reflection of hot air balloon over water(image from pxfuel.com)

Reflection assignments as an active learning strategy are commonly seen in humanities courses. The purpose of this writing is to share an example of how simple reflection activities can make a huge impact in two math courses.

MTH 251 Differential Calculus covers five units, with one exam for each unit, counting 14% of the final grade. Before students attempt to take the unit exam, they are assigned to read textbook readings, watch instructor-created lecture videos, work on Canvas-based homework assignment and Adaptive Learning based practice assignments in Knewton Lab online platform. After assignment due date expires, students are assigned to complete a weekly written homework reflection. The weekly homework and the weekly homework reflection together count for 14% of final grade in this course, weighing the same as each of the unit exams.

MTH 341 Linear Algebra I has ten weekly modules. Each week, students  read textbook assigned readings, watch lecture videos created by the instructor (Dr.   ), complete post-reading questions in quiz format, work on graded group discussion questions to solve math problems in small groups, complete written homework individually, and in the following week, complete a written homework response activity individually in discussion format.   

The written homework reflection in MATH 251 and the written homework response in MATH 341 are both reflection activities designed to optimize student learning success, through comparing their own homework solutions with answer keys and evaluate whether they did it correctly or incorrectly and analyze where they did it wrong and how to get it right. The purpose of such weekly reflection is to help students develop meta-cognitive skills related to their learning. By looking back at students’ own work and learning from their mistakes, they develop an understanding of what is the proper way to solve a problem and what is not the proper way for solving a particular math problem. It also prompts students to plan for proper action in the future and exercises students’ executive functioning skills (CAST, 2018). 

Here is what the instructions for the weekly reflection look like:
1. First answer the weekly prompt: Reflecting on the Unit 1 module, which topics did you struggle with the most?
2. Download the written homework solutions PDF: (Solution for each written homework in pdf format is attached here.)
3. Look over the solutions and compare to your submitted homework. Look for any problems where your solution differs from the posted solution.

    • If your solutions had one or more incorrect problems then in the discussion board please discuss the following:
      • why you struggled with certain problems
      • why each solution makes sense now
      • what your misunderstanding was
      • what will you do in the future when solving problems similar to these?
      • what strategies will help you?
      • what did you learn by making a mistake?
      • what did you learn from looking at the solutions?
    • If you are still confused about a problem, ask a question. DO NOT simply list which problems you got wrong.
    • If your solutions are all correct then in the discussion board please discuss the problem that you found the most challenging. Describe what specific tasks helped you to complete that problem. Be as detailed as you can about your solution process.

Students not only posted their own reflections, but they also comment on or answer other students’ reflections as well. Additionally, the instructor and the four TAs in the course responded actively to students’ reflections, which makes the reflection more valuable since students get encouragement, praises, or corrections from the instructor and teaching assistants. Again, feedback from experts is critical in the success of a reflection activity (Vandenbussche, 2018)

What Reflection Usually looks like and what reflection should look like

Image 1: How reflection usually looks like and How reflection should look like (Image Source)

Many students were reflecting on what they did wrong and asked for help. Some were reflecting on their time management in completing the homework assignments. And we were glad to see students completing homework, evaluating their own work, analyzing where they did wrong, and planning for future improvement. Overall, the purpose of this assignment is accomplished!

goal 1 complete

(Image by Dave_Here)

A great benefit that comes from these weekly reflection activities is increased or sustained homework completion rate. For MTH 251 winter 2021 week 1 to week 7, over 85% of students completed the weekly homework and the reflection activity on average. For MTH 341 Fall 20 week 1 to week 7, over 90% of students on average completed the weekly homework and the reflection assignments. All math teachers love to see their students practice with homework assignments before they attempt to take the quizzes or exams! And evidence-based research tells us that deliberate practice with targeted feedback promotes mastery learning (Ambrose et al., 2010).

So, if it works in math courses, it will work in Chemistry, Biology, Physics, Engineering and other STEM courses too! If you’re interested in implementing this technique in your teaching and have questions about setting it up, feel free to contact us. We’d love to help you figure out the easiest way to set it up in your course.

References

Ambrose, S.A., Bridges, M.W., DiPietro, M., Lovettt, M.C. , Norman, M.K., & The Eberly Center for Teaching Excellence at Carnegie Mellon University. (2010). How learning works: Seven research-based principles for smart teaching. San Francisco, CA: Jossey-Bass

CAST. (2018). UDL Guidelines. Retrieved from https://udlguidelines.cast.org/ 

Vandenbussche, B. (2018). Reflecting for learning. Retrieved from https://educationaltoolsportal.eu/en/tools-for-learning/reflecting-learning 

chart of five phases of engagement: connect, communicate, collaborate, co-facilitate, and continue

 Why Group Work Is Important 

Love it or hate it, group work is an important part of education. Learning to work cooperatively with diverse people is a core 21st century skill, one which employers increasingly value and expect new workers to have mastered. Experience gathered from group work in educational settings directly transfers to and prepares students for successful collaboration in work teams. By collaborating in teams, students learn a wide range of discrete as well as soft skills that make group work worth the effort, including those below.

