We all remember the warning from math class:

“You won’t always have a calculator in your pocket!”

How we laugh now, with calculators first arriving in our pockets and, eventually, smartphones putting one in our hands at all times.

I have seen a lot of comparisons 1 2 3 across the Internet to artificial intelligence (AI) and these mathematics classes of yesteryear. The idea being that AI is but the newest embodiment of this same concern, which ended up being overblown.

But is this an apt comparison to make? After all, we did not replace math lessons and teachers with pocket calculators, nor even with smart phones. The kindergarten student is not simply given a Casio and told to figure it out. The quote we all remember has a deeper meaning, hidden among the exacerbated response to the question so often asked by students:  “Why are we learning this?”

The response

It was never about the calculator itself, but about knowing how, when, and why to use it. A calculator speeds up the arithmetic, but the core cognitive process remains the same. The key distinction is between pressing the = button and understanding the result of the = button. A student who can set up the equation, interpret the answer, and explain the steps behind the screen will retain the mathematical insight long after the device is switched off.

The new situation – Enter AI

Scenario

Pressed for time and juggling multiple commitments, a student turns to an AI tool to help finish an essay they might otherwise have written on their own. The result is a polished, well-structured piece that earns them a strong grade. On the surface, it looks like a success, but because the heavy lifting was outsourced, the student misses out on the deeper process of grappling with ideas, making connections, and building understanding.

This kind of situation highlights a broader concern: while AI can provide short-term relief for students under pressure, it also risks creating long-term gaps in learning. The issue is not simply that these tools exist, but that uncritical use of them can still produce passing grades without the student engaging in meaningful reflection gained by prior cohorts. Additionally, when AI-generated content contains inaccuracies or outright hallucinations, a student’s grade can suffer, revealing the importance of reviewing and verifying the material themselves. This rapid, widespread uptake stresses the need to move beyond use alone and toward cultivating the critical habits that ensure AI supports, rather than supplants, genuine learning. 

Some background studies

In a 2024 study on Generative AI Usage and Exam Performance, Wecks et al. (2024) describe that:

Employing multivariate regression analysis, we find that students using GenAI tools score on average 6.71 (out of 100) points lower than non-users. While GenAI may offer benefits for learning and engagement, the way students actually use it correlates with diminished exam outcomes

Another study (Ju, 2023) found that:

After adjusting for background knowledge and demographic factors, complete reliance on AI for writing tasks led to a 25.1% reduction in accuracy. In contrast, AI-assisted reading resulted in a 12% decline. Ju (2023).

In this same study, Ju (2023) noted that while using AI to summarize texts improved both quality and output of comprehension, those who had a ‘robust background in the reading topic and superior reading/writing skills’ benefited the most.

Ironically, the students who would benefit most from critical reflection on AI use are often the ones using it most heavily, demonstrating the importance of embedding AI literacy into the curriculum. For example: A recent article by Heidi Mitchell from the Wall Street Journal (Mitchell, 2025) cites a study showing that the “less you know about AI, the more you are likely to use it”, and describing AI as seemingly “magical to those with low AI literacy”.

Finally, Kosmyna et al. (2025), testing how LLM usage affects cognitive processes and neural engagement in essay writing, assembled groups of LLM users, search engine users, and those without these tools (dubbed “brain-only” users). The authors recorded weaker performance in students with AI assistance over time, a lower sense of ownership of work with inability to recall work, and even seemingly reduced neural connectivity in LLM users compared to the brain-only group, which scored better in all of the above.

The takeaways from these studies are that unstructured AI use acts as a shortcut that erodes retention. While AI-assistance can be beneficial, outright replacement of thinking with it is harmful. In other words, AI amplifies existing competence but rarely builds it from scratch.

Undetected

Many people believe themselves to be fully capable of detecting AI-usage:

Most of the writing professors I spoke to told me that it’s abundantly clear when their students use AI. Sometimes there’s a smoothness to the language, a flattened syntax; other times, it’s clumsy and mechanical. The arguments are too evenhanded — counterpoints tend to be presented just as rigorously as the paper’s central thesis. Words like multifaceted and context pop up more than they might normally. On occasion, the evidence is more obvious, as when last year a teacher reported reading a paper that opened with “As an AI, I have been programmed …” Usually, though, the evidence is more subtle, which makes nailing an AI plagiarist harder than identifying the deed. (Walsh, 2025).

In the same NY Mag article, however, Walsh (2025) cites another study, showing that it might not be as clear who is using AI and who is not (emphasis added):

[…] while professors may think they are good at detecting AI-generated writing, studies have found they’re actually not. One, published in June 2024, used fake student profiles to slip 100 percent AI-generated work into professors’ grading piles at a U.K. university. The professors failed to flag 97 percent.

The two quotes are not contradictory; they describe different layers of the same phenomenon. Teachers feel they can spot AI because memorable extremes stick in their minds, yet systematic testing proves that intuition alone misses the overwhelming majority of AI‑generated work. This should not be surprising though, as most faculty have never been taught systematic ways to audit AI‑generated text (e.g., checking provenance metadata, probing for factual inconsistencies, or using stylometric analysis). Nor do most people, let alone faculty grading hundreds of papers per week, have the time to audit every student. Without a shared, college-wide rubric of sorts, detection remains an ad‑hoc, intuition‑driven activity. Faulty detection risks causing undue stress to students, and can foster a climate of mistrust by assuming that AI use is constant or inherently dishonest rather than an occasional tool in the learning process. Even with a rubric, instructors must weigh practical caveats: large-enrollment courses cannot sustain intensive auditing, some students may resist AI-required tasks, and disparities in access to tools raise equity concerns. For such approaches to work, they must be lightweight, flexible, and clearly framed as supporting learning rather than policing it.

This nuance is especially important when considering how widespread AI adoption has been. Walsh (2025) observed that “just two months after OpenAI launched ChatGPT, a survey of 1,000 college students found that nearly 90 percent of them had used the chatbot to help with homework assignments.” While this figure might seem to justify the use of AI detectors, it could simply reflect the novelty of the tool at the time rather than widespread intent to circumvent learning. In other words, high usage does not automatically equal cheating, showing the importance of measured, thoughtful approaches to AI in education rather than reactionary ones.

What to do…?

The main issue here is not that AI is magically writing better essays than humans can muster, it is that students are slipping past the very moments where they would normally grapple with concepts, evaluate evidence, and argue a position. Many institutions are now taking a proactive role rather than a reactive one, and I want to offer such a suggestion going forward.

Embracing the situation: The reflective AI honor log

It is a fact that large language models have become ubiquitous. They are embedded in web browsers, word processors, and even mobile keyboards. Trying to ban them outright creates a cat‑and‑mouse game; it also sends the message that the classroom is out of sync with the outside world.

Instead of fighting against a technology that is already embedded in our lives, invite students to declare when they use it and to reflect on what they learned from that interaction.

For this post, I am recommending using an “AI Honor-Log Document”, and deeply embedding it into courses, with the goal of increasing AI literacy. 

What is it?

As assignments vary across departments and even within courses, a one-size-fits-all approach is unlikely to be effective. To support thoughtful AI use without creating extra work for students, faculty could select an approach that best aligns with their course design:

  1. Built-in reflection: Students note when and how they used AI, paired with brief reflections integrated into their normal workflow.
  2. Optional, just-in-time logging: Students quickly log AI use and jot a short note only when it feels helpful, requiring minimal time.
  3. Embedded in assignments: Reflection is incorporated directly into the work, so students engage with it as part of the regular writing or research process.
  4. Low-effort annotations: Students add brief notes alongside tasks they are already completing, making reflection simple and natural.

