Memory plays the central role in learning – it is “the mechanism by which our teaching literally changes students’ minds and brains” (Miller, 2014, p. 88). Thus, understanding how memory works is important for both instructional designers and instructors. According to modern theories, memory involves three major processes: encoding (transforming information into memory representations), storage (the maintenance of these representations for a long time), and retrieval (the process of accessing the stored representations when we need them for some goal or task) (Miller, 2014). Let’s briefly review these processes and see how they may inform our course design and instruction.

Encoding – What Is the Role of Attention and Working Memory?

How does encoding happen? We receive information from our senses (visual, auditory, etc.), and then we perform a preconscious analysis to check whether it is important to survival and if it is related to our current goals. If it is, this information is retained and will be further processed and turned into mental representations. Thus, attention is the major process through which information enters our consciousness (MacKay, 1987). Attention is limited, and it is to some extent under voluntary control, but it can be easily disrupted by strong stimuli. Attention is crucial for memory, and without attention we cannot remember much (Miller, 2014).

How attention is directed depends on the way the content is presented and on the nature of the content itself (Richey et al., 2011). If the content is intrinsically motivating for the student, it will catch their attention more readily. But beyond that, the manner we design our instructional materials can influence how learners focus their attention to select and process the information, and in turn on what and how much gets stored in their memory. For example, we can ensure that students are guided to the most relevant content first by making that content more visually salient. Or we can tell an engaging story to focus their attention to the concepts that come next.

Baddeley and Hitch's multicomponent model of working memory (1974).
Baddeley and Hitch’s multicomponent model of working memory (1974)

Working memory is a concept introduced in the 1970s by Alan Baddeley. This model describes immediate memory as a system of subcomponents, each of them processing specialized information such as sounds and visual-spatial information. This system also performs operations on this information and are managed by a mechanism called the central executive. The central executive combines the information from the various subcomponents, draws on information stored in long-term memory, and integrates new information with the old one (Baddeley, 1986).

Some researchers consider attention and working memory to be the same thing; while not everyone agrees, it is clear that they are highly interconnected and overlapping processes (Cowan, 2011; Engle, 2002). Attention is the process that decides what information stays in working memory and keeps it available for the current task. It is also involved in coordinating the working memory components and allocating resources based on needs and goals (Miller, 2014).

The capacity of each of the working memory components is limited. However, these components are mostly independent: visual information will interfere with other visual information, but not much with another type such as verbal information (Baddeley, 1986). Therefore, the most effective instructional materials will include a combination of media, such as images and text (or better yet, audio narration), rather than just images or just text.

Graphic by Cheese360 at English Wikipedia is licensed under CC BY-SA 3.0

Storage – How Fast Do We Forget?

Ebbinghaus's forgetting curve (1885) - the graph shows the percentage of words recalled declining sharply after one day and then more slowly
Ebbinghaus’s forgetting curve (1885)

In the late 1800s, Hermann Ebbinghaus conducted his famous series of experiments on the shape of forgetting. The result was the forgetting curve (also called the retention curve), which is a function showing that the majority of forgetting takes place soon after learning, after which less information will be lost (Ebbinghaus, 1885). A recent review of studies on the retention curve concluded that the rate of forgetting may increase up to seven days, and slows down afterwards (Fisher & Radvansky, 2018). This interval is useful to consider when planning instruction. A well-designed course will include sufficient opportunities for practice and retrieval during this time, so as to minimize the forgetting that naturally occurs.

Graphic from MIT OpenCourseWare is licensed under CC BY-NC-SA 4.0

Retrieval – How Do We Get It Out of Our Heads and Use It?

While long-term memory is considered unlimited, retrieval (or recall) can be challenging. Its success depends on a few factors. To retrieve memory representations, we use cues—information that serves as a starting point. Since a memory can include different sensory aspects, information with rich sensory associations is usually remembered more easily (Miller, 2014). Visual and spatial cues are particularly powerful: memory athletes perform some mind-blowing feats by using a special technique called “the memory palace”—imagining a familiar building or town and placing all content inside it in visual form (to learn more about this technique, check out this TED talk by science writer Joshua Foer).

Recall is also influenced by how the information was first processed: deep processing (focusing on meaning) will yield superior retrieval performance compared to shallow processing (focusing on superficial features like some key words or the layout of the information). However, equally important is a match between the type of processing that happens during encoding and the one that happens during retrieval (Miller, 2014). For instance, if the final exam contains multiple-choice questions, learners will perform better if they also practiced with multiple-choice questions when they learn the content. Finally, emotions have been shown to boost memory (Kensinger, 2009), and even negative emotions (such as fear or anger) can have a strong effect on recall (Porter & Peace, 2007).

Conclusion – Implications for Instruction

What can we do to maximize our students’ memory potential? Based on these memory characteristics, here are a few strategies that can help:

  1. Make use of graphic design and multimedia learning principles to create attention-grabbing, well-organized instructional materials that include a combination of media.
  2. Include plenty of retrieval practice activities, such as polling during lectures, quizzes, or flashcards. The website Retrieval Practice is a fantastic resource for quick tips, detailed guides, and research. Top things to keep in mind:
    • Boost retrieval practice through spacing (spreading sessions over time) and interleaving (mixing up related topics during a practice session).
    • Make sure you plan some sessions for the critical seven-day period after introducing the material.
  3. Consider teaching students the memory palace technique for content that requires heavy memorization.
  4. Support every type of content visually where possible.
  5. Encourage deep processing of the material, for example through reflections, problem-solving, or creative activities.
  6. Ensure that students have opportunities to engage with the material during learning in the same way as they will during the exam.
  7. Try to stimulate emotions in relation to the content. While negative affect can help (for example, recounting a sad story to illustrate a concept), it is probably best to focus on positive emotions through exciting news, inspiring anecdotes, and even more “extrinsic” factors such as humor, uplifting music, or attractive visual design.

Using these strategies will help you create learning experiences where students encode, store, and retrieve information efficiently, allowing them to use it effectively in their lives, studies, and work. Do you have any related experience or tips? If so, share in a comment!

References

Baddeley, A. D. (1986). Working memory. Oxford University Press.

Cowan, N. (2011). The focus of attention as observed in visual working memory tasks: Making sense of competing claims. Neuropsychologia, 49(6), 1401–1406. https://doi.org/10.1016/j.neuropsychologia.2011.01.035

Ebbinghaus, H. (1885). Memory: A contribution to experimental psychology.

Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 19–23. https://doi.org/10.1111/1467-8721.00160

Fisher, J. S., & Radvansky, G. A. (2018). Patterns of forgetting. Journal of Memory and Language, 102, 130–141. https://doi.org/10.1016/j.jml.2018.05.008

Kensinger, E. A. (2009). How emotion affects older adults’ memories for event details. Memory, 17(2), 208–219. https://doi.org/10.1080/09658210802221425

MacKay, D. G. (1987). The organization of perception and action: A theory for language and other cognitive skills. Springer New York. http://dx.doi.org/10.1007/978-1-4612-4754-8

Miller, M. D. (2014). Minds online: Teaching effectively with technology. Harvard University Press.

Porter, S., & Peace, K. A. (2007). The scars of memory. Psychological Science, 18(5), 435–441. https://doi.org/10.1111/j.1467-9280.2007.01918.x

Richey, R., Klein, J. D., & Tracey, M. W. (2011). The instructional design knowledge base: Theory, research, and practice. Routledge.

Photo by Sarah Kilian on Unsplash.

This is the paradox of failure in games. It can be stated like this:

  1. We generally avoid failure.
  2. We experience failure when playing games.
  3. We seek out games, although we will experience something that we normally avoid. (Juul, p. 2)

As a continuation from my last blog post considering grades and Self-Determination Theory, I wanted to take a brief side-quest into considering what it means to experience failure. Jesper Juul’s The Art of Failure: An Essay on the Pain of Playing Video Games will provide the main outline and material for this post, while I add what lessons we might learn about feedback and course design in online settings.

Dealing with Failure

Juul outlines how games communicate through feedback using the theory of Learned Helplessness. Specifically, he focuses on Weiner’s attribution theory, which has three dimensions:

  1. Internal vs. External Failure
    1. Internal: The failure is the fault of the player. “I don’t have the skills to defeat this enemy right now.”
    2. External: The failure is the fault of the game. “The camera moved in a way that I couldn’t see or control and resulted in a game over.”
  2. Stable vs. Unstable Failure
    1. Stable: The failure will be consistent. No recognition of experience gained or improvement. “No matter what I do, I can’t get past this challenge.”
    2. Unstable: The failure is temporary. There is a possibility for future success. “I can improve and try again.”
  3. Global vs. Specific Failure
    1. Global: There is a general inability preventing success. “I am not good at playing video games.”
    2. Specific: Poor performance does not reflect on our general abilities or intelligence. “I’m not good at flight simulators, but that doesn’t mean I’m bad at all video games.”

In general, a combination of Internal+Stable+Global failure feedback would contribute most strongly toward a player adopting a learned helplessness mindset. There is a potential parallel here with course design: when a student does not do well on an assessment, what kind of feedback are they receiving? In particular, are they receiving signals that there is no opportunity for improvement (stable failure) and that it shows a general inability at the given task (global failure)? Designing assessments so that setbacks are unstable (offer multiple attempts and a way for students to observe their own improvement over time) and communicating specific skills to improve (make sure feedback pinpoints how a student could improve) would help students bounce back from a “game over” scenario. But what about internal vs. external failure? For Juul, “this marks another return of the paradox of failure: it is only through feeling responsible for failure (which we dislike) that we can feel responsible for escaping failure (which we like)” (p. 54). This importance of internal failure aligns with what we know about metacognition (Berthoff, “Dialectical notebooks and the audit of meaning”) and the numerous benefits of reflection in learning.

Succeeding from Failure

Now that we have an idea on how we deal with failure, let’s consider how we can turn that failure into success! “Games then promise players the possibility of success through three different kinds of fairness or three different paths: skill, chance, and labor” (Juul, p. 74):

  1. Skill: Learning through failure, emphasis on improvement with each attempt. (This is also very motivating by being competence-supportive!)
  2. Chance: We try again to see if we get lucky.
  3. Labor: Incremental progress on small tasks accumulates more abilities and items that persist through time and multiple play sessions. Emphasis here is on incremental growth over time through repetition. (Animal Crossing is a great example.) (This path is also supported by Dweck’s growth mindset.)

Many games reward players for all three of these paths to success. In an online course, allowing flexibility in assignment strategies can help students explore different routes to success. For example, a final project could allow for numerous format types, like a paper, podcast, video tutorial, interactive poster, etc. that students choose strategically based on their own skills and interests. Recognizing improvement will help students with their skills and helping students establish a routine of smaller, simpler tasks that build over an entire course can help them succeed through labor. Chance is an interesting thing to think about in terms of courses, but I like to think of this as it relates to content. Maybe a student “gets lucky” by having a discussion topic align with their final project topic, for example. For the student in that example, that discussion would come easier to them by chance. Diversifying content and assignment types can help different individuals and groups of students feel like they have “lucky” moments in a course.

Reflecting on Failure

Finally, how do games give us the opportunity to reflect on our successes and failures during gameplay? Juul outlines three types of goals that “make failure personal in a different way and integrates a game into our life in its own way” (pp. 86–87):

  1. Completable Goal: Often the result of a linear path and has a definite end.
    1. These can be game- or player-created. (i.e., Game-Driven: Defeat the ghost haunting the castle. Player-Driven: I want to defeat the ghost without using magic.)
  2. Transient Goal: Specific, one-time game sessions with no defined end, but played in rounds. (e.g., winning or losing a single round of Mario Kart.)
  3. Improvement Goal: Completing a personal best score, where a new high score sets a new goal.

For Juul, each of these goal-types have different “existential implications: while working toward a completable goal, we are permanently inscribed with a deficiency, and reaching the goal removes that deficiency, perhaps also removing the desire to play again. On the other hand, we can never make up for failure against a transient goal (since a lost match will always be lost), whereas an improvement goal is a continued process of personal progress” (pp. 86–87). When thinking about your courses, what kinds of goals do you design for? Many courses have single-attempt assignments (transient goal), but what if those were designed to be improvement goals, where students worked toward improving on their previous work in a more iterative way that replaced old scores with new and improved scores (improvement goal)? Are there opportunities for students to create their own challenging completable goals?

I hope this post shines a light on some different ways of thinking about assessment design, feedback types, and making opportunities for students to “fail safely” based on how these designs are achieved in gaming. To sum everything up, “skill, labor, and chance make us feel deficient in different ways when we fail. Transient, improvement, and completable goals distribute our flaws, our failures, and successes in different ways across our lifetimes” (Juul, p. 90).

Introduction to Intersectionality

In 1989, Kimberlé Williams Crenshaw, a lawyer and scholar of Critical Race Theory (CRT), coined the term intersectionality to describe the multiple and layered oppressions experienced by African American women. Over time, this term has been used to describe many aspects of social identity, particularly focusing on race, gender, and class oppression. Intersectionality allows us to consider the impact of multiple oppressions on individuals and groups. For example, asking what it means to be poor in the United States is different from asking what it means to be a poor, Black, woman in the United States, which is different from asking what it means to be a poor, Black, disabled woman in the Southern United States. 