  • Technology skills
  • Social skills
  • Self-awareness
  • Empathy
  • Coping with stress
  • Creating work plans and schedules
  • Forecasting needs and hurdles
  • Time management & meeting deadlines
  • Working with difficult personalities
  • Managing & navigating unmet expectations
  • Following up & messaging
  • Accountability
  • Leadership
  • Development of academic/professional voice 

Pedagogically, group work supports a constructivist approach to learning, in which students contribute to the learning environment, build knowledge both individually and collectively, and co-create the classroom environment. Constructivist theory posits that learning is a social process and values student interaction with and contributions to collective knowledge. Group work and student collaboration are foundational methods in constructivist classrooms that help students develop the knowledge and skills that allow them to meet learning objectives. Additionally, group work is seen as a key element of student-student interaction. 

Considerations for Successful Groups

The first thing instructors should consider when planning to incorporate group work is to reflect on WHY they are assigning it- as an objective of learning or as a means of learning. Group work for the purpose of learning collectively, producing collaboratively, or for gaining experience working cooperatively are all valid reasons to include group work. 

Additionally, instructors must consider the limits of the asynchronous modality when creating group assignments. We all know how difficult it can be if the group you end up working in is not harmonious; For students in asynchronous online courses, group work can be even more difficult, with challenges like different time zones, different daily schedules, and lack of face to face collaboration opportunities. Even the most thoughtfully designed group activities can run into problems. What happens when one student fails to contribute? Do the other group members take up the slack and cover for their absent partner? How should a group handle an overbearing group member who takes on more than their fair share of the project? Anticipating the potential hurdles that may arise when planning the group project and incorporating support and resources for struggling groups can alleviate these barriers to a large degree. 

An important consideration when creating group assignments is Conrad & Donaldson’s Phases of Engagement model, which advises instructors to structure group work so that students can build up group cohesion through low-stakes activities like icebreakers, introductions, and discussion forum posting towards the beginning of the term before ramping up to more complicated collaborative projects. This scaffolding of tasks helps groups bond and build community among members, facilitating better working relationships and the trust necessary to work through the intricacies of a complex group project. The theory can be helpful when approaching a series of courses within a specific degree program as well, moving from simple group projects in lower division courses to co-facilitating and transformative ongoing engagement at the upper levels. 

chart of five phases of engagement: connect, communicate, collaborate, co-facilitate, and continue

Another model that can help instructors understand how to structure group work is Peter Lencioni’s Five Dysfunctions of a Team, which describes a pyramid of features that are required for groups to function effectively. Lencioni claims that trust is the foundation of any functioning group, followed in ascending order by managing conflict through healthy discourse, ensuring commitment and buy-in, providing a method of accountability for team members, and a focus on collective results over personal prestige. Avoiding dysfunction by clearly structuring group work to anticipate and provide tools for dealing with these problems can ensure teams get off on the right footing and can work together smoothly.

pyramid of five behaviors of a cohesive team: trust, conflict, committment

 

Additionally, instructors should consider the type of collaboration that is common within their own discipline, whether it be performing distinct roles within a team or more general projects requiring cooperation. Designers often work together creatively to develop and improve products; medical teams must work collectively but in distinct roles to serve patients; computer software developers must be able to distribute work and manage tight deadlines; public-facing personnel must be able to amicably respond to a range of customer behaviors. Connecting group work explicitly to real-world work scenarios helps students see the value and relevance of their learning, which helps increase engagement and dedication. Structuring group projects to mimic the type of work tasks they can anticipate also provides the added value of preparing students for scenarios they will actually be faced with on the job.

Finally, since asynchronous group work relies heavily on technology, ensure that the technology to be used by the group is familiar or can be mastered quickly. Provide detailed instructions or tutorials for how to use the technology, plan for how to handle issues students might face with technology, and share resources they can tap should they run into problems. University instructional technology support can be linked to, and websites and apps often offer training videos. 

Types of group work

  • Pair/partner work
  • Informal cooperative active learning
  • Group essays or projects
  • Group presentations

Setting groups up for success

  • Set up groups of the right size, preferably with an odd number of participants
  • Make groups heterogenous to encourage peer-to-peer learning
  • Provide opportunities for students to activate their unique background knowledge and perspectives
  • Provide detailed instructions for group interaction expectations
  • Provide guidance on strategies for dividing the workload, such as setting up roles (ie: organizer, recorder, liaison, etc.)
  • Provide detailed instructions and rubrics for expected process and product
  • Split the grade for group work between collective and individual grades
  • Build in check-ins with instructor early on and midway
  • Plan for interventions if groups are not functioning well
  • Allow team members to evaluate each other’s and their own performance for contribution, cooperation, & timeliness

Sources

What are the benefits of group work? – Eberly Center

21st Century Skills Map

Group work as an incentive for learning – students’ experiences of group work

Group work – Teaching practice – Learning and teaching guidance – Elevate – Staff

Transforming The Online Learner

Increasing Student-to-Student Engagement: Applying Conrad and Donaldson’s “Phases of Engagement” in the Online Classroom

Teamwork 5 Dysfunctions

 

By Susan Fein, Instructional Designer, susan.fein@oregonstate.edu

In my role as an instructional designer, the faculty I work with are often looking for ways to increase student engagement and add a “wow” factor to their online course. One way to do that is to add or increase active learning practices.

Active learning requires students to do something and think about what they are doing, rather than simply listening, as with a passive-learning lecture (Bonwell & Eison, 1991). Active learning brings positive and lasting outcomes to students, including better retention and grasp of concepts, and is particularly evident when students work together to develop solutions (Chickering & Gamson, 1987).