These options aim to cultivate critical thinking around AI without imposing additional burdens or creating the perception of punishment, particularly for students who may not be using AI at all.

AI literacy is a massive topic, so let’s only address a few things here: 

  • Mechanics Awareness: Ability to explain the model architecture, training data, limits, and known biases.
  • Critical Evaluation: Requiring fact-checking, citation retrieval, and bias spotting.
  • Orchestration Skills: Understanding how to craft precise prompts, edit outputs, and add original analysis.

Note: you might want to go further and incorporate these into an assignment level learning outcome. Something like: “Identifies at least two potential biases in AI-generated text” could be enough on a rubric to gather interesting student responses.

Log layout example

#Assignment/ActivityDateAI ModelExact PromptAI OutputWhat you changed/AddedWhy You EditedConfidence (1-5)Link to Final Submission
1Essay #2 – Digital-privacy law2025-09-14GPT-5“Write a 250-word overview of GDPR’s extraterritorial reach and give two recent cases[pastes AI text]Added citation to 2023 policy ruling; re-phrased a vague sentence.AI omitted the latest case; needed up-to-date reference4https://canvas.oregonstate.edu/…… 

Potential deployment tasks (and things to look out for)

It need not take much time to model this to students or deploy it in your course. That said, there are practical and pedagogical limits depending on course size, discipline, and student attitudes toward AI. The notes below highlight possible issues and ways to adjust.

  1. Introduce the three reasons above (either text form or video, if you have more time and want to make a multimedia item).
    Caveat: Some students may be skeptical of AI-required work.
    Solution: Frame this as a reflection skill that can also be done without AI, offering an alternative if needed.
  2. Distribute the template to students: post a Google-Sheet link (or similar) in the LMS.
    Caveat: Students with limited internet access or comfort with spreadsheets may struggle.
    Solution: Provide a simple Word/PDF version or allow handwritten reflections as a backup.
  3. Model the process in the first week: Submit a sample log entry like the one above but related to your class and required assignment reflection type.
    Caveat: In large-enrollment courses, individualized modeling is difficult.
    Solution: Share one well-designed example for the whole class, or record a short screencast that students can revisit.
  4. Require the link with each AI-assisted assignment (or as and when you believe AI will be used).
    Caveat: Students may feel burdened by repeated uploads or object to mandatory AI use.
    Solution: Keep the log lightweight (one or two lines per assignment) and permit opt-outs where students reflect without AI.
  5. Provide periodic feedback: scan the logs, highlight common hallucinations or errors provided by students, give a “spot the error” mini lecture/check-in/office hour.
    Caveat: In large classes, it’s not realistic to read every log closely.
    Solution: Sample a subset of entries for themes, then share aggregated insights with the whole class during office hours, or post in weekly announcements or discussion boards designed for this kind of two-way feedback.
  6. (Optional) Student sharing session in a discussion board: allow volunteers or require class to submit sanitized prompts (i.e., any personal data removed) and edits for peer learning.
    Caveat: Privacy concerns or reluctance to share work may arise.
    Solution: Keep sharing optional, encourage anonymization, and provide opt-outs to respect comfort levels.

Important considerations when planning AI-tasks

Faculty should be aware of several practical and pedagogical considerations when implementing AI-reflective logs. Large-enrollment courses may make detailed feedback or close monitoring of every log infeasible, requiring sampling or aggregated feedback. Some students may object to AI-required assignments for ethical, accessibility, or personal reasons, so alternatives should be available (i.e. the option to declare that a student did not use AI should be present). Unequal access to AI tools or internet connectivity can create equity concerns, and privacy issues may arise when students share prompts or work publicly. To address these challenges, any approach should remain lightweight, flexible, and clearly framed as a tool to support learning rather than as a policing mechanism.

Conclusion

While some students may feel tempted to rely on AI, passing an assignment in this manner can also pass over the critical thinking, analytical reasoning, and reflective judgment that go beyond content mastery to true intellectual growth. Incorporating a reflective AI-usage log based not on assumption of cheating, but on the ubiquitous availability of this now-common tool, reintroduces one of the evidence-based steps for learning and mastery that has fallen out of favor in the last 2-3 years. By encouraging students to pause, articulate, and evaluate their process, reflection helps them internalize knowledge, spot errors, and build the judgment skills that AI alone cannot provide.

Footnotes

  1. https://www.reddit.com/r/ArtificialInteligence/comments/1ewh2ji/i_remember_when/ ↩︎
  2. https://www.uwa.edu.au/news/article/2025/august/generative-ai-is-not-a-calculator-for-words-5-reasons-why-this-idea-is-misleading ↩︎
  3. https://medium.com/%40josh_tucker/why-not-using-ai-is-like-refusing-to-use-a-calculator-in-a-maths-test-093b860d7b45 ↩︎

References

Fu, Y. and Hiniker, A. (2025). Supporting Students’ Reading and Cognition with AI. In Proceedings of Workshop on Tools for Thought (CHI ’25 Workshop on Tools for Thought). ACM, New York, NY, USA, 5 pages. https://arxiv.org/pdf/2504.13900v1

Ju, Q. (2023). Experimental Evidence on Negative Impact of Generative AI on Scientific Learning Outcomes. https://doi.org/10.48550/arXiv.2311.05629

Kosmyna, N., Hauptmann, E., Yuan, Y. T., Situ, J., Liao, X-H., Beresnitzky, A. V., Braunstein, I., & Maes, P. (2025). Your Brain on ChatGPT: Accumulation of Cognitive Debt when Using an AI Assistant for Essay Writing Task. https://arxiv.org/abs/2506.08872

Mitchell, H. (2025). The Less You Know About AI, the More You Are Likely to Use It. Wall Street Journal. Accessed September 3, 2025: https://www.wsj.com/tech/ai/ai-adoption-study-7219d0a1

Wecks, J. O., Voshaar, J., Plate, B. J., & Zimmermann, J. (2024). Generative AI Usage and Exam Performance. https://doi.org/10.48550/arXiv.2404.19699

Walsh, J. (May 7, 2025). Everyone Is Cheating Their Way Through College ChatGPT has unraveled the entire academic project. Intelligencer. https://nymag.com/intelligencer/article/openai-chatgpt-ai-cheating-education-college-students-school.html

Fall Term is just around the corner, bringing with it new opportunities, fresh faces, and the chance to make a lasting impact on your students. Whether they’re logging in for the first time or for their final term, setting a welcoming and engaging tone from day one helps create a foundation for everyone’s success, yours included.

Here are a few ways to kick things off and set the stage for a smooth, successful term:

Start with a warm welcome

  • Post a welcome announcement and introduce yourself to your students.
  • Use a warm and welcoming tone in your message to help students feel encouraged, supported, and comfortable as they enter the course.
  • Personalize it with a photo or short video, it goes a long way in making connections.

Open your course early

  • If possible, open your course before the official start date. This gives students a chance to explore, order materials, and introduce themselves.
  • Open modules at least two weeks ahead. Many students juggle full-time jobs, families, and other commitments, so maximum flexibility is appreciated.

Keep communication open

  • Set up a Q&A discussion forum, and check it regularly. This allows you to answer common questions once and ensures everyone sees the response.
  • Encourage students to post questions in this forum and let students know when and how they can expect replies.
  • Be responsive to messages and follow up with students if needed.

Model engagement

  • Join discussion boards and post regularly. Ask guiding questions, offer feedback, or simply cheer students on, show them you’re present and engaged.
  • Think about how you’d engage in a face-to-face class and bring that energy to your online space too.

Be accessible

  • Hold regular office hours or offer flexible scheduling options. Creating the time and space for students to connect with you makes a difference.