Intersectionality matters because, if we don’t recognize and support our most marginalized citizens, they will continue to fall through the cracks. In colleges and universities, this means that our most marginalized students may need additional support to perform to their full potential. Addressing one source of oppression may not provide enough support to students who are working to overcome multiple sources of oppression.

Disability in Higher Ed

Disability is an obstacle for many college students. Consider these statistics:

  • 19% of undergraduate students report having a disability. 
  • 28% of American Indian/Alaska Native students reported a disability.
  • 21% of White students reported having a disability (rounded to nearest percent). 
  • 17% of the students with disabilities are Black. (National Center for Educational Statistics [NCES], 2019).

When considering disability–or any other identity–we need to consider how other characteristics might compound the marginalization of students with disabilities. Let’s consider how race intersects with disability.

While the percentage of Black people with disabilities in higher education is lower than the percentage of White people with disabilities in higher education, in the general population, the reverse is true. According to Courtney-Long, E.A., Romano, S.D., Carroll, D.D. et al. (2017), 1 in 4 Black people have a disability, while 1 in 5 White people have a disability. This means that more white people with disabilities are accessing and progressing through higher education

It is also important to recognize that the actual percentages of students with disabilities is higher as many students choose not to disclose their disabilities to their institutions. According to one study, “9% of students who identified as disabled did not disclose this information to their college or university” (Taylor & Shallish, 2019, p. 10).

There are clearly opportunity and equity issues that disproportionately impact students of color with disabilities in higher education. 

Yet, when we work to create learning environments that are inclusive of students with disabilities, we often neglect to address intersecting sources of oppression. For example, accessibility requirements do not consider how disability intersects with other oppressions, such as class or race. 

Universal Design for Learning

Universal Design for Learning (UDL) is an approach that is commonly cited as a way to meet the needs of all learners. UDL includes a framework with three general principles (multiple means of engagement, multiple means of representation, and multiple means of action and expression) each of which includes multiple guidelines and checkpoints for actual practice (CAST.org, n.d.). The goal of UDL is to increase access and usability for the greatest number of people possible. A UDL approach is structured and practical and, despite the critiques included here, is lauded for its utility by course designers and teachers alike. 

UDL, however, does not meet the needs of all learners, particularly our most marginalized learners. Let me repeat: UDL does not meet the needs of our most marginalized learners, as much as we would like to believe it does. Let me highlight a few of the reasons for this.

  1. As Dolmage (2017) explains in the book Academic Ableism: Disability and Higher Education, UDL’s emphasis on universality is problematic because universality is connected to normativity. (p. 134). Dolmage (2017) states that UDL has gained recognition by appealing to the majority, but in doing so “the needs of the majority once again trump the needs of those who have been traditionally excluded—people with disabilities” (p. 135). UDL is viewed as a framework for addressing the needs of disabled students, but its actual emphasis is on meeting the needs of the majority.
  2. With its emphasis on “multiple means” UDL aims to include multiple learner identities and preferences; however, it “overlooks the importance of feedback from its own users” (Dolmage, 2017, p. 126). In this way, UDL ignores the individual circumstances of actual students
  3. By focusing on the “means,” over the students themselves, UDL is not an intersectional approach to design and teaching. Defining what a Universal Design looks like without considering the particularized realities of actual students results in the continued marginalization and erasure of students who are not in the majority. 

UDL has popularized educational practices that serve many students, but in doing so, it has effectively erased the needs of some of the most marginalized students–those with disabilities. Those students with disabilities who are also part of other oppressed groups are increasingly at a disadvantage.

There’s no doubt that UDL is an incredibly useful tool and makes our course designs better, but we must not fail to recognize that UDL is not a panacea. UDL should be one of many tools we use to meet the needs of students, but let’s not forget that we need a truly intersectional approach to design and teaching. Without this, we, unwittingly or not, are contributing to the marginalization and erasure of our most disadvantaged students.

References

About Universal Design for Learning. (n.d.). CAST.org. Retrieved on June 8, 2020 from http://www.cast.org/our-work/about-udl.html

Courtney-Long, E.A., Romano, S.D., Carroll, D.D. et al. (2017). Socioeconomic Factors at the Intersection of Race and Ethnicity Influencing Health Risks for People with Disabilities. J. Racial and Ethnic Health Disparities, 4, 213–222. https://doi.org/10.1007/s40615-016-0220-5 

Dolmage, J. (2017). Universal Design. In Academic Ableism: Disability and Higher Education (pp. 115-152). Ann Arbor: University of Michigan Press. Retrieved June 8, 2020, from www.jstor.org/stable/j.ctvr33d50.7

Taylor, A. & Shallish, L. (2019). The logic of bio-meritocracy in the promotion of higher education equity, Disability & Society, DOI: 10.1080/09687599.2019.1613962

U.S. Department of Education, National Center for Education Statistics. (2019). Digest of Education Statistics, 2017 (2018-070), Chapter 3. Retrieved June 10, 2020 from https://nces.ed.gov/fastfacts/display.asp?id=60 

Canvas Survey with Mud Card Questions

New online instructors often express concern about the loss of immediate student feedback they get by teaching in person. These educators count on in-class interaction to help shape their lesson plans in real-time. Student questions, lack of interaction, or even blank looks, help them understand what concepts are difficult for their learners. Others just feel more comfortable with the two-way nature of in-classroom communication.

But teaching in an online environment doesn’t have to be mutually exclusive from gauging student interest and comprehension.

Mud Cards

child in mud puddle in rain boots

I was first introduced to the concept of “Mud Cards” or “Muddiest Points” through an open course MIT offered in Active Learning in College-Level Science and Engineering Courses. The instructor described handing out index cards to each student at the end of class asking students to write down an answer to one or more of a few prompts (MIT OpenCourseWare, 2015).

In an online course, this could easily take the form of a weekly survey that looked something like this:

  • What concept from this week did you find confusing?
  • Is there anything you found particularly compelling?
  • What would you like to know more about?

Potential Benefits

The answers received have multiple potential benefits. First of all, instructors will get to look for trends in a particular class.

  • Are learners missing something central to a course learning outcome?
  • Is there a concept they need additional resources to master prior to an upcoming exam?
  • What excites them the most?

Getting this information weekly can provide information that is normally gathered during in-class interactions. It may even be more informative, as participation is likely to be higher (or can be incentivized through participation points). This feedback can be used to add content, perhaps through an announcement at the beginning of the next unit, addressing any common problems students reported. It can also help improve the content or activities for the next iteration of the online course.

The second benefit of an activity like this one is that it is an easy way to introduce active learning to your online course. Active learning, with origins in Constructivism, includes the idea that students build knowledge through “doing things and thinking about what they are doing.”