Tackling Discussions

In 2019, I worked with an instructor developing a biochemistry/biophysics course for Ecampus. The instructor loved the peer-to-peer interaction intended for discussions, but was discouraged by the often lackluster exchange commonly demonstrated in the posts. She wanted to liven up these conversations, not only to increase the strength of the community but also to have an impact on the value of the learning that took place.

Enter knowledge boards! With a simple but creative retooling of the predictable initial-post-and-two-replies format, the instructor found a way to reimagine the often mundane discussion board and transform it into a lively and highly engaging conversation and exchange of knowledge.

How did she do this? Rather than compel all students to respond to a narrow or artificially-constructed prompt, the instructor instead posted several relevant topics or short questions extracted from the concepts presented during that week’s lectures and readings. Topics might be a single word or a short phrase, and the questions were tightly focused and direct.

Choice and Agency

From this list of 5 to 10 conversation starters that give breadth to the topics, the students can choose which they want to respond to, often selecting what’s of greatest interest to them. These posts could be anything related to the topic or question, so students are free to approach from any perspective or direction.

The instructor found that the students more freely contributed ideas, insights, understandings, questions, confusion, and commentary. They were encouraged to ask questions of each other to delve into significant points. Students could engage in as many conversations as desired, at their discretion. As a result, they tended to be more actively involved, not only with the content and concepts from that week’s materials, but also with each other, producing a strong community of inquiry.

This simple change transformed the tired and (dare I say it?) potentially boring weekly discussion into a meaningful opportunity for a lively and valuable knowledge exchange. The instructor explained that students also report that this knowledge board becomes a study guide, summarizing multiple approaches and insightful content they use for studying, so many revisit the posts even after that week is over as a way to review.

But Wait…There’s More!

The instructor didn’t stop at discussions in her pursuit of increased engagement and active learning. Her next “trick” was to evaluate how the assessments, especially homework problems, were presented.

A typical format in many Ecampus courses is to have students complete homework assignments individually, and these are generally graded on the correctness of the answers. But once again, this instructor redesigned a conventional activity by applying principles of active learning and collaborative pedagogy to improve learning outcomes.

In the new version, students first answer and submit solutions to the homework individually, and this initial phase is graded on proper application of concepts, rather than on the correctness of the answer. Next, students work together in small groups of 3 or 4 to discuss the same set of problems and, as a group, arrive at consensus of the correct answers.

The active learning “magic” occurs during this critical second phase. If one student is confident about an answer, they present evidence from the lectures and readings to persuade their peers. And when a student is not certain that they correctly grasped the concepts, they discuss the problem and relevant principles, learning from each other through this review, hearing different perspectives and interpretations of the materials. It is through these vital peer-to-peer interactions that the active learning takes place.

As the last phase of the activity, the group submits their answers, which are graded for correctness.

This reshaping of a classic homework activity results in deeper levels of understanding and stronger knowledge retention (Weimer, 2012). And there’s an added benefit for the instructor, too. Since there are fewer papers to grade, formatting homework as a group submission means extra time to offer more and better feedback than would be feasible when grading each student individually. A win-win bonus!

Benefits of Active Learning

These are just two simple but ingenious ways to reformat classic forms of interaction and assessment.

Do you have an idea of how you can alter an activity in your course to make it more interesting and engaging? If you sense that your online course could use a boost, consider incorporating more active learning principles to add the extra oomph that could transform your teaching content from mundane to magical!

So let’s close this post in true active learning style and take a moment to reflect. What kinds of active learning practices have you tried in your course? How did those go? We’d love to hear your thoughts and experiences, so please share in comments.

References

Bonwell, C. C., & Eison, J. A. (1991). Active Learning; Creating Excitement in the Classroom (Vol. Education Report No. 1). Washington, D.C.: The George Washington University, School of Education and Human Development.

Chickering, A. W., & Gamson, Z. F. (1987, March). Seven Principles for Good Practice. AAHE Bulletin 39, 3-7.

Weimer, M. (2012, March 27). Five Key Principles of Active Learning. Retrieved from Faculty Focus: https://www.facultyfocus.com/articles/teaching-and-learning/five-key-principles-of-active-learning/

Canvas Survey with Mud Card Questions

New online instructors often express concern about the loss of immediate student feedback they get by teaching in person. These educators count on in-class interaction to help shape their lesson plans in real-time. Student questions, lack of interaction, or even blank looks, help them understand what concepts are difficult for their learners. Others just feel more comfortable with the two-way nature of in-classroom communication.

But teaching in an online environment doesn’t have to be mutually exclusive from gauging student interest and comprehension.

Mud Cards

child in mud puddle in rain boots

I was first introduced to the concept of “Mud Cards” or “Muddiest Points” through an open course MIT offered in Active Learning in College-Level Science and Engineering Courses. The instructor described handing out index cards to each student at the end of class asking students to write down an answer to one or more of a few prompts (MIT OpenCourseWare, 2015).

In an online course, this could easily take the form of a weekly survey that looked something like this:

  • What concept from this week did you find confusing?
  • Is there anything you found particularly compelling?
  • What would you like to know more about?

Potential Benefits

The answers received have multiple potential benefits. First of all, instructors will get to look for trends in a particular class.

  • Are learners missing something central to a course learning outcome?
  • Is there a concept they need additional resources to master prior to an upcoming exam?
  • What excites them the most?