Grade consistently and give meaningful feedback

  • Timely, constructive feedback helps students grow. The effort you put in early pays off in improved work later in the term.

Stay organized

  • Block out time in your calendar each week for class check-ins and grading. A little planning now can prevent overwhelm and burnout later.

Take care of yourself

  • Don’t forget to breathe. Support your students by also supporting yourself.
  • Be kind to yourself and set boundaries to attend to personal commitments, too.

Here’s to a strong, successful Fall Term — you’ve got this!

Core Education Curriculum Reform and Implementation

The summer of 2025 marks a new era in general education at Oregon State University. After years of collaboration among faculty, students, and community partners, OSU has crafted a forward-thinking general education program designed to empower the next generation of global leaders. 

The Core Education Curriculum will be implemented starting June 23, and students enrolling in this term and beyond will begin their academic journeys at OSU by gaining knowledge and skills through two major curriculum areas: the Foundational Core and the Signature Core.

Re-envisioning Education

OSU has undergone a multi-year curriculum reform in which faculty, students, staff, alumni, community partners, and administrators came together to develop a state-of-the-art, 21st-century-focused general education program. The Core Ed curriculum underscores students’ potential to become global innovators and critical agents of societal change. By integrating real-world problem-solving and social responsibility, Core Education embodies OSU’s land-grant mission to serve communities locally and globally.

The new curriculum incorporates high-impact practices intended to support student learning and prepare them to meet challenges, solve problems, adapt to a rapidly changing world, and become proactive members of society, advancing their fields of study. These practices—defined as strategies that promote deeper learning, meaningful engagement, and a positive impact on historically underserved student populations (Kuh & O’Donnell, 2013)—are central to Core Education. As stated in the Core Education mission, the curriculum also “addresses the ever-changing needs of our learners and graduates in our global society and promotes critical thinking, information literacy, social and environmental justice, interdisciplinary teamwork, and communication.” (Core Education)

Uniqueness of Core Education

The Core Ed curriculum is defined by two main areas: the Foundational Core and the Signature Core, which offer students a variety of learning opportunities. The Foundational Core helps students build essential skills and broad knowledge, fostering lifelong learning and creative problem-solving, while preparing them to engage with complex topics in academic and professional settings. The Signature Core empowers students to apply critical thinking to create positive change in their field and society, while strengthening the skills needed to navigate a complex, interconnected world.

The Foundational Core includes the following categories:

  • Writing Foundations (4 credits)
  • Arts and Humanities – Global and General (6–8 credits; 2 courses)
  • Quantitative Literacy and Analysis (4 credits)
  • Communication, Media, and Society (3 credits)
  • Social Science (3–4 credits)
  • Scientific Inquiry and Analysis (8 credits; 2 courses from two different designators)
  • Difference, Power, and Oppression Foundations (3–4 credits)

The Signature Core includes the following categories:

  • Transitions (2 credits)
  • Beyond OSU Career Integration (0 credits)
  • Difference, Power, and Oppression Advanced (3–4 credits)
  • Seeking Solutions (3–4 credits)
  • Writing Elevation (3 credits)
  • Writing Intensive Curriculum (In Major)

A standout feature of Core Education is the Beyond OSU Career Integration component, which equips students with NACE-aligned competencies for lifelong career success. This component offers students opportunities to explore and apply career-related practices, including career readiness and advancement. It focuses on building core skills for workplace success and lifelong career management, based on the NACE Career Competencies.

Preparing to Launch Core Education

The Core Education reform process dates back to 2002, when OSU initiated a review of the Baccalaureate Core Curriculum. Since then, the OSU community has worked intensively to design, develop, and implement the new general education curriculum. Ecampus has been no exception—each Ecampus team (e.g., Course Development) has actively strategized its work to support this transition. Specifically, the Instructional Design (ID) Team at Ecampus has launched iterative course design initiatives to inform, test, and evaluate the course design process and resources. These initiatives include:

  • Difference, Power, and Oppression Working Group: A group of four instructional designers (IDs) met regularly during Winter 2025 to review the DPO learning outcomes, criteria, and rationale and to draft a DPO Course Design Guide. This guide provides questions and considerations IDs can use during course intakes, development, and resource support.
  • Outcomes and Alignment Working Group: Two IDs led the creation of a guide and template to support the alignment of Core Education outcomes (CSLOs) with course assignments. The template includes a spreadsheet to document the alignment of exam questions with outcomes, offering instructors a clear and structured strategy for maintaining consistency.
  • Seeking Solutions Professional Learning Community: A group of eight IDs tasked with designing Seeking Solutions courses launched a professional learning community (PLC) in late Fall 2024 and continued into Spring 2025. The PLC reviewed the learning outcomes, criteria, and rationale and developed a detailed Course Design Guide to assist the ID team in planning course intakes and providing follow-up support to instructors.
  • Core Ed Outcomes and Alignment Review Group. A group of five IDs served as peer reviewers for a guide on the Alignment of CSLOs to the Essential Assignment(s) in Canvas. This resource guides IDs step-by-step through the process of linking the appropriate CSLOs to the course Essential Assignment(s) so that samples of student work can be used for Core Education category assessment. With this guide, IDs can support course developers in making the alignment visible in Canvas. 
  • Core Education Course Development Guide. This guide provides the ID team with a comprehensive guide on the development of Core Education, Baccalaureate Core, and Writing Intensive Courses. 

Although the course design guides are fully drafted and available to the ID team, the working groups continue to communicate regularly for updates and improvements.

The OSU community—especially Ecampus’s dedicated teams—has worked tirelessly to bring Core Education to life. Their collaborative spirit and innovation have been instrumental in shaping this transformative curriculum. I’m very proud of the initiatives we’ve undertaken, and it has been an honor to lead them. This blog highlights my colleagues’ work and the Ecampus leadership team’s guidance, especially the Course Development and Training Unit leaders, who have fully supported the initiatives.

I invite you to explore the full Core Education Curriculum or contact Karen Watte karen.watte@oregonstate.edu for online course development.

References

  • Oregon State University. (2025). Core Education
  • Kuh, George D. & O’Donnell, K. (2013). Ensuring quality & taking high-impact practices to scale. Washington, DC: Association of American Colleges & Universities.

Background

“In the Winter Term 2024, the Ecampus Research Unit conducted a survey study of 669 students who had taken online courses at OSU. The 40-item survey was designed to assess students’ knowledge and use of generative AI tools, as well as their perceptions of their use in their courses and careers. A full report of this study is available on the Ecampus Research Unit website. Based on the results of this study, several recommendations were developed to guide decision making about generative AI tools in online courses.”

Dello Stritto, Underhill, & Aguiar (2024).

This recent study highlighted three key recommendations for faculty seeking to integrate generative AI into their courses effectively:

  • Recommendation 1
    • Write a course policy about generative AI that is clearly explained.
  • Recommendation 2
    • Consider a wide range of student emotions and concerns when integrating generative AI in your online courses.
  • Recommendation 3
    • Educate students on generative AI tools.

Applying data to design

To apply these recommendations in practice, we can reorganize them into instructional design categories that foster AI resiliency in course design: Course Learning Outcomes, Learner Profiles, Learning Materials, Activities and Assessments, and Course Policies. These categories offer a comprehensive framework for integrating AI while addressing students’ concerns and enhancing learning experiences.

Course Policies: Establish Clear Guidelines for AI Usage

Reflecting Recommendation 1, developing a clear, transparent policy on AI usage is key. Faculty should articulate when and how students can use AI tools, providing specific examples of ethical use. By defining these expectations early in the course, instructors help students understand the role AI can play in their learning process, promoting academic integrity. 