Rather than passively watching narrated slide-based lectures or videos, or completing assigned readings, they are asked to think about what is being taught to them. Each student, by reflecting on questions like the examples above, takes some responsibility for their own mastery of the content.

3-2-1 (a similar tool)

I recently attended the keynote at the Oregon state Ecampus Virtual Faculty Forum by Tracey Tokuhama-Espinosa (Tokuhama-Espinosa, 2020). At the beginning of her presentation, she told all of us we were going to be asked to email her our “3-2-1.” A 3-2-1, she defined as:

  • Three things that are new to me
  • Two things so interesting I will continue to research or share with someone else
  • One thing I will change about my practices based on the information shared today

Even though I was very familiar with the underlying pedagogical practice she was leveraging, I paid significantly more attention than I would have otherwise to an online presentation. I wanted to come up with something helpful to say. To be honest, suffering from COVID related ZOOM fatigue, it also made sense to ensure the hour of my time resulted in something actionable.

A Word of Caution

The use of a tool like the Mud Cards or 3-2-1 will be successful only if used consistently and students see the results of their efforts. If not introduced early and repeated regularly, students won’t develop the habit of consuming content through the lens of reflecting on their own learning. Similarly, students who never see a response to their input, through a summary or additional explanations, will get the message that their feedback is not important and lose the incentive to continue to provide it.

Conclusion

Introducing a reflection activity like those suggested is a simple, quick way to incorporate active learning into a course while simultaneously filling a void instructors sometimes miss through being able to ask questions of their students in a classroom.

Canvas allows for building anonymous graded or ungraded surveys in which a weekly activity like this would be easy to link to in a list of tasks for a unit of study. It is a low development effort on the part of the instructor, and participation from students shouldn’t take more than 5 minutes.

I will link below to some of the resources mentioned that discuss the use and benefits of Mud Cards and active learning in instruction. If you try it out in an online course, I would love to hear how it works for you.

Resources


Rainboots photo by Daiga Ellaby on Unsplash

Flexibility is an inclusive practice. Structure is an inclusive practice. Both of these statements are true–yet, many people might wonder how to reconcile these seemingly opposite approaches in their course designs. How does one build a course that is both flexible enough to accommodate the diverse needs of their students, yet structured in a way that is clear and unambiguous? In a practical sense, what do these words really mean?

First, let’s define these terms and consider why each of these approaches are critical to student success. What do we mean by flexibility and structure and why are they both important features of course design and facilitation?

Flexibility

Flexibility is getting a lot of press right now, due to our global pandemic. We are all encouraged to be flexible and understanding of one another and to recognize that most of us, especially right now, are dealing with increased responsibilities. As a student myself, I recall how much relief it gave me to read in a note from my professor that this term is “all about flexibility” along with detail around what this means in the context of our course. 

For those of us familiar with online learning, accommodating students with full-time jobs and child or eldercare responsibilities, for example, is not new. However, even for our online students, these responsibilities are compounded by school closures and other distancing measures. Everyone needs additional flexibility, understanding, and support right now. Even you, reader! Let’s be explicit and honest about this in our communications with students and each other.

In the context of our online or remotely taught courses, how do we communicate this to students? Here are a few ideas and suggestions to get you started:

  1. Flexible policies: Saying you will be flexible is not enough. Build flexibility into your policies. For example, if students are required to do field observations for a report or lab, are the guidelines for these observations too restrictive? Might students with mobility challenges or high-risk health considerations be unable to spend extended periods of time outdoors? What alternatives can you provide to these students?
  2. Student choice: Providing your students options will increase their autonomy and engagement. Choice is especially important now because it will allow students to make decisions based, not only on their personal and professional interests, but also based on their individual circumstances, which may have drastically changed in recent months.
  3. Communication: Keeping the lines of communication open is essential. Frequent communication builds feelings of connection so that student needs are more likely to be articulated.

Structure

Building structure into your course means removing ambiguity and avoiding assumptions about your students. Structure does not mean being inflexible. You can be explicit and unambiguous without being rigid.

Two helpful tools for adding structure to your course are rubrics and models, or examples. Rubrics will help you to communicate with your students and will allow you to identify your expectations along with how each criterion will be evaluated. Model assignments will help students to interpret your expectations.

When you don’t have enough structure built into your course, when your expectations are ambiguous, your underrepresented students are disproportionately impacted. This level of ambiguity often results from assumptions about your students’ prior experiences. Assuming they know how to use an LMS or that they have reliable WiFi at home, for example, puts students who don’t have these resources at a disadvantage. 

When you don’t have enough structure built into your course, your students will be forced to make assumptions, correctly or incorrectly, about your expectations. Some students may ask questions, but others will do their work and hope for the best. This results in a clearly unequal playing field, exacerbating existing inequalities. 

Balance

Given that both flexibility and structure are needed in course design and teaching, whether online, remote, on-ground, or hybrid, how does one balance these competing elements?

Too much structure, and your students will lose agency and motivation. Too much flexibility, and your students may feel ungrounded and directionless.

Here are some tips for finding balance:

  • Give choice, but include clear parameters for evaluating student work.
  • Provide multiple lower stakes assessments and stage your course projects, so that students have multiple opportunities to get feedback, correct misconceptions, and earn course points.
  • Welcome student questions and concerns and share your feedback with the whole class. If one student is asking a question, many others are thinking about asking it and would benefit from the same communication. 
  • Don’t wait for students to request alternatives: odds are high that only your most privileged students will feel comfortable asking for accommodations such as more time or additional feedback. If one student requests an accommodation, others who need similar considerations, may not be asking for them. Why not proactively offer these options to all students?

As a final thought, both structure and flexibility are essential ingredients in the recipe for exemplary teaching. When you find the perfect blend of these elements, all your learners will benefit!

References

Parker, F., Novak, J, & Bartell, T. (2017). To engage students, give them meaningful choices in the classroom. Phi Delta Kappan 99 (2), 37-41.

Sathy, V. & Hogan, K.A. (2019). Want to reach all of your students? Here’s how to make your teaching more inclusive: Advice guide. Chronicle of Higher Education. Retrieved from https://www.chronicle.com/interactives/20190719_inclusive_teaching

Do you ever get the sense that students posting in their online discussions haven’t really engaged with the reading materials for that week? One way to encourage active engagement with course readings is to have students annotate directly in the article or textbook chapter that they are assigned. While it is common to see students annotating in their paper copies of their textbooks or readings, these aren’t easily shared with their peers or instructor. Of course, students could snap a photo of their handwritten annotations and upload that as a reading assignment task, though that does require additional steps on the part of both the student and instructor, and there is no interaction with others in the course during that process. However, it is possible to have students annotate their readings completely online, directly in any article on the web or in their ebook textbook. With this process, the annotations can also be seen by others in the course, if desired, so that students can discuss the reading all together or in small groups as they are reading an article or book chapter online. The benefit to this type of annotation online includes components of active learning, increased student interaction, and accountability for students in engaging with the course materials.

Active Learning

The shift to active learning is a bit like going from watching a soccer game on TV to playing a soccer game. Likewise, reading passively and reading to learn are two different activities. One way to get students actively reading to learn is to ask them to make connections from the course materials to their own lives or society, for example, which they then make into annotations in their readings. Annotation tasks require students to take actions and articulate these connections, all without the pressure of a formal assessment. Furthermore, many students arrive at college not knowing how to annotate, so teaching basic annotation practices helps students become more active and effective learners (Wesley, 2012). 

Interaction

“Individuals are likely to learn more when they learn with others than when they learn alone” (Weimer, 2012). Discussion board activities are often where interaction with others in an online course takes place. However, rather than having students refer to a particular reading passage in their discussion board activity, they can simply highlight a passage and type their comments about it right there in the article, no discussion board assignment needed. Others in the course can also read participants’ annotations and reply. With some creative assignment design in Canvas, this can also be set up for small groups. Students may find this type of annotation discussion more authentic and efficient than using a discussion board tool to discuss a reading.

News article embedded in the assignment shows annotations made by specific students with a box to reply
Above, the online news article is embedded in the Canvas assignment. Students simply go to the assignment and can begin annotating. In the image above, a student highlights a passage to show what the annotation refers to. For a collaborative activity, students can reply to any peer’s comment. Alternatively, the instructor can set the annotations to be private, for more independent tasks.

Accountability

A popular way to ensure that students have done the reading is to give them a quiz. However, this is a solitary activity and is higher-stakes than asking students to make targeted annotations throughout a reading. It may make more sense to guide them through a reading with specific annotation tasks. Being explicit about what pieces of the reading students should focus on can help them understand what they need to retain from the reading assignment.

Possible Activities

  • Student-student interaction: Replace a discussion board activity with a collaborative annotation activity where students can annotate the article as they read. Then they can go back later in the week and reply to each other. 
  • Activate prior knowledge: Ask students to include one annotation related to what they already know about this topic.
  • Evaluate sources: Find a pop-science article in your discipline that includes weak support for arguments or claims, for example. Ask students to identify the sources of support in the arguments and challenge the validity of the support. Perhaps they could even be tasked with adding links to reliable sources of support for your discipline in their annotation comments. 

Nuts and Bolts

Two popular annotation tools are Hypothesis and Perusall. I would encourage you to test these out or ask your instructional designer about your needs and whether an annotation tool would be a good fit for your course learning outcomes. 

Resources:

Hypothesis

Perusall

Wesley, C. (2012). Mark It Up. Retrieved from The Chronicle of Higher Education: https://www.chronicle.com/article/Mark-It-Up/135166

Weimer, M. (2012, March 27). Five Key Principles of Active Learning. Retrieved from Faculty Focus: https://www.facultyfocus.com/articles/teaching-and-learning/five-key-principles-of-active-learning/

Open Pedagogy Part 1 – What is the value of going ‘open’?

By Ashlee M. C. Foster, Instructional Design Specialist Oregon State University Ecampus

Designing the "right" assignments
Figure 1: A list of challenges and strategies associated with designing the “right” assignments. This list is a result of a collaborative activity generated by the Critical Open Pedagogy cohort at the Digital Pedagogy Lab 2019. Photo courtesy of Ashlee Foster

Are you committed to broadening access to education and knowledge, acknowledging and mitigating barriers, fostering social justice, and designing authentic and renewable learning experiences that contribute to the greater good? Do you employ pedagogical approaches that focus on student agency, collaboration, community, and connection to the public and world at large? If so, you may be an open educator at heart!

This is a three-part blog which will introduce the potential value of open pedagogy (part 1), critically examine considerations and strategies for implementation (part 2), and explore current practitioner examples and design approaches (part 3), which I hope will help you envision open assessments for your courses.

You may be thinking those two little words encapsulate a great deal, and you would be right! I have learned that this is a complex question with various evolving answers among practitioners. Recent literature indicates that there is a shift occurring from Open Educational Resources (OER) centered pedagogy to pedagogy that is focused on the potential impact, collaboration, connection, democratization of education, and the critical inquiry of systems and technology. Both leaders in the field, Robin DeRosa and Rajiv Jhangiani define open pedagogy as, “access-oriented commitment to learner-driven education AND as a process of designing architectures and using tools for learning that enable students to shape the public knowledge commons of which they are a part.” It may help to contextualize this pedagogy by examining your perceived value of the approaches, consider what excites you most, and identify how you personally connect with the pedagogy. Let’s begin by exploring this together!

What values underpin open pedagogy?

What is open pedagogy?
Figure 2: A whiteboard with questions posed. The questions include “What is open pedagogy?”, “What is Open Educational Practices?”, and “What is Open Education?” Cohort members co-generated answers to these questions and posted them to the board. Photo courtesy of Ashlee Foster

I had an invaluable opportunity to attend the Digital Pedagogy Lab Critical Open Pedagogy track, facilitated by Rajiv Jhangiani. Throughout the intense week, our cohort engaged in meaningful discussions centered on what is it that makes someone an educator, open pedagogical approaches, public scholarship, educational technology, the democratization of education, and how open pedagogy can foster social justice. Rajiv asked participants to review his 5Rs for Open Pedagogy and then write a personal interpretation of the values. Specifically, he asked, “What brings you (or others) to this work?” In the spirit of openness, I have shared my initial perception of the values which continue to evolve as I learn more about the field.

Recent literature surveyed educators and asked them to describe how going open impacts their pedagogical approaches. Educators indicated that the open approaches prompted them to find innovative ways for students to obtain and share knowledge, use of new methods and platforms, diversify learning materials to include multi-perspectives, actively teach open literacies, move to a participatory model of teaching and learning from one that was top-down, and to engage in critical inquiry around entrenched knowledge structures.

Additionally, educators shared their perceived value for creating learning assessments that:

  • go beyond a single course (renewable),
  • are broadly relevant (inclusive),
  • allow for student choice when demonstrating learning (agency),
  • connect to the real world and the learner’s personal interests (relevancy),
  • amplify multi-perspectives from broad global voices (liberate),
  • empower students with the knowledge and skills to participate openly (freedom), and for educators and learners to collaborate (participate)!

What are students saying?

These are valuable insights from practicing educators, but what are students saying about open approaches in their classes? In a recent study, 173 students were asked to compare the educational value of open pedagogy to traditional approaches, to identify the types of learning outcomes associated with this approach, and if they preferred open pedagogical approaches to traditional. Out of 169 respondents, 53% of students preferred open pedagogical approaches to traditional classroom teaching practices. Students shared that the open approaches led to increased knowledge of the material, synthesis of information, consideration for the relevance of information, how to bring information together in a meaningful way for diverse audiences, application to real-world issues which they personally connect with, and they found the approaches to be more engaging. However, 20% of students preferred traditional pedagogy. This highlights that the integration of varied approaches may be optimal. I have learned that open pedagogy is not necessarily a silver bullet that can remedy all barriers and challenges associated with closed systems. Rather, it seems to be a tool that can be leveraged to foster social justice, engagement, participation, collaboration, co-construction of knowledge, the democratization of education, and to increase global access to education.

With all that said, let us circle back around to the question posed in the Critical Open Pedagogy workshop, what brings you to this work? I encourage you to reflect on this question. You may even find it helpful to write out your interpretation of the values of open pedagogy and share those with the community. If you feel comfortable to do so, please feel free to share in the comments of this blog. Do you find yourself inspired by this pedagogical approach? If so, I invite you to revisit this blog for Open Pedagogy Part 2 – Critical Considerations for Implementation and explore the resources below.

References

Resources

 

The other day, my six-year-old asked me what the word “industrious” means, and I was overcome with pride and, moments later, mild panic as I tried to answer his question and couldn’t clearly articulate the meaning of the word.

This experience ended well (thanks, Alexa), but prompted me to think about how often we use words without fully understanding what they mean. We don’t question the meaning of these words when they are used in our work or daily interactions. We may use these words ourselves on occasion–or with regularity–but when we stop and try to define these words, the proper associations and descriptions don’t come immediately to mind.

In my work as an instructional designer, it’s common to talk about universal design or inclusive design, and in many cases, to use these descriptors interchangeably, when talking about design that is usable by a wide range of people. To a lesser extent, accessibility is used in a similar way, but, I think, our shared understanding of this term is more reliable.

For this blog post, I would like to spend some time defining and distinguishing these terms and grounding them in a historical context to more fully convey the nuances and layers of meaning ascribed to each term. I’ll wrap up with some strategies for designing courses to better meet the needs of all learners.

Accessibility

According to the Web Accessibility Initiative (WAI), “Web accessibility means that websites, tools, and technologies are designed and developed so that people with disabilities can use them.” It’s clear from this definition that accessibility is intended to address the needs of users with disabilities, so let’s consider disability. 

Prior to 2001, the World Health Organization (WHO) defined disability as a personal health condition. This definition placed emphasis on the individual. However, in 2001, the WHO redefined disability as a mismatched interaction between a person and their environment. This new definition places emphasis on the environment, rather than the individual. As a result, the onus is no longer only on the disabled individual to manage their health condition; rather, those who have influence over the environment need to make changes to the environment to better accommodate everyone who is interacting with it. In our case, the learning environment is the web, or more specifically, online courses. 

Unlike the other two design approaches we’ll consider, accessibility is intended to address the needs of users with disabilities. Another distinguishing feature of accessibility is that it describes an end goal. Our web content should be presented in such a way that the end result is an accessible website or technology. While this post will not go into the how of making web content accessible, here are some elements you may be familiar with: alternative text (alt tags), headings (H1, H2, H3, etc.), color contrast, captions and/or transcripts, reading order, keyboard navigation, and descriptive URLs are all examples of accessibility elements. All of these elements define what our design should look like, not how to get there.

Another distinguishing feature is that accessibility is required by law. We won’t delve into the specifics here, but it’s important to recognize that accessibility is a legal compliance issue.

Universal Design for Learning (UDL)

While accessibility addresses specific features of a website or online learning environment, Universal Design for Learning (UDL) takes a broader approach. UDL guidelines still emphasize accessibility, but the emphasis is not solely on making disability accommodations or complying with the law. The goal of UDL is to provide the greatest degree of access and usability for the widest range of individuals.

UDL includes a framework with three general principles, each of which includes multiple guidelines and checkpoints for actual practice. A UDL approach is structured and practical and, similar to accessibility, UDL defines an end goal: a product that is usable by the widest range of individuals possible. The framework, however, emphasizes the design, which is only one aspect of creating an online course.

To broaden our understanding of UDL, it’s important to understand that UDL emerged from universal design, which is an architectural concept. Architecture, unlike the web, is physically fixed, and as such, the emphasis is on a single design that works for everyone. 

Inclusive Design

While UDL emerged from architecture, inclusive design was “born out of digital environments,” and, while architecture is fixed, the web is flexible and ever-changing. As such, inclusive design emphasizes flexibility and process. Inclusive design is iterative. With an emphasis on iteration and process, inclusive design cannot be separated from the lived experience of actual users. In other words, if the users (in our case, students) are contributing to and evaluating the design, then we can no longer separate the design and delivery–the creation and facilitation activities.

With a focus on process, inclusive design emphasizes co-creation and frequent feedback from multiple developers as well as end users. In particular, seeking contributions from excluded communities during the entire design and evaluation process is critical to an inclusive process.

Unlike accessibility and UDL, inclusive design is focused on process and iteration. To help illustrate how we see these three design approaches working together, my colleague, Elisabeth McBrien and I created the figure below (figure 1).

Three circles. The outer circle represents inclusive design. The middle circle represents UDL. And the smallest circle represents accessibility.
Figure 1. An inclusive design process will always include UDL and accessibility as end goals.

We see accessibility compliance as core to any design. UDL goes beyond the requirements of accessibility to meet the needs of all users. In an inclusive design process, UDL and accessibility are always the end goal, but inclusive design emphasizes the importance of feedback and iteration. We can always improve and we always have more work to do.

In Practice

Now that we have a better understanding how accessibility, UDL, and inclusive design work together to contribute to a learning environment that meets the needs of all learners, how do we apply them and improve? Ecampus has many guidelines and templates that help us to meet the goals of accessibility and UDL, but how can we be more inclusive throughout this process? 

Here are some inclusive approaches that you might consider integrating into your course facilitation and teaching:

  • Build rapport with students. This is accomplished by infusing instructor presence whenever possible. Respond to Q&A questions and emails within 24-48 hours. Share resources. Deliver feedback promptly. An important element of rapport and presence is showing your personality, so consider using video to welcome students and to encourage them throughout the course.
  • Solicit feedback. One of the easiest ways to solicit feedback from your students is to use a survey. Keep surveys short and consider asking students to share in a few words how the course is going or what they find most challenging.
  • Establish clear criteria and structure. Rubrics, templates, examples, and consistent naming and organization of course materials are just a few ways to provide clarity and structure.
  • Acknowledge student contributions. Praise is an instant confidence booster. Do you have a student–particularly, an underrepresented student–who did an exceptional job on one of your assignments? Let them know. Consider sharing their work as an example–with their permission, of course.
  • Feature counter-stereotypical examples of people in your field. One common barrier to success for underrepresented students is that they don’t see themselves reflected in a particular discipline. Make sure your readings, examples, and other course materials represent a variety of identities. If there’s a lack of diversity in your field, find a way to acknowledge this to your students.
  • Promote student agency and autonomy by giving them choice, whenever possible. Providing choice and promoting agency allow students to connect your course to their own experiences and values.
  • Emphasize real world applications of course work. Often, we assume that our students understand the purpose of course activities, but this is not always the case. Sharing real world applications will help students to see the value and greater purpose of their studies.

Final Thoughts

We’ve covered a lot in this post, and I hope that we’ve come away with a better understanding of disability, accessibility, Universal Design for Learning (UDL), and inclusive design. One of the most important takeaways is that inclusive design is an ongoing process of feedback and iteration. As our student body changes, so do their needs. In an upcoming blog post, Elisabeth McBrien will share more details about student needs and how you might use student personas to design more inclusively.  

As we continue the challenging–yet meaningful–work of creating welcoming online learning environments, it’s important that we have a shared understanding of what that work entails, what work we have done, and what work we have yet to do.

Resources

  1. Appert, L. et al. (2018) Guide for Inclusive Teaching at Columbia. Columbia University: Center for Teaching and Learning.
  2. Gannon, Kevin. (2018) The case for inclusive teaching. Chronicle of Higher Education.
  3. Hogan, Kelly A. and Sathy, Viji. (2019, July 22) “Want to Reach All of Your Students? Here’s How to Make Your Teaching More Inclusive: Advice Guide.” Chronicle of Higher Education.
  4. The inclusive design guide. Inclusive Design Research Centre at OCAD University. CC-BY 3.0.
  5. Inclusive Teaching: Supporting All Students in the College Classroom. EdX course from Columbia University.

About halfway through earning a master’s in education, I took a summer session class on digital storytelling. It ran over the course of three half-day sessions during which we were required to complete two digital stories. I had no great academic ambitions in my approach to these assignments. I was trying to satisfy a degree requirement in a way that worked with my schedule as a single mother of two teenagers working full time while earning a graduate degree.

My first story was a self-introduction. I loved this assignment. Even though I had one evening to complete it, I spent hours tweaking it. I enjoyed learning the tools. I enjoyed sharing my story with my classmates. Even after it was graded, I kept finding ways to improve it.

After completing the course, I began to study the use of digital stories in education. My personal experience had shown me that in completing my assignment I had to become comfortable with technology as well as practiced my writing, speaking and presentation skills. I also felt a stronger connection to my classmates after sharing my video and watching their videos.

Literature

The research on digital storytelling echoes my own experience. Dr. Bernard Robin, an Associate Professor of Learning, Design, & Technology at the University of Houston, discussed the pedagogical benefits of digital storytelling assignments in a 2016 article,  The Power of Digital Storytelling to Support Teaching and Learning. His research found that both student engagement and creativity increased in higher education courses when students were given the opportunity to use multimedia tools to communicate their ideas. Students “develop enhanced communication skills by learning to organize their ideas, ask questions, express opinions, and construct narratives” (Robin, 2016). Bernard’s experience also finds that by sharing their work with peers, students learn to give and accept critique, fostering social learning and emotional intelligence.

Digital Storytelling as Educators

Digital Storytelling in online education shouldn’t be thought of as only a means of creating an engaging student assignment. Educators who are adept at telling stories have a tremendous advantage in capturing their student’s attention. In the following short video, Sir Ian McKellen shares why stories have so much power. Illustrated in the form of a story, he shares that stories are powerful for four reasons. They are a vessel for information, create an emotional connection, display cultural identity, and gives us happiness.

The Power of Storytelling, with Sir Ian McKellen

McKellen is a compelling narrator with a great voice. This story is beautifully illustrated. It reminds me of how I want my learners to feel when they are consuming the content I create. Even if for a moment, so engrossed, that they forget that they are learning. Learning becomes effortless. As he points out, a good storyteller can make the listener feel as if they are also living the story.

Digital Storytelling Assignments

There are lots of ways to integrate digital stories across a broad set of academic subjects. Creating personal narratives, historical documentaries, informational and instructional videos or a combination of these styles all have educational benefits. One of the simplest ways to introduce this form of assessment to your course is to start with a single image digital story assignment.

Here’s an example I created using a trial version of one of many digital story making tools available online:

Single Image Digital Story Example

Digital Story Making Process

The process of creating a digital story lends itself well for staged student projects. Here’s an example of some story making stages:

  1. Select a topic
  2. Conduct research
  3. Find resources and content
  4. Create a storyboard
  5. Script the video
  6. Narrate the video
  7. Edit the final project

I created an animated digital story to illustrate the process of creating a digital story using another freely available tool online.

Digital Storytelling Process Movie link

Recommended Resources & Tools

You will find hundreds of tools available for recording media with a simple search. Any recommended tool should be considered for privacy policies, accessibility and cost to students.

Adobe Express (previously Adobe Spark)

Adobe offers a free online video editor which provides easy ways to add text, embed videos, add background music and narration. The resulting videos can be easily shared online via a link or by downloading and reposting somewhere else. While the tool doesn’t offer tremendous flexibility in design, the user interface is very friendly.

Canvas

Canvas has built-in tools to allow students to record and share media within a Canvas course. Instructions are documented in the OSU Ecampus student-facing quick reference guide.

Audacity

Audacity is a free, open-source cross-platform software for recording and editing audio. It has a steeper learning curve than some of the other tools used for multimedia content creation. It will allow you to export your audio file in a format that you can easily add to a digital story.

Padlet

Padlet allows you to create collaborative web pages. It supports lots of content types. It is a great place to have students submit their video stories. You have a lot of control during setup. You can keep a board private, you can enable comments, and you can choose to moderate content prior to posting. Padlet allows for embedding in other sites – and the free version at the time of writing allows users to create three padlets the site will retain.

Storyboarding Tools

A note first about storyboarding. Storyboarding is an essential step in creating a digital story. It is a visual blueprint of how a video will look and feel. It is time to think about mood, flow and gather feedback.
Students and teachers alike benefit from visualizing how they want a final project to look. It doesn’t have to be fancy. It is much easier to think about how you want a shot to look at this stage than while you are shooting and producing your video. A storyboard is also a good step in a staged, longer-term project in a course to gauge if students are on the right track.

Storyboard That

This is a storyboard creation tool. The free account allows for three and six frame stories. In each frame, you can choose from a wide selection of scenes, characters, and props. Each element allows you to customize color, position, and size. Here’s a sample I created:

The Boords

This site has several free to use templates in multiple formats to support this process. Here is one that I have used before:

A4-landscape-6-storyboard-template

Looking for Inspiration?

Start with Matthew Dicks. Dicks is the author of Storyworthy: Engage, Teach, Persuade and Change Your Life through the Power of Storytelling. He is a teacher. He is a five-time winner of the Moth GrandSlam championship.
His book is wonderful, but to just get a taste, start with the podcast he cohosts with his wife. Each week they include a well-vetted and rehearsed story told during a competition. They then highlight the strengths and areas for improvement. You will walk away with ideas and the motivation to become a better storyteller. Here’s the first episode, and one of my favorites.

Conclusion

When pressed for time to develop course content, we tend to over-rely on text-based assignments such as essays and written discussion posts. Students, when working on Digital Storytelling assignments, get the opportunity to experiment, think creatively and practice communication and presentation skills.

For educators, moving away from presenting learning materials in narrated bulleted slides is likely to make classes more engaging and exciting for their students leading to better learning outcomes. Teachers work every day to connect with students and capture their attention. A good story can inspire your students and help them engage with the content.

I was uncomfortable when I received my first digital storytelling assignment. I didn’t really know how to use the tools, wasn’t confident I knew how or what to capture. I was sure it would feel awkward to narrate a video. But These assignments turned out to be engaging, meaningful, and the process is pretty straight forward. Introduce digital storytelling into your courses, even by starting small, and you are sure to feel the same way.

As online educators, we strive for a balance of learning activities that incorporate three types of engagement: learner-to-content, learner-to-instructor, and learner-to-learner.  The learner-to-learner component is often filled through discussion boards or group projects, but an underutilized and undervalued option is peer review.

The Rationale

There are many ways peer review benefits students, among them Cornell University Center for Teaching Innovation lists:

  • Empower students to take responsibility for and manage their own learning.
  • Enable students to learn to assess and give others constructive feedback to develop lifelong assessment skills.
  • Enhance students’ learning through knowledge diffusion and exchange of ideas.
  • Motivate students to engage with course material more deeply.

More broadly, the authors of The Knowledge Illusion argue that our individual capacity for knowledge is often much more limited than we realize and that our true depth of knowledge is held collectively.  They remind us that, “when you put it all together, human thought is incredibly impressive.  But it is a product of a community, not of any individual alone” (page 5).  In our increasingly complex world, some evidence of a shift towards building knowledge collectively can be seen in research. For example, in the MEDLINE database, “the average number of authors per article has nearly quadrupled from about 1.5 in 1950 to 5.5 in 2014” (page 226).  This is just one of many examples the authors use to illustrate how essential collaboration and relationship skills have become.  In nearly every field, students need to be prepared to be more than individual achievers, but rather to contribute effectively to a group.  Peer review provides students an opportunity to give and receive feedback with the goal of creating a better end product, but it is also an opportunity for students to practice and build their teamwork skills.

Moreover, International Society for Technology in Education (ISTE) Standard 3b emphasizes the need for students to, “evaluate the accuracy, perspective, credibility and relevance of information, media, data or other resources.”  Peer review is a great way for us to meet this standard and to combat against misinformation, by teaching students to evaluate and challenge claims.  In Weaponized Lies: How to Think Critically in the Post-Truth Era author Daniel J. Levitin shares strategies for how we can think more critically and evaluate the trustworthiness of what we are being told.  He notes that, “sometimes the people giving you the facts are hoping you’ll draw the wrong conclusion; sometimes they don’t know the difference themselves” (page xx).  If your students are in either of these groups, it benefits them to have an attentive reader review their work and provide respectful suggestions for improvement prior to a final assignment submission.  This may help you as the instructor to avoid catching errors too late in the process when students cannot revise their work.

The Explanation

However, students may not see the value of peer review on their own.  The Teaching Center at Washington University in St. Louis describes many reasons students may express uncertainty around peer review as, “Many students do not perceive feedback from peers as relevant to the process… students are likely to assume that it is only the instructor’s feedback that ‘counts.’”  Therefore, it is important that we explain to students why we are asking them to engage in peer review explicitly.

It can be helpful to explain specifically how this will relate to industry or field of study requirements as a student advances as a professional and scholar – it looks different for a researcher than it does for a project manager, so motivate students by sharing with them how they will engage in similar activities in the future as this gives them an opportunity to practice what Starting Point: Teaching Entry Level Geoscience describes as, “key skills such as abstracting, developing arguments, describing, assessing, criticizing, analyzing, and reviewing.”  As Faculty Focus advises, we can’t assume that students will implicitly understand the purpose of peer review.  When we craft a peer review assignment, we need to think carefully about how we will articulate the benefits of the process to students.  It can be helpful to answer questions like, “Why am I having students do this?” and “Why should students be excited about this process?”  Or, to take it a step further, we can anticipate the questions from our students’ perspective and proactively address the purpose and logistics in the assignment description, by answering questions like, “Why am I doing peer review?” and “How am I supposed to review my peer’s work?”  Make sure the technology needed and processes are clear and that resources are provided for students that need more guidance.

The Process

Remember, knowing why students are peer reviewing and being able to peer review are two totally different skills.  If you are an Ecampus instructor, talk with your instructional designer about strategies that can help your peer review process be more successful.  Some of the best practices suggested by Center for Instructional Technology & Training at the University of Florida include:

  • Clarify expectations in advance
  • Check your students have all the tools they will need
  • Provide enough time in the peer review process so that students can meaningfully engage – this may span more than one module
  • Model the type of feedback you want your students to use
  • Create a quality rubric as a guide

Your instructional designer can also talk to you about digital tools or strategies that can be used to introduce students to peer review. For example, you can discuss whether it makes more sense to use Canvas Peer Review or another tool, like Peerceptiv, which is research-validated peer assessment technology available for Ecampus courses.

Remember, students need opportunities to practice peer review, as they may never have done it before.  That means they have to get familiar with both the tools and the process.  It’s best if they can practice with the technology on a low stakes assignment before using it for a high stakes assignment, so that they can familiarize themselves with a peer review process without the added anxiety of a major grade on the line.  It will also take time for you as the instructor to get familiar with the process, but it is a completely worthwhile investment!

I invite you to consider some concluding thoughts from Levitin, “Information gathering and research that used to take anywhere from hours to weeks now takes just seconds… The implicit bargain that we all need to make explicit is that we will use just some of that time we saved in information acquisition to perform proper information verification” (page 253).  Let’s reinvest some of the time our students saved researching to engage them in verifying claims, evaluating evidence, offering commentary, and incorporating feedback – all of which support the development of a stronger student work and the building of a collective knowledge.