Getting this information weekly can provide information that is normally gathered during in-class interactions. It may even be more informative, as participation is likely to be higher (or can be incentivized through participation points). This feedback can be used to add content, perhaps through an announcement at the beginning of the next unit, addressing any common problems students reported. It can also help improve the content or activities for the next iteration of the online course.

The second benefit of an activity like this one is that it is an easy way to introduce active learning to your online course. Active learning, with origins in Constructivism, includes the idea that students build knowledge through “doing things and thinking about what they are doing.”

Rather than passively watching narrated slide-based lectures or videos, or completing assigned readings, they are asked to think about what is being taught to them. Each student, by reflecting on questions like the examples above, takes some responsibility for their own mastery of the content.

3-2-1 (a similar tool)

I recently attended the keynote at the Oregon state Ecampus Virtual Faculty Forum by Tracey Tokuhama-Espinosa (Tokuhama-Espinosa, 2020). At the beginning of her presentation, she told all of us we were going to be asked to email her our “3-2-1.” A 3-2-1, she defined as:

  • Three things that are new to me
  • Two things so interesting I will continue to research or share with someone else
  • One thing I will change about my practices based on the information shared today

Even though I was very familiar with the underlying pedagogical practice she was leveraging, I paid significantly more attention than I would have otherwise to an online presentation. I wanted to come up with something helpful to say. To be honest, suffering from COVID related ZOOM fatigue, it also made sense to ensure the hour of my time resulted in something actionable.

A Word of Caution

The use of a tool like the Mud Cards or 3-2-1 will be successful only if used consistently and students see the results of their efforts. If not introduced early and repeated regularly, students won’t develop the habit of consuming content through the lens of reflecting on their own learning. Similarly, students who never see a response to their input, through a summary or additional explanations, will get the message that their feedback is not important and lose the incentive to continue to provide it.

Conclusion

Introducing a reflection activity like those suggested is a simple, quick way to incorporate active learning into a course while simultaneously filling a void instructors sometimes miss through being able to ask questions of their students in a classroom.

Canvas allows for building anonymous graded or ungraded surveys in which a weekly activity like this would be easy to link to in a list of tasks for a unit of study. It is a low development effort on the part of the instructor, and participation from students shouldn’t take more than 5 minutes.

I will link below to some of the resources mentioned that discuss the use and benefits of Mud Cards and active learning in instruction. If you try it out in an online course, I would love to hear how it works for you.

Resources


Rainboots photo by Daiga Ellaby on Unsplash

In part one of Academic Success, we reviewed why it is important to help students develop time management skills and how to design courses that help students manage time. In this post, we will discuss the why, what and how about teaching students how to learn.

By this time, most public schools and higher education institutions are coming to a close for Spring 2020 teaching. Congratulations on overcoming so many challenges and finishing teaching during COVID-19! As we prepare for summer and/or fall teaching, I would like to invite instructors to consider teaching students how to learn in your next teaching adventure, in order to help students achieve academic success.

WhyWhy Teach Students How to Learn?

For teachers, teaching students how to learn enables them to facilitate dramatic improvements in student learning and success (McGuire & McGuire, 2015).

For students, metacognition helps them to become self-aware problem solvers and take control of their own learning, through taking stock of what they already know, what they need to work on, and how best to approach learning new material (The Learning Center at UNC Chapel Hill, n.d.).

Teaching students how to learn also aligns tightly with the neuroscience of how humans learn. Dr. Daniela Kaufer pointed out four key learning principles based on the neuroscience of how people learn: (1). Learning involves changing the brain; (2). Moderate stress is beneficial for learning, while mild and extreme stress are detrimental to learning; (3). Adequate sleep, nutrition, and exercise encourage robust learning; and (4). Active learning takes advantage of processes that stimulate multiple connections in the brain and promote memory (Kaufer, 2011).

WhatWhat to Include in “Teach Students How to Learn”?

Now we have seen why it is important to teach students how to learn from the perspectives of teachers, students and neuroscience, it is time to look into the content of a “Teaching Students How to Learn” training module. Dr. Saundra McGuire suggests getting students’ buy-in as a first step, through early diagnostic assessment which can be used to find out what students already know and what they did not know.  Past examples of dramatic increase in assessment performance after receiving “Teaching Students How to Learn” training can also be an effective way to gain students’ buy-in. Secondly, Dr. McGuire suggests teaching students Bloom’s Taxonomy and study cycle to help students self-evaluate what they are learning and where to focus their learning at (the higher levels of learning, such as the applying, analyzing, evaluating and creating). The Study Cycle includes preview, attend, review, study and assess (Cook, Kennedy & McGuire, 2013). Thirdly, Dr. McGuire suggests sharing metacognitive learning strategies with students. The Learning Center at University of North Carolina at Chapel Hill lists eleven specific strategies that students can use to enhance their learning: (1) use your syllabus as a roadmap; (2) summon your prior knowledge; (3)  think aloud; (4) ask yourself questions; (5) use writing; (6) organize your thoughts using concept maps or graphic organizers; (7) take notes from memory; (8) review your exams using test analyzer tool; (9) pause and ask yourself why you are doing what you are doing and how what you’re doing relates to the course as a whole and to the learning objectives that your professor has set; (10) test yourself; and (11) figure out how you learn and what learning strategies work best for you.

