from a marine fungus, Aspergillus alliaceus, isolated from the tissues of an algae in the Mediterranean Sea. After growing the fungus in the laboratory and preparing an extract from it, she tested the extract on colon cancer and melanoma cell lines. It turned out to be cytotoxic to these cancer cells. Further purification of this mixture revealed three very similar forms of these new compounds they called allianthrones. Once Paige and her research group narrowed down their structures, they published their findings in the Journal of Natural Products.

Next, she grew the fungus on a different salt media, replacing bromine for chlorine. This forced the fungus to produce brominated allianthrones, which have a slightly different activity than the original chlorinated ones. Her lab then sent two of these compounds to the National Cancer Institute, where they were tested on 60 cell lines and found to work most effectively on breast cancers.

The recent publication of Paige in her story of the allianthrones from this marine-derived fungus, Aspergillus alliaceus.Like many organisms that produce them, this wonder mold only makes secondary metabolites when it has to. By stressing it with several different types of media in the lab, Paige is using a technique called metabolomics to see what other useful compounds it could produce. This will also give insight into how the fungus can be engineered to produce particular compounds of interest.

A native Rhode Islander who moved to Florida at the age of ten, Paige has always been fascinated with the ocean and as a child dreamed of becoming a marine biologist and working with marine mammals. She studied biology with a pre-med track as an undergraduate at the University of North Florida before becoming fascinated with chemistry. Not only did this allow her to better appreciate her father’s chemistry PhD better, she joined a natural products research lab where she first learned to conduct fungal chemical assays. Instead of placing her on a pre-med career path, her mentors in the UNF Chemistry department fostered her interest in natural products and quickly put her in touch with Dr. Loesgen here at OSU.

Paige enjoying her time at the Oregon Coast, when she is not in the research lab

After finishing her PhD, Paige hopes to move back east to pursue a career in industry at a pharmaceutical company or startup. In the meantime, when she’s not discovering anticancer agents from marine fungi, she participates in a master swimming class for OSU faculty, trains for triathlons, and is an avid baker.

To hear more about Paige and her research, tune in to KBVR Corvallis 88.7 FM this Sunday July 15th at 7 pm. You can also stream the live interview at kbvr.com/listen, or find it on our podcast next week on Apple Podcasts.

How high’s the water, flood model? Five feet high and risin’

Climate change and the resulting effects on communities and their infrastructure are notoriously difficult to model, yet the importance is not difficult to grasp. Infrastructure is designed to last for a certain amount of time, called its design life. The design life of a bridge is about 50 years; a building can be designed for 70 years. For coastal communities that have infrastructure designed to survive severe coastal flooding at the time of construction, what happens if the sea rises during its design life? That severe flooding can become more severe, and the bridge or building might fail.

Most designers and engineers don’t consider the effects of climate change in their designs because they are hard to model and involve much uncertainty.

Kai at Wolf Rock in Oregon.

In comes Kai Parker, a 5th year PhD student in the Coastal Engineering program. Kai is including climate change and a host of other factors into his flood models: Waves, Tides, Storms, Atmospheric Forcing, Streamflow, and many others. He specifically models estuaries (including Coos and Tillamook Bay, Oregon and Grays Harbor, Washington), which extend inland and can have complex geometries. Not only is Kai working to incorporate those natural factors into his flood model, he has also worked with communities to incorporate their response to coastal hazards and the factors that are most important to them into his model.

Modeling climate change requires an immense amount of computing power. Kai uses super computers at the Texas Advanced Computing Center (TACC) to run a flood model and determine the fate of an estuary and its surroundings. But this is for one possible new climate, with one result (this is referred to as a deterministic model). Presenting these results can be misleading, especially if the uncertainty is not properly communicated.

Kai with his hydrodynamic model grid for Coos Bay, Oregon.

In an effort to model more responsibly, Kai has expanded into using what is called a probabilistic flood model, which results in a distribution of probabilities that an event of a certain severity will occur. Instead of just one new climate, Kai would model 10,000 climates and determine which event is most likely to occur. This technique is frequently used by earthquake engineers and often done using Monte Carlo simulations. Unfortunately, flooding models take time and it takes more than supercomputing to make probabilistic flooding a reality.

To increase efficiency, Kai has developed an “emulator”, which uses techniques similar to machine learning to “train” a faster flooding model that can make Monte Carlo simulation a possibility. Kai uses the emulator to solve flood models much like we use our brains to play catch: we are not using equations of physics, factoring in wind speed or the temperature of the air, to calculate where the ball will land. Instead we draw on a bank of experiences to predict where the ball will land, hopefully in our hands.

Kai doing field work at Bodega Bay in California.

Kai grew up in Gerlach, Nevada: Population 206. He moved to San Luis Obispo to study civil engineering at Cal Poly SLO and while studying, he worked as an intern at the Bodega Bay Marine Lab and has been working with the coast ever since. When Kai is not working on his research, he is brewing, climbing rocks, surfing waves, or cooking the meanest soup you’ve ever tasted. Next year, he will move to Chile with a Fulbright grant to apply his emulator techniques to a new hazard: tsunamis.

To hear more about Kai’s research, be sure to tune in to KBVR Corvallis 88.7 FM this Sunday May, 27 at 7 pm, stream the live interview at kbvr.com/listen, or find it in podcast form next week on Apple Podcasts.

Small Differences Have Big Consequences to Keep the Oceans Happy

Swimming away from the rocky shores out to sea Grace Klinges, a 2nd year PhD student in the Vega-Thurber Lab, is surrounded by short green sea grasses swaying in the waves, multi-colored brown sand and occasional dull grayish-brown corals dot the floor as she continues her research dive. However, the most interesting thing about this little island reef off the coast of Normanby Island, Papua New Guinea, is the forest of bubbles that envelopes Grace as she swims. Bubbles curiously squeak out everywhere along seafloor between sand grains and even eating their way through the corals themselves. It reminds one of how thick the fog can be in the Oregon hills, and like a passing cloud, the bubbles begin to dissipate the further away you swim from the shore, revealing an increasingly complex web of life wholly dependent on the corals that look more like color-shifting chameleons than their dull-colored cousins closer to the shore.

Grace took ~2,000 photos for each of 6 transects moving away from the carbon dioxide seeps. She is rendering these photos using a program called PhotoScan, which identifies areas of overlap between each photo to align them, and then generates a 3D model by calculating the depth of field of each image.

These bubbles emanating from the seafloor is part of a naturally occurring CO2 seep found in rare parts of the world. While seemingly harmless as they dance up the water column, they are changing ocean chemistry by decreasing pH or making the water more acidic. The balance of life in our oceans is so delicate – the entire reef ecosystem is changing in such a way that provides a grim time machine into the future of Earth’s oceans if humans continue emitting greenhouse gasses at our current rate.

Corals are the foundation of these ocean ecosystems that fish and indigenous island communities rely on for survival. In order for corals to survive they depend on a partnership with symbiotic algae; through photosynthesis, the algae provide amino acids and sugars to the corals, and in return, the coral provides a sheltered environment for the algae and the precursor molecules of photosynthesis. Algae lend corals their magnificent colors, but algae are less like colorful chameleons and more like generous Goldilocks that need specific water temperatures and a narrow range of acidity to survive. Recall those bubbles of CO2 rising from the seafloor? As the bubbles of CO2 move upward they react with water and make it slightly more acidic, too acidic in fact for the algae to survive. In an unfortunate cascade of effects, a small 0.5 pH unit change out of a 14 unit scale of pH, algae cannot help corals survive, fish lose their essential coral habitat and move elsewhere leaving these indigenous island inhabitants blaming bubbles for empty nets. On the grander scale, it’s humans to blame for our continuous emissions rapidly increasing global ocean temperatures and lowering ocean pH. The only real question is when we’ll realize the same thing the local fishermen see now, how can we limit the damage to come?

 

The lovely Tara Vessel anchored in Gizo, Solomon Islands.

Grace Klinges is a 2nd year Ph.D. student in the Microbiology Department who is using these natural CO2 seeps as a proxy for what oceans could look like in the future, and she’s on the hunt for solutions. Her research area is highly publicized and is part of an international collaboration called Tara Expeditions as a representative of the Rebecca Vega Thurber Lab here at Oregon State, known for diving across the world seeking to better understand marine microbial ecology in this rapidly changing climate. Grace’s project is studying the areas directly affected by these water-acidifying CO2 seeps and the surrounding reefs that return to normal ocean pH levels and water temperatures. By focusing her observations in this localized area, about a 60-meter distance moving away from shore, Grace is able to see a gradient of reef health that directly correlates with changing water chemistry. Through a variety of techniques (GoPro camera footage, temperature sensors, pH, and samples from coral and their native microbial communities) Grace hopes to produce a 3D model of the physical reef structures at this site to relate changing chemistry with changes in community complexity.

Tara scientists spend much of the sailing time between sites labeling tubes for sampling. Each coral sample taken will be split into multiple pieces, labeled with a unique barcode, and sent to various labs across the world, who will study everything from coral taxonomy and algal symbiont diversity to coral telomere length and reproduction rates. Photo © Tara Expeditions Foundation

One of the main ideas is that as you move further away from the CO2 seeps the number of coral species, or coral diversity, increases which often is expressed in a huge variety of physical structures and colors. As the coral diversity increases so should the diversity of their microbiomes. Using genetic and molecular biology techniques, Grace and the Vega Thurber lab will seek to better understand which corals are the most robust at lower pH levels. However, this story gets even more complicated, because it’s not just the coral and algae that depend on each other, but ocean viruses, bacterial players, and a whole host of other microorganisms that interact to keep this ecological niche functioning. This network of complicated interactions between a variety of organisms in reef systems requires balance for the system to function. Affectionately named the “coral holobiont“, similar to a human’s microbiome, we are still far from understanding the relative importance of each player which is why Grace and her labmates have written a series of bioanalytic computer scripts to efficiently analyze the massive amounts of genetic information that is becoming more available in the field.

Grace was overjoyed after taking a break from sampling to swim with some dolphins who were very curious about the boat. Photo © Tara Expeditions Foundation

With the combination of Grace’s field work taking direct observations of our changing oceans, and her computer programming that will help researchers around the world classify organisms of unknown ecosystem function, our knowledge of the oceans will get a little less murky. Be sure to listen to the interview Sunday January 14th at 7PM. You can learn more about the Vega Thurber lab here.

You can also download Grace’s iTunes Podcast Episode!