Author Archives: Matthew Vaughan

Is Climate Change Making Gray Whales Picky Eaters?

The Oregon Coast is known for its ruggedness and harsh weather, but also offers a prime opportunity to spot gray whales on their migratory paths. These majestic marine mammals undertake one of the largest migrations of any animal, traveling from the Arctic to Baja California to breed before heading back north along this “whale super-highway.” Despite having the mechanisms to feed in the water column, these benthic specialists prefer bottom feeding, scooping up sand from the seafloor and filtering out invertebrate prey through their baleen, likely targeting locations of high caloric content. However, along the coast of the Pacific Northwest, a behavior known as ‘prey switching’ has been observed, where gray whales feed in the water column instead of their preferred benthic prey, amphipods. Our upcoming guest, Taylor Azizeh, a first-year Ph.D. student at the Marine Mammal Institute, explores what may be driving this prey switching behavior.

Polar regions are among the top locations to be impacted by climate change, which Taylor suspects may be responsible for grey whales switching from benthic to pelagic prey. Changes in bottom water temperature and sediment grain size may result in habitats less favorable for amphipods, leading whales to seek food elsewhere. In response to warming, the distribution of other predators may shift to where they compete for the same food source, or the reduced sea ice cover could result in more productive pelagic waters. How do gray whales, these benthic specialists, adapt to changing food availability?

Gray whale populations often experience boom and bust cycles or unknown mortality events, with the most recent one currently underway. Taylor’s research on the foraging plasticity of gray whales is not only timely, but also employs a holistic approach using a combination of methods to assess the big picture. She plans to use stable isotopes to provide information on what whales are feeding on, but only when combined with GPS tags tracking movement and drone photogrammetry measuring body conditions can one understand where and why. Taylor plans to utilize this combination to ask big picture questions such as whether they’re feeding in areas of high biomass, if they return to those same areas, and how much adaptability can individual gray whales display?

At its core, Taylor’s research delves into the adaptability of gray whales. Gray whales have survived the ice ages, proving their ability to deal with harsh conditions, and Taylor hypothesizes they may be more flexible than we currently understand.

To learn more about Taylor’s passion for these charismatic animals of ecological, social, and cultural importance, the adventure which led here to grad school—from Costa Rica to Ecuador, Denmark, and London—tune in to KBVR 88.7 FM this Sunday, Nov. 3. You can listen to the episode anywhere you listen to your podcasts, including on KBVRSpotifyApple, or anywhere else!

Fear.exe: How horror video games hijack more than just your computer

Our upcoming guest is Erika Stewart, a second-year MA student in the School of Writing, Literature and Film. As an avid gamer growing up, Erika found a way to explore this passion more deeply in graduate school, where her thesis focuses on horror in video games. 

Scholars have studied our relationship with horror for decades, identifying that the fear induced arises from a threat to our bodies. But what about video games, where no immediate physical threat exists? An emerging genre of games—coined by Erika as ‘malwaric’ games—hijack your computer (much like malware) and can induce deep fear in players. How do these games create fear if there’s no representation of the body?

Erika explores this question by presenting the argument that the computer functions as an extension of the body. Malwaric games are designed to be intrusive and reflect a cultural fear: they are terrifying because the computer has become a part of us, and these games seem to attack us directly. In an age rife with artificial intelligence, augmented reality, and virtual reality, Erika’s research is both timely and insightful, addressing what this means for the ‘digital divide.’

To learn more about Erika’s research—and how childhood video game memories and positive community college experiences influenced her path to graduate school—tune in to KBVR 88.7 FM this Sunday, Oct. 13. You can listen to the episode anywhere you listen to your podcasts, including on KBVRSpotifyApple, or anywhere else!

Full cream: The power of milk on infant development

Our upcoming guest is Jillien Zukaitis, a first year PhD student in Nutrition, College of Health. Her lab, fondly referred to as the ‘Milk Lab’, studies at all things milk. With a clinical background as a dietitian, Jillien now couples her practical experience with translatable research.

Partnering with OHSU, Jillien assesses the composition, nutritional value, and potential health benefits of human milk on the development of preterm infants in the neonatal intensive care unit (NICU). This involves analyzing various proteins and peptides in the different types of milk fed to these infants and seeing how they are digested to isolate their roles in infant health and development. One way she does this is by isolating milk peptides from infant stomach and intestine and testing these on macrophage cells, examining the immune function of some of the peptides identified. By assessing the processing methods, milk types, and milk contents, she aims to discern what milk is best to feed infants. She plans to compare these results against other sources of nutrition such as infant formula in the future.

One innovative element of her research is through use of an in-vitro “digestion machine” known as SHIME (The Simulator of the Human Intestinal Microbial Ecosystem), which essentially mimics the entire digestive process from start to finish, allowing valuable insights at each stage involved. This revolutionary machine is one of the few in the USA and is right here at OSU!

To learn more about her research, passion to improve the lives of infants, and the unorthodox pathway that led her to pursuing her PhD, tune in to our prerecorded conversation on KBVR 88.7 FM this Sunday, May 12. You can listen to the episode anywhere you listen to your podcasts, including on KBVRSpotifyApple, or anywhere else!

Plankton: The smallest of organisms require the largest of boats

Did you know that jellyfish are plankton? That’s right, they’re not just abstruse microscopic organisms (although many of them are). For example, did you know that the size difference between plankton members is on an order of magnitude similar to the size of a human compared to the size of Earth? These are just a few of the fun plankton facts our upcoming guest has in store for us.

Elena Conser is a third year PhD student in the Plankton Ecology Lab. She really, really, loves plankton – marine organisms that are unable to swim against the current and are thus, at the whim and mercy of their environment (of which Elena attributes a sort of philosophical solace in). More specifically, she looks at zooplankton, animals that live in the plankton. These organisms form the basis of marine food webs, and Elena’s research aims to better understand planktonic communities and their food webs. She does this off the coast of Oregon, in an oceanographic region called the ‘Northern Californian Current’. This area is extremely productive for plankton growth and supports several economically important fisheries. It is also characterized by upwelling and periods of low oxygen, prompting Elena to investigate the structure of zooplankton communities here and how they may shift in response to environmental change.

To study plankton, Elena employs cutting-edge technology off large research vessels. She uses an imaging system known as ‘ISIIS’ (In-Situ Ichthyoplankton Imaging System) to view plankton in their natural environment, something that has not previously been possible in her field. The data collected with this system is processed using deep learning and computer vision to capture and identify plankton. Through this, Elena is also able to attain information on what plankton are where, how big they are, and how many there are. Elena couples her imagery data from ISIIS with biological samples of ichthyoplankton (larval fish), collected at different depths using nets. Using the ear bones (known as ‘otoliths’) from these physical samples, she can age larval fish much like how trees can be dated through their rings. She does this on English sole, a common flatfish occurring in the Northern California Current, to better understand the development from larval to juvenile stage.

Elena always knew of the importance of the ocean, which led her to studying marine science, biology, and applied math at the University of Miami in Florida. Here she worked with a larval fish scientist and became curious about the importance of plankton communities. This curiosity led her back to her roots in Oregon to pursue plankton research with developing technology. Her research is indeed at the intersection of oceanography, ecology, and computer science. She is excited to continue tackling questions that have never been able to be answered until now. To hear more on the importance of plankton and the interesting questions Elena is asking, tune in to KBVR 88.7 FM this Sunday, February 25th, or shortly thereafter where you get your podcasts!