HowHow: Implementing “Teach Students How to Learn” in Online Course Design

There are many ways teachers and instructional designers can build activities and structures in course design to teach students how to learn. The following list is a starting point:

  • Provide specific, measurable, attainable, result-focused and time-focused objectives at both course level and module level, and ask students how these objectives connect to their own learning interests and objectives, for example, using an ungraded survey/poll/private check in at the start of the term.
  • Provide opportunities for students to reflect on prior knowledge they bring to the target topic/course
  • Provide a list of questions to guide students for targeted reading and better reading comprehension as an active reading strategy, when assigning required readings materials.
  • Provide questions in video lectures to help students check their understanding and keep students engaged;
  • Release answer sheet to homework assignments after submission expires and provide opportunity for students to compare what they did right or wrong and how to get it right if they did it wrong initially, to achieve mastery learning;
  • Provide opportunities for peer review and instructor feedback and make it possible for students to resubmit edited versions based on feedback received for mastery learning;
  • Allow multiple attempts for assignments and assessments for mastery learning;
  • Provide opportunities for students to reflect around midterm what learning strategies they use, whether they are effective or not, and how to adjust for better results in the reminding time of the course.
  • Provide opportunities for students to reflect near the end of the term on what they learned and how they have learned, and how they might use the learning in their lives. For example, using discussion forum, google form survey, quiz or assignment to collect students’ reflective feedback.

The list can go endless. The point is there are many opportunities for teachers and instructional designers to build elements in course design to teach students how to learn! Feel free to share your ideas or experience of teaching students how to learn with us.

References

Cook, E., Kennedy, E., and McGuire, S.Y. (2013). Effect of Teaching metacognitive learning strategies on performance in General Chemistry Courses. Journal of Chemical Education, 2013, 90, 961-967.

Kaufer, D. (2011). Neuroscience and how students learn. University of California Berkeley Graduate Student Instructor Teaching & Resource Center. Retrieved from https://gsi.berkeley.edu/gsi-guide-contents/learning-theory-research/neuroscience/

McGuire, S. Y., and McGuire, S. (2015). Teach Students How to Learn : Strategies You Can Incorporate into Any Course to Improve Student Metacognition, Study Skills, and Motivation. First ed. Sterling, Virginia: Stylus, LLC.

The Learning Center, University of North Carolina at Chapel Hill. (n.d.). Metacognitive Study Strategies. Retrieved from https://learningcenter.unc.edu/tips-and-tools/metacognitive-study-strategies/

Resources on Neuroeducation

  • Adolphs, R. (2009). The social brain: neural basis of social knowledge. Annual Review Psychology. 2009; 60: 693-716.
  • Bransford, John., and National Research Council . Committee on Developments in the Science of Learning. How People Learn : Brain, Mind, Experience, and School. Expanded ed. Washington, D.C.: National Academy, 2000. Print.
  • CAST (2018). UDL and the learning brain. Wakefield, MA: Author. Retrieved from http://www.cast.org/our-work/publications/2018/udl-learning-brain-neuroscience.html
  • Doyle, Terry, and Zakrajsek, Todd. The New Science of Learning How to Learn in Harmony with Your Brain. Second ed. Sterling, Virginia: Stylus, LLC, 2019. Web.
  • Eyler, J. (2018). How humans learn : The science and stories behind effective college teaching(First ed.), Teaching and learning in higher education (West Virginia University Press)). Morgantown: West Virginia University Press.
  • Kaufer, D. (2011). Neuroscience and How Students Learn. Berkeley Graduate Student Instructor Center’s How Students Learn Series talk in Spring 2011. Retrieved from https://gsi.berkeley.edu/gsi-guide-contents/learning-theory-research/neuroscience/
  • McLagan, Pat. “Unleashing the Unstoppable Learner.” Talent Development7 (2017): 44-49. Web. https://www.td.org/newsletters/atd-links/being-a-lifelong-learner
  • Perkins, D. N.,  Goodrich, H. , Tishman, S. & Owen, J. M.(1994). Thinking Connections : Learning to Think and Thinking to Learn. Menlo Park, Calif.: Addison Wesley, 1994. Print.
  • Schwartz, Daniel L., Tsang, Jessica M., and Blair, Kristen P. The ABCs of How We Learn : 26 Scientifically Proven Approaches, How They Work, and When to Use Them. First ed. New York, NY: W.W. Norton &, 2016. Print. Norton Books in Education.
  • Südhof, T.C. (2013). Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron. 2013 Oct 30;80(3):675-90. doi: 10.1016/j.neuron.2013.10.022.
  • Tokuhama-Espinosa, Tracey (2011). Mind, Brain, and Education Science: A Comprehensive Guide to the New Brain-Based Teaching.New York: W. W. Norton.
  • Ware, D. (2013). Neurons that fire together wire together. Retrieved from https://www.dailyshoring.com/neurons-that-fire-together-wire-together/

A student persona is a summary of a specific type of student. This persona represents archetypes NOT stereotypes of a broader student segment or group. A student persona summarizes who the student users are and why they are using the learning system, as well as what behaviors, assumptions, and expectations determine their view of the learning system.

Why Create Student Personas?

There are many reasons why instructors and instructional designers and developers create and use student personas, such as:

  • To represent the major needs of the key student user groups.
  • To provide a reliable and accurate representation of your targeted student audience.
  • To enable you to focus on a manageable and memorable group of students.
  • To help you create different designs for different kinds of students and to tailor the design to meet the needs of the most important student user groups.
  • To inform on the functionality of the learning system, uncover gaps in instructional design and development, or highlight new ways to deliver learning.