Learner Profiles: Address Emotional and Academic Concerns

In line with Recommendation 2, it is essential to consider students’ diverse reactions to AI—ranging from excitement to anxiety—when designing a course. This is where understanding Learner Profiles becomes critical. 

Learning Materials and Activities: Ensure Relevance and Adaptability with AI

Recommendation 3 emphasizes the importance of educating students about generative AI, which can be achieved through thoughtful integration into learning materials, activities, and assessments.

Course Learning Outcomes: Integrate AI with Intentional Learning Design

The integration of generative AI tools into course design necessitates an examination of their impact on student mastery of the Course Learning Outcomes. It is vital to ensure that student use of AI tools supplement and enhance the learning process rather than bypass cognitive engagement.

With these four considerations in mind, we can now introduce a tool to help assess and improve course resilience against generative AI, while providing learners with clear policy decisions and explanations.

Introducing CART: Course AI Resiliency Tracker 

In response to the clear need for effective integration of generative AI in educational settings, a new tool has been developed (as part of a wider suite of artificial intelligence tools) to assist faculty in navigating this complex landscape. This tool is designed to support instructors in evaluating how generative AI could respond to their course learning outcomes by highlighting its current capabilities to address and complete these outcomes. It facilitates a detailed understanding of learner profiles to ensure that AI applications are relevant and accessible to all students. Additionally, the tool encourages faculty to reflect on the currency and relevance of their learning materials and to assess how AI might be incorporated into activities and assignments. By examining existing course policies on AI usage and offering actionable steps for course development, this resource aims to demystify generative AI for both educators and students, promoting a thoughtful and strategic approach to its integration or decision to restrict AI.

Getting Started

Upon accessing the landing page, you will be prompted to input your Course ID, after which you may proceed by selecting the “Start” button.

Course AI Resilience Tracker Tool Getting Started Page

Learning Outcomes

The first step in the tool involves a reflection on your Course Learning Outcomes (CLOs). At this stage, you will have the option to choose from a list of commonly used learning outcome verbs, organized by the general categories of Bloom’s Taxonomy. Note that there is a current selection limit of five CLOs at one time, and faculty with verbs absent from this list are encouraged at this time to select verbs that are most like those in their own CLOs to get feedback that will feel the most transferable.

Course AI Resilience Tracker Learning Outcomes Page

After selecting the appropriate verbs that align with your outcomes, click on the “Test Resiliency” button. This will display feedback on how generative AI may already be able to meet expectations for common tasks associated with those action verbs.

Your Learners

Following the assessment of CLOs, the next step encourages you to consider your learners. In this section, you are invited to input relevant details about your students, including their backgrounds, career aspirations, prior knowledge, or any other contextual information that could inform your generative AI course policies. We are aware that this question might feel challenging, especially for faculty who teach all kinds of learners as part of a general education course. In this case, consider this as a more general introduction to the wide variety of learner profiles that may take the course, and how generative AI may be used from their perspective.

Your responses here, as with all inputs in the tool, will be temporarily stored and displayed on the Summary Page for your future reference.

Course AI Resilience Tracker Your Learners Page

Learning Materials

Next, the tool asks you to evaluate the relevance and adaptability of your learning materials. You may choose from the pre-set options provided, or alternatively, you can select “Other” to add customized choices based on your specific course materials.

Course AI Resilience Tracker Learning Materials Page

Activities and Assessments

Next, you will be prompted to reflect on your course activities and assessments. This section includes three key questions. Two of the questions are straightforward yes-or-no inquiries, while the third invites you to select one or more methods that you currently employ to promote academic integrity in your assessments. Including this information alongside activities and assessments bolsters understanding for your learners about expected Gen AI usage, why the choice has been made, and enhances academic integrity across the entire course.

Course AI Resilience Tracker Activities and Assessments Page

Course Policies

You will then be prompted to consider an important question: does your syllabus currently include a policy on generative AI? This reflection is crucial for ensuring transparency and consistency in how AI is addressed throughout your course design. After choosing one of the answers, you will be able to select from some key elements to include in your AI usage policy.

Course AI Resilience Tracker Course Policies Page

Next Steps

Finally, the tool concludes by prompting you to consider the next steps in your course development, offering guidance on how to proceed with integrating generative AI effectively. Each choice offers different recommendations as automatic feedback, and you are encouraged to read through them all before moving onto the final summary.

Course AI Resilience Tracker Next Steps Page

Summary Page

At the conclusion of the tool, you will be directed to a Summary Page that consolidates all your previous inputs, along with the guidance and recommendations provided throughout the process. This comprehensive summary can be printed or saved as a PDF for future reference and review.

The benefits of using the tool

Recommendation 1: A clearly explained course policy

The new tool supports this recommendation by guiding instructors to design course policies that offer clear instructions to learners on what is allowed and disallowed, and most importantly to give rationales behind these policy decisions.

Recommendation 2: Considering learner profiles

The tool helps instructors map these profiles to ensure that generative AI is integrated in ways that are accessible, equitable, and aligned with the emotional and cognitive needs of different students. By anticipating student concerns, instructors can provide thoughtful guidance on how AI will or will not be used in various course activities and assessments.

Recommendation 3: Ensure Relevance and Adaptability with AI

The tool helps instructors evaluate the relevance and adaptability of their current materials by offering pre-set options or the ability to add customized choices. This process ensures that course content remains up-to-date and flexible enough to incorporate generative AI effectively or alternatively,  provides avenues to secure assessments against AI generated content.

Course Learning Outcomes: Integrate AI with Intentional Learning Design

The tool supports this by guiding instructors through a reflection on their CLOs, offering a selection of commonly used learning outcome verbs categorized by Bloom’s Taxonomy. It also helps educators recognize the extent to which generative AI can currently accomplish many of these learning outcomes, providing valuable insights into the specific areas where AI might enhance or support course goals. the purpose of this is to ensure that AI integration choices are not just incidental, but strategically aligned with fostering critical thinking, creativity, and problem-solving skills within the broader context of your course objectives.

Conclusion

In response to the growing need for effective AI integration, this new tool helps faculty navigate the complexities of incorporating generative AI into course design. By addressing Course Learning Outcomes, Learner Profiles, Learning Materials, Activities and Assessments, and Course Policies, the tool promotes a strategic approach that aims to demystify AI for both educators and students. With thoughtful integration, well-designed generative AI policies can enhance learning experiences, help prepare students for future, teach learners to avoid potential pitfalls, and maintain the academic integrity of online courses.

License and Attribution

License

Course AI Resilience Tracker Tool, created by Oregon State University Ecampus, is licensed under Creative Commons Attribution-NonCommercial 4.0 International

Text Content and Guidance

Ashlee Foster, Dana Simionescu, Philip Chambers, Katherine McAlvage, and Cub Kahn

HTML/JavaScript Development

Philip Chambers

References

Dello Stritto, M. E., Underhill G. R., & Aguiar, N. R. (2024). Online Students’ Perceptions of Generative AI. Oregon State University Ecampus Research Unit. https://ecampus.oregonstate.edu/research/publications/

Helpful Links

animations for MTH 112Z

MTH 112Z at Oregon State University is designed to prepare students for calculus and related disciplines. This course explores trigonometric functions and their applications as well as the language and measurement of angles, triangles, circles, and vectors. These topics are explored symbolically, numerically, and graphically in real-life applications. MTH 112Z is designated as a Common Course Numbering (CCN) in the state of Oregon, ending with “Z” in the course number. When transferring to an Oregon public college or university, “CCN courses will be accepted as if they were taken at the institution students transfer to (that is, the receiving institution)” (State of Oregon, 2023).

An instructor from the math department and Tianhong Shi from Ecampus collaborated in designing a brand-new version of MTH 112 to meet the new Core Ed requirements for Oregon State University and Z course requirement for the state of Oregon. At the beginning of this project, the design team identified major challenges of this course as follows:
1. Content challenges
2. Low motivation for some students to continue studying math at this level after initial frustration in this course.
3. Low interest in participation in class discussions.

The instructor and Tianhong met regularly to discuss the challenges, brainstorm strategies for solutions, and delineate a plan to implement practical solutions for MTH 112Z. The solutions that were implemented in the course include:

1. Creating a safe and inclusive learning environment that students will feel they belong here.
2. Creating short animated stories of how math operates in people’s real life, each video is about or less than 30 seconds long. The purpose of these animations is to build a bridge between math learning and real life and to motivate students to learn the topics of each unit.
3. Helping students to identify the steps in solving a math problem to scaffold learning and build learning success step by step.
4. Creating “Make Learning Fun” discussion topics: Research (Purinton and Burke, 2019; Tews, et.al., 2014) tells us that when students feel emotionally relaxed and happy, learning is more effective. Therefore, one “Make Learning Fun” discussion forum is created for each unit.

Building an Inclusive and Trusting Learning Community where Students Belong
College belonging is defined as “students’ perceived social support on campus, a feeling or sensation of connectedness, the experience of mattering or feeling cared about, accepted, respected, valued by, and important to the group”, according to Strayhorn (2018, p.4). The strategies used to build an inclusive and trusting learning community in MTH 112Z included the following:
1. In Start Here Module, the instructor made a video covering Artificial Intelligence (AI), academic integrity, honesty, and diversity, to explicitly explain the expectations for this course regarding academic integrity and why it is so.
2. Also in Start Here Module, the instructor built a “Name Tents 112Z” discussion board for students to introduce themselves, setting an example by introducing the instructor himself first.
3. There is a Diversity Forum where students can post comments that they would want the instructor to know about themselves to make learning more inclusive.

Making Content Relevant
In addressing the challenging content, the instructor identified concepts that would be better explained through a set of short animated videos, recorded the audio narratives, and the media team helped creating the short animations. For example, at the beginning of unit 4 is an animation about finding the length of a tall tree on campus. And here is the transcript of the video: “The Trees on the O S U campus, are wonderful . how tall are the cedar trees by the memorial union? if you measure the angle from the ground to the top of the tree and know the distance you’re standing away from the tree, you can compute it. Make a triangle and set up an equation to get the height. Which function would you use?” And here is the transcript of unit 5 animation video: “You can get swept away in a river. Oregon has many great rivers for boating. When you were kayaking, you need to account for how much the current will push you off course, this can be done with vector. One vector represents the river’s flow with direction and strength, another vector is the direction which you kayak. The results of these two added together is the direction you end up going. If you want to reach a certain point on the other side, where should you aim?” We can see from these two examples that they are relevant to student lives (trees and kayaking) and relevant to the topics of the units. And these animations tell short stories, hoping to motivate students for learning.

Scaffolding Toward Learning Success
Scaffolded learning activities provide students a supportive learning environment (Dennen, 2004). In each unit’s content discussion forum and homework assignment, students explore problem solving step by step and discuss with each other to help them build confidence and fluency in problem solving. By such a design, the design team hoped students would get the support they needed and would be able to easily identify where they did wrong and how to improve or correct based on the feedback they receive from the online homework system and from the instructor and Teaching Assistants.

Making Learning Fun
Emotional health is important for students’ learning success. Research suggests there is a significant positive relation between fun delivery of content and the forms of engagement (Tews, et al., 2014). Schwartz et al. (2016) also recommend building fun elements in learning for effective teaching and learning. So the design team strived to build elements of fun into the course. The short animations are meant for fun. In addition, each unit has a “Just For Fun” discussion forum to bring students’ attention to learning and promote motivation. Below are examples of these discussions:

Unit 1 Just for Fun: Please read through this survey and describe how you would answer the questions. (The survey was about having students imagine themselves navigating through the forest on foot and trying to find their way to their cabin.)

Unit 2 Just for Fun: What do you think of the animation?

Unit 3: Just for Fun: Please take a picture of something you can model with a sine function as you have been studying in this module. It could be a windmill if you live near a windmill, or an ocean if you live near an ocean. Make sure it is a picture that you have taken and then explain briefly what it is and how you would model its movement.

Unit 4 Just for Fun: Describe a time when you could feel the effect of the wind or water current as you were moving. For example, winters in Oregon are blustery and you can get blown around when you are biking.
Or you can describe a way that you would use vectors in your own life.

Unit 5 Just for Fun: This is it! you’re almost done–
What was a topic in the course that was interesting to you? or what was a topic that didn’t seem to be useful?

That is what we did to make introductory college math fun, inclusive and learnable. If you have ideas for math or STEM course design, feel free to share with us (Tianhong.shi@oregonstate.edu). The more, the better!

References
Dennen, V. P. (2004). Cognitive apprenticeship in educational practice: Research on scaffolding, modeling, mentoring, and coaching as instructional strategies. In D. H. Jonassen (Ed.), Handbook of Research on Educational Communications and Technology (2nd ed.), (p. 815). Mahwah, NJ: Lawrence Erlbaum Associates.

Hogan, K., and Pressley, M. (1997). Scaffolding student learning: Instructional approaches and issues.Cambridge, MA: Brookline Books.

Huck, C and Zhang, J., Efects of the COVID-19 Pandemic on K-12 Education: A Systemic Literature Review. Educational Research and Development Journal. Summer 2021, Vol. 24.

State of Oregon. (2023). The Oregon Transfer Compass. Retrieved at https://www.oregon.gov/highered/about/transfer/pages/transfer-compass.aspx


Purinton, E. and Burke, M. (2019). Student Engagement and Fun: Evidence from the Field. Business Education Innovation Journal, Volume 11 Number 2, P133-P140.


Schwartz, D. L., Tsang, J. M., & Blair, K. P. (2016). The ABCs of how we learn : 26 scientifically proven approaches, how they work, and when to use them (First edition.). W.W. Norton & Company, Inc.

Strayhorn, T. L. (2018). College students’ sense of belonging. Routledge. https://doi-org.oregonstate.idm.oclc.org/10.4324/9781315297293

Tews, M. J., Jackson, K., Ramsay, C., & Michel, J. W. (2014). Fun in the college classroom: Examining its nature and relationship with student engagement. College Teaching, 63(1), 16-26.

This layered paper art depicts the Heceta Head Lighthouse amid colorful hills, a flowing river, and tall green trees. Whimsical clouds and birds add depth, creating a vibrant and detailed handcrafted scene.

I’d like to share a recent experience highlighting the crucial role of collecting and using feedback to enhance our online course materials. As faculty course developers and instructional designers, we understand the importance of well-designed courses. However, even minor errors can diminish the quality of an otherwise outstanding online course.

This layered paper art depicts the Heceta Head Lighthouse amid colorful hills, a flowing river, and tall green trees. Whimsical clouds and birds add depth, creating a vibrant and detailed handcrafted scene.
A lighthouse on the Oregon coast, where student feedback and technological tools act as the guiding light. Image generated with Midjourney.

A Student’s Perspective

Recently, feedback was forwarded to me submitted by an online student enrolled in a course I had helped develop.

He praised the overall design of the courses and the instructors’ responsiveness, but he pointed out some typographic and grammatical errors that caused confusion. He mentioned issues like quiz answers not matching the questions and contradictory examples.

What stood out to me was his statement:

“These courses are well-designed and enjoyable. Their instructors are great. They deserve written material to match.”

Proactive Steps for Quality Improvement

This feedback got me thinking about how we can proactively address such concerns and ensure our course materials meet the high standards our students deserve. Here are a few ideas that might help:

Implement a Feedback Mechanism

Incentivize students to hunt for flaws. Reward sharp eyes for spotting typos and grammar slips. Bonus points could spark enthusiasm, turning proofreading into a game of linguistic detective work. For example:

  • Weekly Surveys: Add a question to the weekly surveys asking students to report any errors they encounter, specifying the location (e.g., page number, section, or assignment).
    • “Did you encounter any typographic or grammatical errors in the course materials this week? If so, please describe them here, including the specific location (e.g., page number, section, or assignment).”
  • Assignment Feedback: Include a text-field option for students to report errors alongside their file uploads in each assignment submission.

Utilize Technology Tools

Consider using technology tools to streamline the review process and help identify typographic, grammatical, or factual errors.

AI tools

The latest advanced AI tools can assist in identifying grammatical errors, suggesting more precise phrasing, and improving overall readability. They can also highlight potential inconsistencies or areas needing clarification, ensuring the materials are more accessible to students. They can also help format documents consistently, create summary points for complex topics, and even generate quiz questions based on the content.

(Oregon State University employees and currently enrolled students have access to the Data Protected version of Copilot. By logging in with their OSU credentials, users can use Copilot with commercial data protection, ensuring their conversations are secure and that Microsoft cannot access any customer data.)

Many powerful AI tools exist. But always verify their information for accuracy. Use them as a helper, not your only guide. AI tools complement human judgment but can’t replace it. Your oversight is essential. It ensures that AI-suggested changes align with the learning goals. It also preserves your voice and expertise.

Tools for content help

Some tools can be used to target different areas of content improvement:

  • Grammar and Style Checkers:
  • Fact-Checking Tools:
    • Google Scholar: This can be used to verify academic sources and find citations and references.
    • Snopes.com: Checks common misconceptions and urban legends
    • FactCheck.org: Verifies political claims and statements
  • Language Translation Tools:
    • Google Translate: Offers quick translations for various languages
    • DeepL: Provides accurate translations for multi-language content
  • Text-to-Speech and Proofreading:
  • Collaborative Editing Platforms:
    • Google Docs: Allows real-time collaboration and suggesting mode
    • Microsoft Word (with Track Changes): Enables collaborative editing

Request Targeted Assistance

If specific content requires a closer review, ask for help from other SMEs, your instructional designer, colleagues, or even students. Collaboration can provide fresh perspectives and help catch errors that might have been overlooked.

Encourage Open Communication

Foster an environment where students feel comfortable reporting errors and providing feedback. Make it clear that their input is valued and will be used to improve the course.

Embrace Constructive Criticism

It’s natural to feel defensive when receiving critical feedback (I always do!), but view it as an opportunity for potential improvement. By addressing these concerns, you can enhance the quality of your course materials and ultimately improve our students’ learning experience.

In the ever-evolving landscape of higher education, online, distance learning has emerged as a dynamic and accessible platform for students worldwide. However, with this shift to asynchronous online classrooms we must prioritize inclusivity and engagement in our educational strategies. Recognizing this need, Ecampus embarked on a journey to understand inclusive course design and teaching practices through the eyes of the learners.

Survey Summary 

In 2021, Ecampus implemented an Inclusive Excellence Strategic Plan. One goal of this plan focused on enhancing inclusive teaching and learning in online courses. As part of this initiative, a pilot study was conducted during the academic year 2022-2023, to develop a mechanism for students to provide feedback on their learning experiences. The study employed a series of weekly surveys, designed to elicit responses regarding moments of engagement and distancing within online courses.

Administered across five Ecampus courses, the pilot study garnered responses from 163 enrolled students. The findings provide invaluable insights into the nuances of online learning design and offer actionable recommendations for educators seeking to cultivate inclusive excellence in their own asynchronous, online classrooms. The questions were as follows:

  1. At what moment (point) in class this week were you most engaged as a learner?
  2. At what moment (point) in class this week were you most distanced as a learner?
  3. What else about your experience as a learner this week would you like to share?

These questions were carefully crafted to elicit responses related to diversity, equity, and inclusion (DEI). By using the verbs “engaged” and “distanced,” students were prompted to reflect on moments of connection and disconnection within their learning environments. The open-ended nature of the questions allowed students to provide contextual feedback, offering valuable insights beyond the scope of predefined categories.

The results of the survey provide a multifaceted understanding of students’ experiences in online courses. Across all five courses, certain patterns emerged regarding elements that students found most engaging and most distancing. These insights served as a springboard for the development of actionable recommendations aimed at enhancing course design and fostering inclusive learning environments.

Alignment

One crucial area highlighted by the survey results was the importance of alignment. Students noticed when their courses had assessments that were aligned with course content, and they noticed when this alignment was missing. Ensuring that learning objectives are represented in instructional materials, practice activities, assessments, and evaluation criteria is key. For more on this, please see “Alignment” by Karen Watté from 2017.

Learning Materials

Another prominent theme in the survey responses was the overwhelming nature of long, uncurated lists of readings and learning materials, which tended to alienate learners. To address this, providing a reading guide or highlighting key points can alleviate feelings of overwhelm. Optimizing content presentation and learning activities emerged as a key factor in promoting engagement and inclusivity. 

Incorporating interactive elements such as knowledge checks and practice activities within or between short lectures keeps students actively engaged and reinforces learning objectives. By utilizing multiple modes of content delivery–videos, lectures, and readings–educators can cater to diverse learning styles and preferences. Providing study guides is also noted as an effective strategy for enhancing comprehension and engagement with learning materials. 

Community & Connection

Supporting student-to-student interaction is pivotal in fostering a sense of community and participation (Akyol & Garrison, 2008). Many learners noted that they enjoyed engaging in small group discussions, in fact 50% of students in one course noted that the week 1 introductory discussion was the point they felt most engaged. Additionally, students across the courses were excited to view and respond to the creative work of their peers. Community-building course elements like these foster a sense of community and collaboration within the virtual classroom. 

While some students had mixed feelings about peer review activities–voicing concerns about feeling unqualified to judge their peer’s work–distinct guidelines and rubrics can empower learners to develop critical thinking, increase ownership, and enhance their communication skills. Thus, thoughtfully crafted peer review processes can also help to enhance the educational experience.

Authentic Activities

Incorporating authentic or experiential learning activities was also highlighted in student responses as a means of connecting course content to real-world scenarios. By integrating professional case studies, practical exercises, real-world applications, and reflective activities, educators can deepen students’ understanding of course material. Survey respondents noted again, and again how they felt engaged when coursework was relevant and applicable outside the classroom. This type of authentic work in courses can also increase learner motivation. (Gulikers, Bastiaens, & Kirschner, 2004)

Timely Feedback & RSI

By offering timely feedback on student work, online educators demonstrate their active presence and assist students in understanding the critical aspects of assessments, ultimately enhancing their chances of success. One student is quoted as saying,

“I really appreciate the involvement of the instructor. In the past I’ve had Ecampus classes where the teacher was doing the bare minimum and didn’t grade things until the last minute so I wasn’t even sure how I was doing in the class until it was almost over. I appreciate the speed at which things have been graded and the feedback I’ve already received. I appreciate the care put into announcements too!”

Timely feedback and time-bound announcements are also notable ways to showcase Regular and Substantive Interaction (RSI). Please also see “Regular & Substantive Interaction in Your Online Course” by Christine Scott.

Scaffolding

Another noteworthy recommendation from the survey findings was the importance of providing scaffolding and support throughout the course. Respondents expressed appreciation for feedback from peers and instructors to improve their writing. One student noted, “When I used my peer review feedback to improve my draft.” Offering additional resources and tutorials for unfamiliar or complex concepts ensures that all students have the support they need to succeed.Moreover, breaking down larger, high-stakes assignments into smaller, manageable tasks, can reduce feelings of overwhelm, provide a sense of accomplishment, increase early feedback and promote overall success. 

Autonomy

Furthermore, offering choice and flexibility in assignments and assessments empowers students to take ownership of their learning journey. Whether it’s offering choice in topics, deliverable types, or exercise formats, providing students with agency fosters a sense of autonomy and engagement. One respondent noted, “I think choosing a project topic was the most engaging part of this week, because allowing students to research things that they are interested [in,] within some constraints is a good way to get them engaged and interested in the topics.” 

Note on Survey Administration

One final take away from the study underscores the importance of thoughtful survey administration. While weekly surveys offer robust results, participating faculty indicated that surveying students every week was too frequent.   Instead, it’s recommended to conduct surveys between one to three times throughout the course, striking a balance between gathering insights and respecting students’ time. Additionally, transparent communication about the purpose and use of student feedback is essential for fostering trust and eliciting honest responses. Students should understand that their feedback is valued and how it will be utilized to improve their learning experience in both the current term and future iterations of the course.

Conclusion

Engagement and inclusion in online education is multifaceted and ongoing. By listening to student feedback, implementing actionable recommendations, and fostering a culture of continuous improvement, educators can create transformative learning experiences that empower students to thrive in the digital age. Together, let us embark on this journey towards inclusive excellence, ensuring that every learner has the opportunity to succeed while feeling valued, supported, and empowered to reach their full potential.

References

Akyol, Z., & Garrison, D. R. (2008). The development of a community of inquiry over time in an online course: Understanding the progression and integration of social, cognitive and teaching presence. Journal of Asynchronous Learning Networks, 12(3-4), 3-22. 10.24059/olj.v12i3.72 

Gulikers, J.T.M., Bastiaens, T.J. & Kirschner, P.A. (2004). A five-dimensional framework for authentic assessment. ETR&D 52, 67–86. https://doi.org/10.1007/BF02504676 

Scott, C. (2022, November 7). Regular & Substantive Interaction in Your Online Course. Ecampus Course Development & Training Blog.https://blogs.oregonstate.edu/inspire/2022/11/07/regular-substantive-interaction-in-your-online-course/ 

Watté, K. (2017, January 27). Alignment. Ecampus Course Development & Training Blog.   https://blogs.oregonstate.edu/inspire/2017/01/27/alignment/  


I was recently reminded of a conference keynote that I attended a few years ago, and the beginning of an academic term seems like an appropriate time to revisit it on this blog.

In 2019, Dan Heath, a bestselling author and senior fellow at Duke University’s CASE Center, gave a presentation at InstructureCon, a conference for Canvas users, where he talked about how memories are formed. He explained that memories are composed of moments. Moments, according to Heath, are “mostly forgettable and occasionally remarkable.” To illustrate, most of what I’ve done today–dropping my kids off at spring break camp, replying to emails, going to a lunchtime yoga class, and writing this blog post–will largely be forgotten by next month. There is nothing remarkable about today. Unremarkable is often a desirable state because it means that an experience occurred without any hiccups or challenges.

Heath went on to describe what it is that makes great experiences memorable. His answer: Great experiences consist of “peaks,” and peaks consist of at least one of the following elements: elevation, insight, pride, or connection. He argued that we need to create more academic peaks in education. Creating peaks, he contends, will lead to more memorable learning experiences.

So, how do we create these peaks that will lead to memorable experiences? Let’s explore some ideas through the four approaches outlined by Heath.

Elevation. Elevation refers to moments that bring us joy and make us feel good. You might bring this element into your course by directly asking students to share what is bringing them joy, perhaps as an icebreaker. Sharing their experiences might also lead to connection, which is another way (see below) to create peaks that lead to memorable experiences. 

Insight. Insight occurs when new knowledge allows us to see something differently. Moments of insight are often sparked by reflection. You might consider making space for reflection in your courses. Creativity is another way to spark new insights. How might students engage with course concepts in new, creative ways? To list off a few ideas, perhaps students can create a meme, record a podcast, engage in a role play, or write a poem.

Pride. People often feel a sense of pride when their accomplishments are celebrated. To spark feelings of accomplishment in your students, I encourage you to go beyond offering positive feedback and consider sharing particularly strong examples of student work with the class (after getting permission–of course!) Showcasing the hard work of students can help students to feel proud of their efforts and may even lead to moments of joyful elevation.

Connection. Connection refers to our ties with other people. Experiencing connection with others can feel deeply rewarding. As I mentioned above, asking students to share their experiences with peers is one way to foster connection. In Ecampus courses, we aim to foster student-student and student-teacher connection, but I encourage you to explore other opportunities for students to make meaningful connections. Perhaps students can get involved with their communities or with colleagues, if they happen to have a job outside of classes. Students could connect with their academic advisors or the writing center to support their work in a course. There are many ways to foster connections that support students in their learning!

It’s easy to focus on delivering content, especially in online courses. This was one of Heath’s overarching points. The key, however, to creating memorable learning experiences is to take a student-centered approach to designing and facilitating your course. 

I invite you to start the term off by asking yourself: How can I create more moments of elevation, insight, pride, and connection for my students? It might be easier than you think.

References:

Heath, D. (2019, July 10). Keynote. InstructureCon. Long Beach, CA.

As a follow-up to discussing equity in grading and group work, Feldman (2019) offers a compelling case against the use of extra credit. “But wait a minute,” I can hear you saying, “Extra credit is optional—students have to opt-in if they want to do it! And it can be fun! What’s wrong with that?” Many instructors may think of extra credit as a way to benefit students and give them extra opportunities in a course, especially at the end of a term, to improve their grade, take on additional challenges, and demonstrate additional skills they have learned. (I know I thought about extra credit that way at one time!) However, there is more at play with extra credit than you might think. Let’s return to Feldman’s three pillars of equitable grades:

  1. “They are mathematically accurate, validly reflecting a student’s academic performance.
  2. They are bias-resistant, preventing biased subjectivity from infecting our grades.
  3. They motivate students to strive for academic success, persevere, accept struggles and setbacks, and to gain critical lifelong skills” (Feldman, p. 71).

With these three pillars in mind, let’s examine some potential issues with extra credit:

  1. Accuracy: There are many ways extra credit can obscure what information a grade includes. First, it can be used to incentivize certain behaviors, which obscures a grade by not assessing academic performance or learning. (For example, extra credit for turning things in on time.) Second, it can obscure whether a grade reflects what students know by turning grades into a commodity (more about this below). In this way, grades are a reflection of how many points students are able to accumulate, not necessarily how much they have learned or whether they have met all of a course’s learning outcomes.This kind of extra credit can unintentionally signal to students that their behavior and non-academic performance in a course is more important than their learning.
  2. Bias: Sometimes extra credit is awarded to incentivize students to participate in extra events or opportunities, like attending a webinar, guest lecture, local event, etc. However, in addition to treating grades like a commodity, this kind of incentive also makes it difficult for students without outside resources or help to engage. What about students without the money for event tickets, transportation, child or family care, and/or without the time away from work, family, etc.? They are unable to participate, even if they want to, due to external factors outside of their control. And often these are the students who could potentially benefit the most from additional points if they are already struggling because of these exact conditions. For extra credit that provides extra challenges beyond the course materials, only the students already doing well will be able to participate and benefit from the opportunity, additionally shutting out students who are already behind.
  3. Motivation: Having extra credit, especially at the end of the course, can also be damaging to student motivation, as it places an emphasis on grades and points instead of learning. For example, some students may prioritize obtaining a desired grade above learning important content, while other students may use extra credit to bolster a weak area they were unable to fully grasp, thereby giving up on learning that material entirely. Both of these potential mindsets set students up to focus on a product (grade) more than learning and any future perspectives they might have about their learning.

One additional issue of extra credit to consider is the additional work and time on instructors for both designing additional assignments and grading the extra work, especially at the end of a term when there is usually a plethora of assignments, exams, and projects to grade.

“If the work is important, require it; if it’s not, don’t include it in the grade.”

Feldman, p. 122.

So, what options can we give students that are more equitable as an alternative to extra credit? Instead of creating additional assignments, allow students to revise and resubmit work. This shift can help support students by encouraging them to learn from past mistakes, build on their learning, and see their growth over time. Revisions and resubmissions don’t have to only happen at the end of the term, so instructors can also consider timing of revisions based on course design, formative and summative assessment timing, and their own workloads. It also helps students who may be struggling with outside barriers to have additional attempts to complete work they may have missed. It also means that students cannot opt-out of important work or concepts because they cannot substitute those points from other areas of the course. Lastly, it saves the instructor time from designing and implementing additional assignments and complicated grading setups at the end of a term when instructors are often the busiest. While the use of extra credit is often from a place of good intentions, I hope this brief outline helps recontextualize how it may have a larger, negative impact in your course than you may have initially thought, as well as a strategy for replacing it in your course designs.

References

Feldman, J. (2019). Grading for equity: What it is, why it matters, and how it can transform schools and classrooms. Thousand Oaks, CA: Corwin.

One of the most common concerns that instructors raise about teaching online is how to engage students in meaningful interactions. Online discussion boards is the default for simulating the types of conversations that take place in a classroom, albeit the online environment favors written communication in the form of posts and replies. These written posts may be the easiest ways of communication in online learning environments offering students less overwhelming experiences and more opportunities for critical thinking and building community (see benefits of discussion boards). However, written communication is not the only way in which students can interact with one another -images, audio, or video can increase engagement and motivation. Still, these options are not intuitively built into online discussion forums. 

The discussion board option appears to be boring and demotivating -it sounds more like a chore than an activity where students build community and participate in the exchange of ideas and perspectives – where they grow intellectually and as individuals. Online discussions can turn into spaces for dialogue, debates, and community. How do we design these spaces so that students engage and interact more meaningfully? Well, let’s explore a tiered approach to spark engagement in online discussions.

Tier 1: Revamp Discussion Boards

Consider the Community of Inquiry framework (CoI) in facilitating deep, engaging, and meaningful learning. The three elements of this framework can be used to design discussion boards: social presence, cognitive presence, and teaching presence. Ragupathi (2016) describes these presences in online courses as follows: “Social presence that will encourage students to present their individual personalities/profiles, help them identify with the community, communicate purposefully and function comfortably in a trusted environment; (2) Cognitive presence that will get students to introduce factual, conceptual, and theoretical knowledge into the discussion and be able to construct/confirm meaning through sustained reflection and discourse; and (3) Teaching presence to provide necessary facilitation of the learning process through effective discussion.” (p. 4). Social presence in particular can be achieved through discussions (although not the only tool) to promote a sense of connection and community. 

Apart from a strong foundation on a sense of connection and community that the CoI promotes, the structure of the discussion assignment plays an important role. To this effect, “structure” and “why” are the key

Revise Structure and Format

  • Establish a clear purpose and add value to the participation/contribution:
    • Instructor-led: contextualize the outcomes, make explicit expectations
    • Student-led: ask students to share their takeaways from the discussion participation (e.g., reflection, embedded in assignments)
    • Connect the content to the discussion assignment (e.g., ask students to refer back or cite previous readings/videos completed in the weekly content)
  • Clearly set expectations for:
    • Grading criteria (e.g., provide a rubric or grading guidelines)
    • Timeframe
    • Resources (e.g., from the course or external)
    • What is a “good post” (e.g., provide an example, describe an example that does not meet expectations)
    • Clarify terminology (e.g., link to a glossary of terms)
  • Support continuity of engagement:
  • Make discussion spaces manageable (students & faculty)

Visit this link for discussion board examples.

Tier 2. Augment the Discussion Boards

The next tier is to augment the opportunities that discussion boards offer. Structure and creativity will intertwine in layers to turn discussions into collaborative spaces. Here, there is greater emphasis on community as a place where students take a more active role, embrace challenges, and own their contribution role as active participants in building knowledge together.

  • Start with setting the discussion board as a place for a conversation:
    • Introductions: encourage students to use additional elements to introduce themselves to the class (e.g., images, videos, goals, expectations). With the caveat that it is optional so they feel comfortable choosing what and how to share. 
  • Create discussion scenarios/questions/prompts that elicit more than one response:
    • Post first before you see previous posts
    • Students post follow-up questions and bring additional examples. Students reply to more than 2 peers who have not received replies yet
    • Encourage students to bring their experiences, outside readings, and additional resources to share
    • Encourage posts in different formats (e.g., video, images, infographics, mindmaps)
  • Student-facilitated discussions:
    • Create small groups and ask students to select a leader (rotate leadership role) Alternatively, randomly assign a leader
    • Student leaders post summaries of discussions in small groups and/or in whole-class discussions
    • Set expected participation: 
  • A minimum number of responses (1 post; 2 replies; number of posts in total)
  • Consider self-paced discussions and encourage students to post a certain number of posts throughout the term or week. (Caveat: the first few students that post might need to wait until others post)
  • Create a learning community for future assignments:
    • Students share initial drafts, outlines, and research topics and ask for comments/feedback. Alternatively, students post their initial work and share their goals, and ideas about how it is relevant. Students are encouraged to read the shared work or not.
    • Beyond the Question and Answer format (e.g., role plays, debates, WebQuests)
    • Set the discussion as a Peer review assignment.  

Tier 3. Beyond Discussion Boards*

The linearity that many discussion board platforms have could make the interaction feel inauthentic, boring, and tedious to navigate. An alternative to a linear discussion is the concept of social annotations and collaborative spaces where students intersect transversally and with multimodal elements.

  • Social Annotations: students can add comments, post questions, vote, and interact with peers over learning materials such as readings, videos, visuals, and websites. Students interact and collaborate based on interests and questions they have while studying the content. You can use social annotations as a learning tool.
  • Asynchronous conversations: increase the collaborative nature of group work with multimodality where students not only post and reply but also create their own content for others to comment on. Explore asynchronous conversations in VoiceThread.
  • Collaborative work: online discussions do not have to be about posts and replies only. Students can engage in meaningful conversations through collaborative work. For example, students can do collaborative assignments, interact synchronously or asynchronously, and comment on each others’ contributions. Some web platforms you can explore include Microsoft Whiteboard and Miro.

Tier 4: Unleash the Discussion Boards

While discussion boards are mainly associated with asynchronous learning environments, discussions can play an important role in hybrid learning. You may be wondering why when we know that one of the underlying features of hybrid learning is to use the class time for active learning, collaborative and team activities, increased participation, and social interaction. But these activities do not have to end when the class time is over. Discussions can help keep students engaged in the class topics and activities after the in-person experience. Any of the tier approaches described above could be integrated seamlessly into hybrid learning to give continuity to class conversations, prep for future in-person activities, foster metacognitive and reflection skills, and strengthen social presence. 

*Note: The use of other tools outside of the Canvas learning management system will require a careful evaluation of accessibility and privacy policies.  

References