What Makes Up a Student Persona?

Like all personas, student personas generally include several key pieces of information, which are outlined on usability.gov

Here is an example of a student persona that I created for an online Intro to Permaculture MOOC that includes the essential elements of a persona.

Student Persona ExampleDescription of the user research conducted to create the student persona:

Student user research was conducted through an online Welcome survey that was embedded in the online course. As in all persona creations, user research should be conducted and the collected data should be used in order to ensure accurate representations of your users. Student user research can be conducted online or face-to-face through student surveys, interviews, or observations.

Student Persona Example (Enlarged View)

How Are Student Personas Used?

More than one student persona (3-5 student personas) should be used for an instructional development project from the analysis phase to the design, development, implementation and evaluation. As such, these student personas can be used in numerous ways.

Smashing Magazine, A Closer Look at Personas – What They Are and How They Work, discusses some of the general uses of personas:

  • Build empathy
  • Develop focus
  • Communicate and form consensus
  • Make and defend decisions
  • Measure effectiveness

Resources

While there is no one way to create and use a persona, there are plenty of examples, free templates, and instructional videos and readings available to help you get started to create personas of the students that you serve and to use them in your instructional developments. These resources are available through the following links.

Examples

Tobi Day
Rita

Templates

Fake Crow Free Persona Template
Persona Core Poster Template | PDF

Video

How to Create UX Personas (3:01)
(Note: This video talks about service design for customers, but for student personas, you will want to keep in mind that the students and learners are the customers)

Readings

Personas by usability.gov
A Closer Look at Personas – What They Are and How They Work by Smashing Magazine

 

This is a re-publish of a prior blog post that is quite popular and we wanted to bring it to the top of the blog again. Thank you to our original author: Rebecca Pietrowski

 

Connecting with our students is essential, but how do we do it? Well, I guess it depends on what you mean by connected. Zoom works to see one another on a screen, you can attend activities on campus and possibly see some of your students, or we can take a deeper look into what connected means. When I think of education, connecting could be students to each other, students to the material, the material to real life, you to the student, etc. I’ll focus on the last one here: You to the student.

Think back to a time when you were in school and you had a “favorite” teacher or professor. What was it about them that made them your favorite? Did they open up their classroom at lunch to play cards with students? Did they give you a “good luck” note for a sporting event? Maybe they came to your choir concert, attended a theater production you were in, or maybe they made themselves available in a time of need. Whatever it is, that’s what connects you. What made them your favorite is because of the connection that you formed.

Effective connection is:

  • Being available
  • Caring (and showing it)
  • Treating the student with respect
  • Being a trustworthy confidant
  • Showing belief in students
  • Acting warm and welcoming
  • Showing compassion
  • Being on the student’s side
  • Exuding love for teaching
  • Showing true interest in students
  • Being a great listener
  • Accepting every student

For me, there were lots of teachers I liked and many I’d say were “favorites” but looking back, one made that huge impression and connection. How? By giving me a cut up straw on a string. Yes, you read that correctly, a cut up straw on a string. That teacher listened to what I was saying when she asked a question about how a track meet went. If it was not so good of a meet, I’d reply “I sucked from a big straw.” When it came time for an important meet that year, I got a good luck card with a straw I couldn’t suck from. That was over 20 years ago and I still have that cut up straw. Now that’s a connection!

Connection Do’s and Don’ts. 

DO

  • Be available
  • Care (for real!)
  • Treat students with respect
  • Be a trustworthy confidant
  • Show belief in students
  • Be warm and welcoming
  • Show compassion
  • Be on the student’s side
  • Exude love for teaching
  • Show true interest in students
  • Be a great listener
  • Demonstrate acceptance

DON’T

  • Try too hard to be liked
  • Gossip about students
  • Fail to set boundaries
  • Fail to set high expectations
  • Be unable to say no
  • Be sarcastic
  • Pamper students
  • Fail to follow through
  • Pretend to care

 

 

Run through the lists and think of a way you can make the do’s happen and ways you can keep the don’ts from happening. Was there a specific example from your examples that really stood out? Use that to help guide you in the other examples. Perhaps you remember a time where you failed to set high expectations, what happened? Reflect on why you thought you had (or know you didn’t) and what you’d like to do differently next time.

Want to know more? Read “You’ve Gotta Connect: Building Relationships That Lead to Engaged Students, Productive Classrooms, and Higher Achievement” by James Alan Sturtevant, 2014

Do you ever get the sense that students posting in their online discussions haven’t really engaged with the reading materials for that week? One way to encourage active engagement with course readings is to have students annotate directly in the article or textbook chapter that they are assigned. While it is common to see students annotating in their paper copies of their textbooks or readings, these aren’t easily shared with their peers or instructor. Of course, students could snap a photo of their handwritten annotations and upload that as a reading assignment task, though that does require additional steps on the part of both the student and instructor, and there is no interaction with others in the course during that process. However, it is possible to have students annotate their readings completely online, directly in any article on the web or in their ebook textbook. With this process, the annotations can also be seen by others in the course, if desired, so that students can discuss the reading all together or in small groups as they are reading an article or book chapter online. The benefit to this type of annotation online includes components of active learning, increased student interaction, and accountability for students in engaging with the course materials.

Active Learning

The shift to active learning is a bit like going from watching a soccer game on TV to playing a soccer game. Likewise, reading passively and reading to learn are two different activities. One way to get students actively reading to learn is to ask them to make connections from the course materials to their own lives or society, for example, which they then make into annotations in their readings. Annotation tasks require students to take actions and articulate these connections, all without the pressure of a formal assessment. Furthermore, many students arrive at college not knowing how to annotate, so teaching basic annotation practices helps students become more active and effective learners (Wesley, 2012). 

Interaction

“Individuals are likely to learn more when they learn with others than when they learn alone” (Weimer, 2012). Discussion board activities are often where interaction with others in an online course takes place. However, rather than having students refer to a particular reading passage in their discussion board activity, they can simply highlight a passage and type their comments about it right there in the article, no discussion board assignment needed. Others in the course can also read participants’ annotations and reply. With some creative assignment design in Canvas, this can also be set up for small groups. Students may find this type of annotation discussion more authentic and efficient than using a discussion board tool to discuss a reading.

News article embedded in the assignment shows annotations made by specific students with a box to reply
Above, the online news article is embedded in the Canvas assignment. Students simply go to the assignment and can begin annotating. In the image above, a student highlights a passage to show what the annotation refers to. For a collaborative activity, students can reply to any peer’s comment. Alternatively, the instructor can set the annotations to be private, for more independent tasks.

Accountability

A popular way to ensure that students have done the reading is to give them a quiz. However, this is a solitary activity and is higher-stakes than asking students to make targeted annotations throughout a reading. It may make more sense to guide them through a reading with specific annotation tasks. Being explicit about what pieces of the reading students should focus on can help them understand what they need to retain from the reading assignment.

Possible Activities

  • Student-student interaction: Replace a discussion board activity with a collaborative annotation activity where students can annotate the article as they read. Then they can go back later in the week and reply to each other. 
  • Activate prior knowledge: Ask students to include one annotation related to what they already know about this topic.
  • Evaluate sources: Find a pop-science article in your discipline that includes weak support for arguments or claims, for example. Ask students to identify the sources of support in the arguments and challenge the validity of the support. Perhaps they could even be tasked with adding links to reliable sources of support for your discipline in their annotation comments. 

Nuts and Bolts

Two popular annotation tools are Hypothesis and Perusall. I would encourage you to test these out or ask your instructional designer about your needs and whether an annotation tool would be a good fit for your course learning outcomes. 

Resources:

Hypothesis

Perusall

Wesley, C. (2012). Mark It Up. Retrieved from The Chronicle of Higher Education: https://www.chronicle.com/article/Mark-It-Up/135166

Weimer, M. (2012, March 27). Five Key Principles of Active Learning. Retrieved from Faculty Focus: https://www.facultyfocus.com/articles/teaching-and-learning/five-key-principles-of-active-learning/

By Susan Fein, Instructional Designer, OSU Ecampus

I recently volunteered to lead a book club at my institution for staff participating in a professional development program focused on leadership. The book we are using is The 9 Types of Leadership by Dr. Beatrice Chestnut. Using principles from the enneagram personality typing system, the book assesses nine behavioral styles and assesses them in the context of leadership.

At the same time, a colleague asked me to review a book chapter draft she is co-authoring that summarizes contemporary learning pedagogical approaches. These theories are derived from every conceivable arena, including psychology, philosophy, epistemology, neuroscience, and so on. In both of these situations, I found myself immersed in far-reaching and seemingly unlimited perspectives, principles, beliefs and approaches to explain the constructs of human behavior.

Was the universe trying to tell me something?

Here’s What Happened

To prepare for the book club, I completed five or six free online tests designed to identify my predominant enneagram style. Imagine my surprise when my results were all different! A few trends emerged, but the tests failed to consistently identify me as the same enneagram type. Does that mean the tests were flawed? Certainly that may be a partial contribution. After all, these were not the full-length battery that would be used if I were paying for an assessment administered by a certified enneagram practitioner.

But frankly, I think the variation had more to do with me. My mood, the time of day, my frame of mind; was I hungry, was I tired and a myriad of other factors likely affected my responses. The questions were subjective, scenario-based choices, so depending on my perspective in that instant, my selection varied, producing significantly different results. I suddenly realized that I wasn’t the same person from moment to moment!

Does that sound absurdly obvious? Was this a “duh” moment? At one level, yes, but for me, it was also an “ah-ha” moment. As educators, do we expect students to respond or react in a predictable and consistent way? Is that practical or realistic? I don’t think so.

Now I was intrigued! How could my role as an instructional designer be enhanced and improved through recognition of this changeability? How might I apply this new insight to support the design and development of effective online learning?

I didn’t have a clear-cut answer but I recognized a strong desire to communicate this new-found awareness to others. My first thought was to find research articles. Google Scholar to the rescue! After a nearly fruitless search, I found two loosely-related articles. I realized I was grasping at straws trying to cull out a relevant quote. I had to stop myself; why did I feel the need to cite evidence to validate my incident? I was struggling with how to cohesively convey my thoughts and connect them in a practicable, actionable way to my job as an instructional designer. My insight felt important and worth sharing via this blog post, but what could I write that would be meaningful to others? I was stumped!

I decided I should talk it over with a colleague, and that opened up a new inquiry into design thinking. Rushing back to my computer, I pulled up images of the design thinking process, trying to incorporate the phases into my experience. Was my insight empathy? Did it fit with ideation? Once again, I had to force myself to stop and just allow my experience to live on its own, without support from theories, models, or research.

In desperation, I sought advice from another trusted co-worker, explaining my difficulty unearthing some significant conclusion. We had a pleasant conversation and she related my experience to parenting. She said that sometimes she lets stuff roll right off when her teenager acts out, but at other times, under nearly identical circumstances, she struggles to hold it together and not scream. Then she mentioned a favorite educational tool, the grading rubric, and I was immediately relieved. Yes, that’s the ticket! I can relate my situation to a rubric. Hurray! This made sense. I rewrote my blog post draft explaining how rubrics allow us to more fairly and consistently assess student work, despite changes in mood, time of day, energy level, and all the other tiny things that affect us. Done!

Satisfied, I asked a third colleague to review my draft and offer comments. Surely she would be approving. After all, there were no facts, tips, tools, research or actionable conclusions to correct. What could she possibly find to negatively critique? She felt that the ending was rushed and artificially trying to solve a problem. Oh, my, how on target she was! I realized that I had no idea how to elegantly extricate myself from this perilous journey I’d started. My blog posts are usually research-based summaries of the benefits of active learning, blended learning and the like. Safe and secure ground. What was I doing writing a personal reflection with absolutely no solid academic foundation? This was new and scary territory.

Who Cares? I Do

In the end, I had to let go of my need to cite valid research-based arguments. I gave up my desire to offer pithy words of wisdom or quotes from authorities. Ultimately, this was a personal reflection and, as my colleague gently reminded me, I had to be vulnerable.

So what, exactly, is my point? What is it about those chameleon-like outcomes that feels important to share? What do I want to say as a take-away? Honestly, I’m not sure. I only know that in recognizing the influence of human factors on my moment-to-moment reactions, I was unexpectedly expanded. I felt more empathy for the faculty I work with and the students they teach. (Maybe I can fit design thinking in here after all…kidding!) I sensed a stronger connection to my humanity. I deepened my compassion. But is any of this important? I mean, really, who cares?

I do. I care. I work with people and for people. I work to support student success. My job allows me to partner with instructors and bolster their confidence to have positive impact on their students’ futures. If I am more open, more inclusive, more humble, more willing to consider other people’s ideas or perspectives, that’s not such a bad thing. And I don’t need research to validate my experience. It’s okay for me to just be present to a new awareness. It’s okay for me to just be human.

Who are our students?

Is there such a thing as a “typical” college student? The evidence suggests that no, there is no such a thing as a typical college student. According to the National Center for Education Statistics, 2015 Report, 74% of all undergraduates are “nontraditional” students. This means that they have at least one or more of the following characteristics: having one or more dependents, working full time, attending school part time, taking a gap between high school and college, and completing a GED instead of a high school diploma. It is simultaneously exciting and challenging that higher education has become more accessible to an increasingly diverse student body. The challenge for instructional designers and faculty, therefore, is to keep up with how to design courses that welcome and support all students.

Do we design for the majority or for the “extremes”?

If we design courses for the most common student situations, we end up serving students who already have advantages, who can already see, hear, and pay tuition with ease. When we design for the extreme situations, however, we support students who may have uncommon or specific strengths, as well as potential barriers such as disabilities or financial strain. Furthermore, when we design for the extremes, the outcome benefits all students, thus aligning our course with the principles of Universal Design for Learning (UDL). The quintessential example of this is, of course, closed captioning: Closed captioning was designed to help people with hearing loss, but it was quickly discovered to be useful for all kinds of people for various reasons, including English language learners, for example. This same schema of the benefits of closed captioning can be applied to other solutions where we design for extreme situations. The result of designing for extremes is that the experiences for all users are enhanced.

Personas: What are they, and how are they used?

One approach to designing inclusive courses is to use personas in the course design stage. A persona is fictional representation of a user group and is intended to foster empathy for that particular user group whose needs resemble the fictional persona. A persona may include a photo of a fictional individual (provided by Unsplash, for example) as well as information related to the design challenge. In this case, my colleague Heather Garcia and I have developed a set of personas for use in designing online undergraduate and graduate courses. The student data that we included in each persona are based on quantitative and qualitative national and local demographic information. The personas that we created focus on students who may bring unique strengths to the course or find more barriers in their educational journey compared to “traditional” college students. With these diverse personas, we grow our empathy and can be efficiently guided into designing for nontraditional students who are based in reality.

Okay, I have a set of personas. What next?

Photo of fictional student and fictional bio
This persona is from “Personas for Course Design” CC BY NC SA, linked below, created by Elisabeth McBrien and Heather Garcia

Here is an exercise using personas for the purpose of designing inclusive courses:

  1. Choose a set of personas to work from:
  2. Select a few personas from the set. 
  3. Get to know your “students” represented in the personas.
  4. With your course in mind, ask yourself the following questions:
    • What strengths do these personas bring to the course?
    • What barriers do you anticipate these personas will face?
    • What design decisions would you make to support all personas as they work to meet the learning outcomes?
  5. The answers to the above questions can help you make design decisions that create an inclusive course, one in which all students are welcomed and supported.

How did it go?

One way to include this exercise in your design practice is to keep a deck of printed personas, like a deck of cards, nearby as part of your design toolbox. That way, instructional designers and instructional faculty can then do a personas design challenge during the design stage of each course. 

Have you used personas in your course design? Please leave a comment and let us know how it went!

References and resources: