Each year, the Oregon State University Ecampus Research Unit funds projects, up to $20,000 each, to support the research, development and scholarship efforts of faculty and/or departments in the area of online education through the OSU Ecampus Research Fellows program.

This program aims to:

  • Fund research that is actionable and impacts student online learning
  • Provide resources and support for research leading to external grant applications
  • Promote effective assessment of online learning
  • Encourage the development of a robust research pipeline on online teaching and learning at Oregon State

Fellows program applications are due Nov. 1 each year. If you are interested in submitting an application, reach out to Naomi Aguiar, the OSU Ecampus assistant director of research. Research Unit staff are available to help you design a quality research project and maximize your potential for funding.

Many Oregon State colleagues have had transformative experiences in this program.  A Fellows study funded in 2020 highlights the ways in which these projects have advanced research in online/hybrid education, as well as Fellows’ programs of research.

Fellows program highlight

Funding recipients expand the inclusivity mindset of computer science students

Lara Letaw, an experienced online instructor and lead researcher from Oregon State’s School of Electrical Engineering and Computer Science, partnered with Heather Garcia, an OSU Ecampus inclusive instructional designer on a research study called “Impacting the Inclusivity Mindset of Online Computer Science Students.”

Together with their team, Letaw and Garcia implemented an intervention that was designed to improve feelings of gender inclusivity among online computer science students and to train these students to develop more gender-inclusive software applications.

In this intervention, online computer science students experienced new curriculum developed by Letaw and Garcia’s team. The curriculum was based on GenderMag, a software inspection method for identifying and correcting gender biases in software. Curriculum for teaching GenderMag concepts can be found on the GenderMag Teach website. Students completed a set of assignments and, if they chose to participate in the research study, questionnaires about inclusivity climate, both in the course and in the computer science major. Students’ software design work was also evaluated for the use of gender-inclusive principles.

The image below shows examples of the cognitive facet values people (e.g., Letaw and Garcia) bring to their use of software, shown across the spectra of GenderMag facets (information processing style, learning style, motivations, attitude toward risk, and computer self-efficacy).

examples of the cognitive facet values people (e.g., Letaw and Garcia) bring to their use of software, shown across the spectra of GenderMag facets (information processing style, learning style, motivations, attitude toward risk, and computer self-efficacy).

Computer science students in the Ecampus courses Letaw and Garcia modified learned about their own cognitive styles and those of their teammates. They also built software that supports the cognitive diversity of software users. One student reflected, “Identifying my facet values was tremendously helpful [for articulating what had] been abstract… I feel much more confident.”

The results of their study showed that, overall, students felt included by the GenderMag curriculum (nobody felt excluded by it), it increased their interest in computer science, and it had positive effects on their team dynamics and self-acceptance. Students who completed the GenderMag intervention were also more effective in developing gender-inclusive software designs, and they reported greater recognition and respect for the diversity of software users.

The image below highlights what students considered when designing a software user interface before (left) and after (right) learning GenderMag concepts. As one student put it, “Now when I think of users using a piece of software I don’t picture them … just jumping in and tinkering … I am more aware that there are [people whose] interests in using a software … might not align with mine.”

what students considered when designing a software user interface before (left) and after (right) learning GenderMag concepts

As a result of this project, Letaw and Garcia published a paper in the ACM’s International Computing Education Research conference proceedings in 2021. This project contributed to a $300,000 National Science Foundation grant awarded to Oregon State’s Margaret Burnett, Letaw, and Kean University. With this funding from the NSF, they will partner on a project entitled, “Embedding Equitable Design through Undergraduate Computing Curricula.”

This Fellows project has also provided research opportunities for two female Ecampus computer science students (Rosalinda Garcia and Aishwarya Vellanki), a group that is typically underrepresented in STEM fields. Rosalinda Garcia successfully defended her honors thesis with these data in the spring of 2021, and Vellanki is currently working on her own.

Join the Ecampus Research Fellows Program

Learn more about the Fellows Program and what materials are needed to prepare your proposal.

At a recent faculty professional development workshop series, I became aware of faculty’s concerns about addressing the learning needs of students from different cultural and linguistic backgrounds. Students with multilingual and multicultural identities are oftentimes perceived as deficient (Almon, 2014; Flores & Rosa, 2015) and might feel they hold an outsider status (Merryfield, 2000). In my personal experience navigating multiple identities that intersect culture and language, and in my work supporting faculty in their learning design and instructional decisions, I began examining ways in which blended and online learning spaces can offer more welcoming opportunities for students. One of these ways is using a cultural lens and mindset towards inclusive learning design. 

Culturally Responsive Approaches

There have been several culturally responsive approaches to teaching and learning. By and large these approaches advocate for the recognition of students’ cultural backgrounds as critical to their learning success (Gay, 2013; Ladson-Bilings, 1994). In fact, a culturally responsive pedagogy (CRP) aims to promote the integration of students’ culture to support their learning experiences. In blended and online learning, this pedagogy can create an environment that “acknowledges, celebrates, and builds upon the cultural capital that learners and teachers bring to the online classroom” (Woodley, Hernandez, Parra, & Nagash, 2017, p.1). 

For students whose first language is not English, we first should focus on their strengths and not their deficiencies. These students bring their cultural backgrounds, values, experiences, and language diversity with them to the online learning environment. It is important to recognize that culture is central to teaching and learning; therefore, advancing online and blended learning design should be grounded on dimensions for cultural sensitivity where students’ diverse identities, cultures, languages, and backgrounds are seen through an asset-based lens. This means, recognizing the value in the cultural backgrounds, experiences, and languages of students; and embracing these students’ traits as assets. This asset-base approach can be the first step in developing a mindset for designing and teaching in ways that promote social, academic, and emotional learning for these and ALL students. 

Culturally responsive approaches have been mapped out to the three principles of Universal Design for Learning to offer (1) multiple means of engagement, (2) multiple means of representation, and (3) multiple means of action and expression (UDL, n.d.). UDL and CRP can help instructors amplify the opportunities for students from different cultural backgrounds to demonstrate their knowledge when given strategies that incorporate multiple perspectives, experiences, connections to the real world, and choices (Bass & Lawrence-Riddell, 2020; Kieran & Anderson, 2018)  

The connection of UDL and CRP offers consideration to inform instructional design choices. Yet, these considerations appear to be adds-on to the design of the learning experience. How can we expand the UDL and CRP connection to embrace a mindset to move towards an inclusive learning design where the cultural and linguistic traits of students are seen from an asset-based perspective? A few dimensions from research and praxis would get us started to help achieve this goal.

Dimensions for Learning Design

The following dimensions for learning design, that expand the connections between UDL and CRP, should be considered whenever possible in the design of blended or online learning experiences. Following are the six dimensions.

Dimensions of Culturally Responsive Leraning Design
Dimensions for Culturally Responsive Learning Design
  1. Instructor’s reflection
  2. Visual design
  3. Linguistic domain
  4. Content
  5. Interaction
  6. Technology

Identity and Experience

Instructor identity and experience relates to the practice reflection –inner analysis to reveal assumptions about teaching and learning (Jaramillo Cherrez & Jin, 2020). Through these reflections, instructors can identify ways to humanize the learning experience. Instructional designers (IDs) can help instructors engage in a (self) dialogue to explore how the instructor’s identity informs or impacts their teaching and instructional decisions, how they respond to students’ cultural differences and embrace them as strengths, and how instructors could also learn from students.

Design 

The visual design of the course and learning materials can have a profound impact on students’ learning experience (Hedberg & Brown, 2002). For students whose first language is other than English in particular, it is important to be aware that these students may come from different cultures and social groups, and thus, visual representations may have positive or negative consequences to their success in the course. Visuals should be carefully chosen because the variety of images, colors, and symbols may affect the message students receive in the class. When using images from pop culture, it is helpful to add context to give more clarity to the instructional purpose. The visual design also relates to the readability of the content and how it is presented and structured. Asking a colleague or friend to read the instructions and descriptions of assignments can help clarify expectations and requirements for students. Bear in mind that what is clear to one is not always clear to others, especially when using complex sentences and terminology of a discipline. 

Linguistic Variability

Many students might have a first language different from English. Also, keep in mind that different cultures may have different ways of writing, usually influenced by rhetorical and social contexts (Almuhailib, 2019). There may also be linguistic and cognitive differences in the way that students interpret the information given to them. For some cultures, direct descriptions are fine, whereas for others the context is important before addressing a specific perspective. Some cultures may characterize themselves for being more individualistic and others more holistic, and students, including those whose first language is other than English, can find themselves moving along that continuum. In designing culturally responsive blended or online courses, language matters because of the transactional distance characteristic of asynchronous spaces. Many students may already be pressured to demonstrate “good”, “academic”, “professional” English. One way to be aware of linguistic diversity is to be more explicit with instructions. For example, indicate clearly the use of naming conventions, abbreviations, acronyms, and descriptors in activities and assignments.     

Content

The fourth consideration is content. The main suggestion is to try to diversify the curriculum with resources from around the world (e.g., content from scholars from diverse cultures and linguistic backgrounds). Allow students to see themselves represented in the materials. Create activities and assignments that help students explore the concepts in connection to their own backgrounds and communities(e.g., linguistic, cultural) and experiences, and that allow students to move from low to high cognitive tasks (e.g., staged projects). Yet, diversifying the curriculum goes far from bringing into the course content perspectives that are commonly ignored. It involves explicit acknowledgement of the value of the different perspectives and modes of knowledge. 

Interaction

Interaction also can benefit from a culturally responsive mindset in that instructors can vary the modes of interaction by using audio/video communication(e.g., assignment feedback, DB, announcements). It is also important to guide and scaffold group activities with resources such as guidelines, group contracts, teamwork guidelines, group rapport activities, conflict resolution resources). Particularly for teamwork, instructors can build group activities early in the course to promote collaborative learning. For online discussions, instructors could allow students to select the tools that they feel more comfortable with using, bearing in mind that many students from different cultural backgrounds might not be familiar or have experience participating in discussion activities. Another suggestion is to promote student-led discussions to help students move from the individual task to the group task. This will allow to vary the cognitive demands that can foster meaningful knowledge construction and organization while also addressing different audiences, styles of writing and analysis, and communication modes. 

Technology

It is important to recognize that technology is not neutral. Clearly, it is important to select tools and evaluate them for intended and unintended consequences for students, such as the cost, the technical support, the pedagogical affordances, and the availability in other geographic areas. It will be helpful to consider the different levels of technology skills that students may have and plan on developing guidelines and technical resources (e.g., links to providers, manuals, accessibility and privacy policies) that can help students. Additionally, in considering digital tools it is important to review whether the affordances the tools offer are available to all students, in the different browsers and devices (e.g., tablets, smart phones, browsers). In using digital tools, careful attention should be given to the kinds of data that the tools require students and instructors to share. It is important to read carefully the terms of use, data privacy, and the information that is being collected as a way to understand how the users can trust the tools and their procedures for sharing or not with others the data collected. 

These dimensions underscore the need to approach learning design with a mindset that not only acknowledges student multilingual and multicultural identities, but also catalyzes these identities to help students be valued and successful. I consider these dimensions in my instructional design work, and I would like to invite you to consider them next time you design an online or blended learning experience. 

Sources  

Almon, C. (2015). College persistence and engagement in light of a mature English language learner (ELL) student’s voice. Community College Journal of Research and Practice, 39(5), 461-472.

Almuhailib, B. (2019). Analyzing Cross-Cultural Writing Differences using Contrastive Rhetoric: A Critical Review. Advances in Language and Literary Studies, 10(2), 102-106.

Bass, G., & Lawrence-Riddell, M. (2020). Culturally Responsive Teaching and UDL. Faculty Focus. https://www.facultyfocus.com/articles/equality-inclusion-and-diversity/culturally-responsive-teaching-and-udl/

Dougherty, E. (2012). Assignments matter: Making the connections that help students meet standards. Alexandria, VA: ASCD.

Kieran, L., & Anderson, C. (2019). Connecting universal design for learning with culturally responsive teaching. Education and Urban Society, 51(9), 1202-1216.

Gay, G. (2013). Teaching to and through cultural diversity. Curriculum Inquiry, 43(1), 48-70.

Hedberg, J. G., & Brown, I. (2002). Understanding cross-cultural meaning through visual media. Educational Media International, 39(1), 23-30.

Ladson-Billings, G. (1994). What we can learn from multicultural education research. Educational Leadership, 51(8), 22-26.

Merryfield, M. M. (2000). Why aren’t teachers being prepared to teach for diversity, equity, and global interconnectedness? A study of lived experiences in the making of multicultural and global educators. Teaching and Teacher Education, 16(4), 429-443.

Flores, N., & Rosa, J. (2015). Undoing appropriateness: Raciolinguistic ideologies and language diversity in education. Harvard Educational Review, 85(2), 149-171.

Universal Design for Learning (n.d.). The UDL Guidelines [Website]. https://udlguidelines.cast.org/

Woodley, X., Hernandez, C., Parra, J., & Negash, B. (2017). Celebrating difference: Best practices in culturally responsive teaching online. TechTrends, 61(5), 470-478.

 

 

Last fall, my colleague featured the Ecampus Research Fellows (ECRF) program in her blog post. The ECRF program, which began in 2016, funds OSU faculty-led research on online and hybrid education. Each year, approximately five projects are selected to receive funding. One unique aspect of the program is that, in the past few years, 1-2 members of the Ecampus Course Development and Training (CDT) team are paired with the faculty on funded research projects. The CDT team includes instructional designers and media developers. These professionals have expressed interest in conducting research, but in most cases, have had few opportunities to engage in formal research projects. Similar to faculty, CDT fellows have to apply to the ECRF program.

For this blog post, I’d like to share some takeaways from my experience as a CDT research fellow, as well as some takeaways my CDT colleagues have shared with me. I will also share some feedback from faculty fellows who have had CDT colleagues join their research teams. But before I dig into these valuable takeaways from past participants, let me first address the importance of this program for instructional designers and related disciplines.

In 2017, the Ecampus Research Unit published a report titled “Research Preparation and Engagement of Instructional Designers in U.S. Higher Education.” This report was the result of a national study of instructional designers working in higher education environments. Among the many findings of this study, one compelling finding was that more than half (55%) of respondents indicated that instructional designers need more training in research methods to fulfill their role. Instructional designers also indicated why they think it is important to gain more experience in research. Among the reasons, respondents indicated that research skill development would allow them to grow professionally, further their discipline, better understand the needs of students and faculty, and collaborate with faculty.

The Ecampus Research Unit (ECRU) answers this call through their CDT research fellows program.

In the summer of 2020 at the NWeLearn conference, three CDT fellows reflected upon their participation in the program, sharing valuable insights and experience. I, Heather Garcia, was one of them. The other participants were Susan Fein and Tianhong Shi. The full recording can be viewed on YouTube at this link, but I’ll summarize some highlights from the session in the following paragraphs.

The projects undertaken by CDT research fellows in partnership with faculty spanned disciplines from computer science to field-based courses. 

When asked why they were interested in being research fellows, all three participants indicated that they were pursuing additional graduate education at the time they applied. One participant also indicated that acquiring more knowledge and experience with research would allow faculty to see course design suggestions as “more convincing and easily accepted,” giving her additional credibility when recommending new design approaches to faculty.

The fellows also shared details about their contributions to the research projects they were working on. All of the instructional designers spoke to ways their existing expertise was valued by the researchers. They gave examples of the expertise they offered, which ranged from reviewing course design and educational technologies to designing surveys to offering a fresh perspective and a critical eye. In addition to contributing their design expertise to the research projects, CDT research fellows contributed to the research processes as well, through data analysis and research paper writing and reviewing.

All of the CDT research fellows indicated that they learned a lot from their experiences partnering with faculty on research. One particular highlight in this area is that fellows learned that they contribute diverse perspectives to the research process; they have different backgrounds, experiences, and areas of expertise, and everyone on the team contributes something valuable. CDT fellows also indicated that they learned about the IRB process and the importance of asking questions. Perhaps most importantly, they learned that their expertise is valuable to research teams.

Faculty fellows were also given the opportunity to share how having a CDT fellow on their research team enhanced the research experience, and their feedback was shared in the conference session. They expressed many positive sentiments about the experience including the following:

  • “Our research team started as a group of inspired but like-minded computer scientists wanting to make better online classrooms for diverse students. After she joined the team as an instructional design fellow, the work became credentialed, interdisciplinary, and stronger. She brings expertise and sees what we miss—she not only makes us better able to serve the students we hope to, she makes our team better by adding diversity of thought.”
  • “The combined knowledge and experience of teaching faculty and an instructional designer is incredibly powerful.”
  • “She viewed the scope of the research and content of the courses involved through a different lens than I did.”
  • “The instructional designer provided valuable input on areas of my project merging the instructional design with the research.”
  • “My work with the instructional designer let me explore very practical logistic issues that are often not included in the literature.”

Altogether, it becomes clear that many instructional designers are eager to participate on research projects and they are valuable contributors to the research process. The questions I have now are: How can we continue these partnerships into the future? And, how can we create more research partnership opportunities for other instructional designers and teaching and learning professionals, who aren’t traditionally involved in research?

References

Dello Stritto, M.E., Fein, S., Garcia, H., Shi, T. (2020). Instructional Designers and Faculty Partnerships in Online Teaching Research. NWeLearn 2020 Conference.

Linder, K. & Dello Stritto, M.E. (2017). Research Preparation and Engagement of Instructional Designers in U.S. Higher Education. Corvallis, OR: Oregon State University Ecampus Research Unit.

Loftin, D. (2020). Ecampus Research Fellows Program. Ecampus CDT Blog.

reflection of hot air balloon over water(image from pxfuel.com)

Reflection assignments as an active learning strategy are commonly seen in humanities courses. The purpose of this writing is to share an example of how simple reflection activities can make a huge impact in two math courses.

MTH 251 Differential Calculus covers five units, with one exam for each unit, counting 14% of the final grade. Before students attempt to take the unit exam, they are assigned to read textbook readings, watch instructor-created lecture videos, work on Canvas-based homework assignment and Adaptive Learning based practice assignments in Knewton Lab online platform. After assignment due date expires, students are assigned to complete a weekly written homework reflection. The weekly homework and the weekly homework reflection together count for 14% of final grade in this course, weighing the same as each of the unit exams.

MTH 341 Linear Algebra I has ten weekly modules. Each week, students  read textbook assigned readings, watch lecture videos created by the instructor (Dr.   ), complete post-reading questions in quiz format, work on graded group discussion questions to solve math problems in small groups, complete written homework individually, and in the following week, complete a written homework response activity individually in discussion format.   

The written homework reflection in MATH 251 and the written homework response in MATH 341 are both reflection activities designed to optimize student learning success, through comparing their own homework solutions with answer keys and evaluate whether they did it correctly or incorrectly and analyze where they did it wrong and how to get it right. The purpose of such weekly reflection is to help students develop meta-cognitive skills related to their learning. By looking back at students’ own work and learning from their mistakes, they develop an understanding of what is the proper way to solve a problem and what is not the proper way for solving a particular math problem. It also prompts students to plan for proper action in the future and exercises students’ executive functioning skills (CAST, 2018). 

Here is what the instructions for the weekly reflection look like:
1. First answer the weekly prompt: Reflecting on the Unit 1 module, which topics did you struggle with the most?
2. Download the written homework solutions PDF: (Solution for each written homework in pdf format is attached here.)
3. Look over the solutions and compare to your submitted homework. Look for any problems where your solution differs from the posted solution.

    • If your solutions had one or more incorrect problems then in the discussion board please discuss the following:
      • why you struggled with certain problems
      • why each solution makes sense now
      • what your misunderstanding was
      • what will you do in the future when solving problems similar to these?
      • what strategies will help you?
      • what did you learn by making a mistake?
      • what did you learn from looking at the solutions?
    • If you are still confused about a problem, ask a question. DO NOT simply list which problems you got wrong.
    • If your solutions are all correct then in the discussion board please discuss the problem that you found the most challenging. Describe what specific tasks helped you to complete that problem. Be as detailed as you can about your solution process.

Students not only posted their own reflections, but they also comment on or answer other students’ reflections as well. Additionally, the instructor and the four TAs in the course responded actively to students’ reflections, which makes the reflection more valuable since students get encouragement, praises, or corrections from the instructor and teaching assistants. Again, feedback from experts is critical in the success of a reflection activity (Vandenbussche, 2018)

What Reflection Usually looks like and what reflection should look like

Image 1: How reflection usually looks like and How reflection should look like (Image Source)

Many students were reflecting on what they did wrong and asked for help. Some were reflecting on their time management in completing the homework assignments. And we were glad to see students completing homework, evaluating their own work, analyzing where they did wrong, and planning for future improvement. Overall, the purpose of this assignment is accomplished!

goal 1 complete

(Image by Dave_Here)

A great benefit that comes from these weekly reflection activities is increased or sustained homework completion rate. For MTH 251 winter 2021 week 1 to week 7, over 85% of students completed the weekly homework and the reflection activity on average. For MTH 341 Fall 20 week 1 to week 7, over 90% of students on average completed the weekly homework and the reflection assignments. All math teachers love to see their students practice with homework assignments before they attempt to take the quizzes or exams! And evidence-based research tells us that deliberate practice with targeted feedback promotes mastery learning (Ambrose et al., 2010).

So, if it works in math courses, it will work in Chemistry, Biology, Physics, Engineering and other STEM courses too! If you’re interested in implementing this technique in your teaching and have questions about setting it up, feel free to contact us. We’d love to help you figure out the easiest way to set it up in your course.

References

Ambrose, S.A., Bridges, M.W., DiPietro, M., Lovettt, M.C. , Norman, M.K., & The Eberly Center for Teaching Excellence at Carnegie Mellon University. (2010). How learning works: Seven research-based principles for smart teaching. San Francisco, CA: Jossey-Bass

CAST. (2018). UDL Guidelines. Retrieved from https://udlguidelines.cast.org/ 

Vandenbussche, B. (2018). Reflecting for learning. Retrieved from https://educationaltoolsportal.eu/en/tools-for-learning/reflecting-learning 

People spend more time in virtual worlds than ever before. And educators are leveraging these popular forms of recorded and interactive escapism to increase student engagement. Recently academic departments have begun to experiment with the use of virtual reality (VR) headsets, which have become much easier to use and far less expensive. Headsets can make people feel like they have traveled to a new place, so they are an intriguing new tool for learning. They can create an experience that differs significantly from using a computer to work or play in an online environment.

When using a computer to visit an online world, your sense of immersion is affected by many factors, including the quality of video and audio, the number of distractions from real life, and your virtual representation on the screen. It is like a tug-of-war. Your avatar may be traveling in a helicopter through a fantasy landscape, but your brain also knows that you are sitting in front of your desk. You can see and feel the cat in your lap for example, but it is not in the helicopter with your avatar, so you are managing two worlds at once. In a continuum of this sense of immersion, at what point is there presence, where you lose connection with your environment and truly feel that you are somewhere else? 

Using a VR headset instead of a computer may move you along this pathway, because you don’t see your desktop or clearly hear the sounds of your household. The sense of being connected with the everyday world changes. “I usually say the way to tell if it is working is if you take off the goggles and are surprised by which direction you are now facing,” says Warren Blyth, Multimedia Developer at Course Development and Training Department (CDT) at Oregon State University’s Ecampus. And whether you are a student who may find themselves in a class with VR components, or an instructor curious about adding this kind of experience to your teaching, VR, like most new adventures, will be shaped by your readiness for it.

You could think of the act of putting on a headset as departing on a voyage, because for many it feels like traveling somewhere and being present in another place. When you take off the headset at the end of the trip you may have moved physically, mentally and/or emotionally. Or not. Just like a trip to Paris, everyone’s experience will be different. To help you get ready, this article is a checklist about the very beginning of your journey, before you put on the goggles. It is about the pre-departure phase in which, as for any other trip, you might prepare by researching, planning, packing your bag, and saying goodbye to the cat.

Researching

""
Image by Okan Caliskan from Pixabay

Technology lift may be a part of your pre-departure phase. This is a term floating around the CDT Department, thanks to the adventurous lexicon of Assistant Director of Course Development & Training Laurie Kirkner, who says that “technology lift takes place over a longer period of time than cognitive load, which is specific to working memory. It includes activities like reading manuals, investigating safety protocols and coping with expectations. And it will vary with the difficulty of the task and your skill level, just like cognitive load.”

Technology lift in anticipation of a VR journey may be analogous to researching luggage before taking a trip to a foreign city. You may ask: how much weight can I lift and for how long? Many of us have witnessed the oversupplied backpacker on a trip overseas. She struggles with a heavy load while shouldering her way through the crowds. One wonders if more thoughtful preparation could have saved her from being on the brink of pitching over during her first day in Paris. And although she probably had a great time anyway, planning ahead may have been worthwhile.

Platform Safety

Before entering a new VR space you can find out what controls exist for dealing with inappropriate or annoying behavior. For example, some platforms allow you to mute the audio of other avatars or create a personal space bubble. If you plan to meet others or visit a popular platform it can be helpful to do a test run by yourself beforehand, taking the time to get used to the location without any social awkwardness concerns. Owners, builders and organizers of platforms may have additional controls like banishing certain users –  instantly and/or permanently. In addition there may be codes of conduct governing acceptable behavior. It is great to learn something about the culture before arriving.

Pre-departure planning can increase positive experiences and keep you safe. For example, people have experienced sexual harassment, lack of respect for personal boundaries, and socially undesirable behaviors in real life (IRL) as well as in VR. “Social VR creates a life-like, immersive and public experience. Given this immersive nature and the overwhelmingly unequal gender dynamic with more men than women in this space, respondents talked about these spaces as seeming similar to public settings where they have been harassed.” (Outlaw & Duckles, 2017) You can take off the headset for a quick exit and also research other strategies to keep your trip free of pests.

Privacy

Because there is so much more data to potentially capture via these headsets, privacy is an increasingly important issue. “I think we’re all sitting on this time bomb with regard to “inside out” tracking,” says Blyth. “At the moment the companies using it are carefully assuring us that the 3D models they’re building at 30+ frames per second, of the insides of our house (including other people in our houses) are just for local tracking and not being sent back to any server for processing/monetizing. But even those assurances (from Facebook specifically, regarding the Quest and Rift S) have carried an ‘at the moment’ tag.” (Lang, 2019) So before you turn your headset on, it is a good idea to really consider the privacy policy on the manufacturer’s website.

Navigation Controls

If you took a trip to Paris, how would you get from the Charles de Gaulle airport to your hotel? After getting through customs you may feel jet lagged and confused, which is not a good time to learn new things. So your cognitive load would be less heavy if, for example, you already knew how to buy a ticket and get on the right train. In VR, navigation systems vary widely, so you may want to learn something about them before departure. A good example is learning how to move, fly, or teleport. And especially if you plan to meet others, it is helpful to know how to open the menu system and search for locations/meetings. 

Planning

A young man standing in a room wearing a virtual reality headset.
Photo by Julia M Cameron from Pexels

When you go places, you occupy new spaces. Once you put on a VR headset, you will set up a play area that can be stationary or quite a bit bigger. For the Oculus Quest 2, a popular newer headset, at least 6.5 feet by 6.5 feet is recommended for natural body movement. Once you get out the measuring tape, your house may suddenly feel claustrophobic as you figure out the distance between the couch and the cat box. So consider how much movement you would like to have on your trip and whether it is worth moving the furniture. 

Packing your bag

A man wearing a virtual reality headset and using hand controllers.
Photo by Ivan Samkov from Pexels

For a voyage to Paris, you might think about which beret (and matching scarf) to bring along for a feeling of style and comfort. For your VR trip, the headset will eliminate any possibility of style, but you can still plan for comfort. In the last couple of years, headsets have become much less onerous; for example, they are now untethered from computers, and lighter. But there are still personal adjustments that can make you feel more at ease. And in regards to style, you could always try a beret over the headset.  

Headset

“Did you know? The world’s first VR headset was created in 1968, and weighed so much it had to be mounted from a ceiling. Due to its appearance, it was nicknamed “The Sword of Damocles.””  (Best Reviews, 2020)

Interpupillary Distance

When shopping for the right backpack for your trip to the City of Light, the size and shape of your body comes into consideration. For VR, it turns out that the distance between your eyes is important. This is because you want the lens spacing in the headset and your interpupillary distance (IPD) to line up in order to decrease the possibility of motion sickness. This may be especially important for people with smaller bodies, such as women. According to the 2012 Anthropometric Survey of U.S. Army Personnel, the mean interpupillary distance is 61.7mm for women and 64.0mm for men. The Oculus Quest 2, for example, has three IPD settings: 61mm or smaller, 61 to 66mm, and 66 mm or larger. You can check with your optometrist to find your own IPD and then make sure that your headset is on the right setting.

Straps and Comfort

Even though headsets have become much more comfortable, it is always a good idea to make sure that things fit properly. A trial run with the headset powered off but resting on your face can give you some time to dial in the best strap tension and see how it feels on your head. “I often tell people before a demo that they want it just snug enough that it isn’t falling off their face – but not so tight that it’s cutting off circulation,” says Blyth. Some people report discomfort with the way their headset feels on their face, which can be distracting. Because you may need to spend less time using it than anticipated if it bothers you, taking the time to adjust your headset properly will help you feel more immersed on your trip.

Controllers

Before you put your headset on and can’t see anything, you may want to try out your hand controllers, which can include features such as buttons, thumb-sticks and triggers. You could view support materials from the manufacturer or other users to investigate all of the functions in order to create a tactile memory of the controllers.

Saying goodbye to the cat

Expectations

As you get to the final stages of pre-departure, you may want to check in with your expectations. “Virtual reality – even the name is hype,” says Nick Harper, CDT Multimedia Developer. “VR only addresses the senses of sight and sound, and even those may not work well for some users. Touch, smell and taste are underdeveloped at this point. So trying to immerse yourself in VR through a headset can feel like a struggle because your body wants to keep you safe and your brain is getting so many mixed signals.” One thing we know for sure is that your virtual trip will not be like anyone else’s experience. It may disappoint, or possibly blow your mind. And your memories will be affected by any problems you run into along the way. For example, if you walked right into a sewer during your first trip to Paris, it might be hard for you to believe other people had an amazing time in the Louvre or atop the Eiffel Tower.

Au revoir

Right before you leave, there is a point where you say some goodbyes. After all, you are leaving to meet new people and experience groovy new things in virtual reality. And the cat can’t come along. So saying goodbye may mean removing pets and humans from your play area, shutting the door, and putting the phone on mute. With the headset on, immersed in video and audio, it won’t be fun to step on your pet or hear snarky comments from your roommate (even if you are wearing a beret). Finding a way not to have an audience on the ground can help you relax and feel immersed.

It may be said that reading about VR is like dancing about architecture. So if you do get the chance, try it for yourself, (and also maybe think about that trip to Paris). No matter how many descriptions you read, the final destination will surprise (and hopefully delight) you in ways you may never have imagined. Especially if you have researched, planned, packed your bag and said goodbye to the cat, you will be ready for a great trip. Bon voyage!

VR Readiness Checklist

  • Read and consider the privacy policy of the headset manufacturer.
  • Take some time to plan/create your play area.
  • Research the platform codes of conduct.
  • Find out what controls exist to minimize unwanted interactions.
  • Learn how to navigate, access the menu system and search for locations/meetings.
  • Check with your optometrist to find your IPD and then make sure your headset is on the right setting.
  • Experiment with controller functions and create a tactile memory.
  • Adjust the straps so that they are snug but not cutting off circulation.
  • Explore your expectations.
  • Create a distraction free space.
  • Take a test run before meeting others.

References

Best Reviews. (2020, December). Best VR Headsets. https://bestreviews.com/best-vr-headsets

Kei Studios. (2017, November 23). A Complete Virtual Reality Glossary.  

      https://kei-studios.com/complete-virtual-reality-glossary/.

Ffiske, T., & Mandahus, L. (2020, January 21). Analysis: How the Design of VR Headsets    

     Causes Motion Sickness. Virtual Perceptions. 

     https://www.virtualperceptions.com/vr-headset-motion-sickness-design/.

Fulvio, J. M. (2020, January 1). Variations in visual sensitivity predict motion sickness in virtual  

     reality. BioRxiv. 

     https://www.biorxiv.org/content/10.1101/488817v5

Gordon, C. C., Blackwell, C. L., Bradtmiller, B., Parham, J. L., Barrientos, P., Paquette, S. P., 

     Corner, B. D., Carosn, J. M., Venezia, J. C., Rockwell, B. M., Murcher, M., & Kristensen, S.    

     (2014, December). 2012 Anthropometric Survey of U.S. Army Personnel: Methods and  

     Summary Statistics. Defense Technical Information Center.  

     https://apps.dtic.mil/dtic/tr/fulltext/u2/a611869.pdf

Lang, B. (2019, August 6). Here’s What Facebook Says About Camera Privacy on Quest & Rift  

  1. S. Road to VR. https://www.roadtovr.com/oculus-quest-camera-privacy-rift-s-facebook/

Mason, W. (2020, August 19). Oculus “Always On” Services and Privacy Policy May Be a  

     Cause for Concern (Updated). UploadVR. https://uploadvr.com/facebook-oculus-privacy/

Outlaw, J., Duckles, B. (2017, October). Why Women Don’t Like Social Virtual Reality: A Study of Safety, Usability, and Self-Expression in Social VR. The Extended Mind.  https://static1.squarespace.com/static/56e315ede321404618e90757/t/5afca0716d2a73e7b3c77f28/1526505624385/The+Extended+Mind_Why+Women+Don%27t+Like+Social+VR_Oct+16+2017.pdf

The Economist. (2019, November 21). Virtual reality continues to make people sick.            https://www.economist.com/science-and-technology/2019/11/23/virtual-reality-continues-to-make-people-sick

 

chart of five phases of engagement: connect, communicate, collaborate, co-facilitate, and continue

 Why Group Work Is Important 

Love it or hate it, group work is an important part of education. Learning to work cooperatively with diverse people is a core 21st century skill, one which employers increasingly value and expect new workers to have mastered. Experience gathered from group work in educational settings directly transfers to and prepares students for successful collaboration in work teams. By collaborating in teams, students learn a wide range of discrete as well as soft skills that make group work worth the effort, including those below.

  • Technology skills
  • Social skills
  • Self-awareness
  • Empathy
  • Coping with stress
  • Creating work plans and schedules
  • Forecasting needs and hurdles
  • Time management & meeting deadlines
  • Working with difficult personalities
  • Managing & navigating unmet expectations
  • Following up & messaging
  • Accountability
  • Leadership
  • Development of academic/professional voice 

Pedagogically, group work supports a constructivist approach to learning, in which students contribute to the learning environment, build knowledge both individually and collectively, and co-create the classroom environment. Constructivist theory posits that learning is a social process and values student interaction with and contributions to collective knowledge. Group work and student collaboration are foundational methods in constructivist classrooms that help students develop the knowledge and skills that allow them to meet learning objectives. Additionally, group work is seen as a key element of student-student interaction. 

Considerations for Successful Groups

The first thing instructors should consider when planning to incorporate group work is to reflect on WHY they are assigning it- as an objective of learning or as a means of learning. Group work for the purpose of learning collectively, producing collaboratively, or for gaining experience working cooperatively are all valid reasons to include group work. 

Additionally, instructors must consider the limits of the asynchronous modality when creating group assignments. We all know how difficult it can be if the group you end up working in is not harmonious; For students in asynchronous online courses, group work can be even more difficult, with challenges like different time zones, different daily schedules, and lack of face to face collaboration opportunities. Even the most thoughtfully designed group activities can run into problems. What happens when one student fails to contribute? Do the other group members take up the slack and cover for their absent partner? How should a group handle an overbearing group member who takes on more than their fair share of the project? Anticipating the potential hurdles that may arise when planning the group project and incorporating support and resources for struggling groups can alleviate these barriers to a large degree. 

An important consideration when creating group assignments is Conrad & Donaldson’s Phases of Engagement model, which advises instructors to structure group work so that students can build up group cohesion through low-stakes activities like icebreakers, introductions, and discussion forum posting towards the beginning of the term before ramping up to more complicated collaborative projects. This scaffolding of tasks helps groups bond and build community among members, facilitating better working relationships and the trust necessary to work through the intricacies of a complex group project. The theory can be helpful when approaching a series of courses within a specific degree program as well, moving from simple group projects in lower division courses to co-facilitating and transformative ongoing engagement at the upper levels. 

chart of five phases of engagement: connect, communicate, collaborate, co-facilitate, and continue

Another model that can help instructors understand how to structure group work is Peter Lencioni’s Five Dysfunctions of a Team, which describes a pyramid of features that are required for groups to function effectively. Lencioni claims that trust is the foundation of any functioning group, followed in ascending order by managing conflict through healthy discourse, ensuring commitment and buy-in, providing a method of accountability for team members, and a focus on collective results over personal prestige. Avoiding dysfunction by clearly structuring group work to anticipate and provide tools for dealing with these problems can ensure teams get off on the right footing and can work together smoothly.

pyramid of five behaviors of a cohesive team: trust, conflict, committment

 

Additionally, instructors should consider the type of collaboration that is common within their own discipline, whether it be performing distinct roles within a team or more general projects requiring cooperation. Designers often work together creatively to develop and improve products; medical teams must work collectively but in distinct roles to serve patients; computer software developers must be able to distribute work and manage tight deadlines; public-facing personnel must be able to amicably respond to a range of customer behaviors. Connecting group work explicitly to real-world work scenarios helps students see the value and relevance of their learning, which helps increase engagement and dedication. Structuring group projects to mimic the type of work tasks they can anticipate also provides the added value of preparing students for scenarios they will actually be faced with on the job.

Finally, since asynchronous group work relies heavily on technology, ensure that the technology to be used by the group is familiar or can be mastered quickly. Provide detailed instructions or tutorials for how to use the technology, plan for how to handle issues students might face with technology, and share resources they can tap should they run into problems. University instructional technology support can be linked to, and websites and apps often offer training videos. 

Types of group work

  • Pair/partner work
  • Informal cooperative active learning
  • Group essays or projects
  • Group presentations

Setting groups up for success

  • Set up groups of the right size, preferably with an odd number of participants
  • Make groups heterogenous to encourage peer-to-peer learning
  • Provide opportunities for students to activate their unique background knowledge and perspectives
  • Provide detailed instructions for group interaction expectations
  • Provide guidance on strategies for dividing the workload, such as setting up roles (ie: organizer, recorder, liaison, etc.)
  • Provide detailed instructions and rubrics for expected process and product
  • Split the grade for group work between collective and individual grades
  • Build in check-ins with instructor early on and midway
  • Plan for interventions if groups are not functioning well
  • Allow team members to evaluate each other’s and their own performance for contribution, cooperation, & timeliness

Sources

What are the benefits of group work? – Eberly Center

21st Century Skills Map

Group work as an incentive for learning – students’ experiences of group work

Group work – Teaching practice – Learning and teaching guidance – Elevate – Staff

Transforming The Online Learner

Increasing Student-to-Student Engagement: Applying Conrad and Donaldson’s “Phases of Engagement” in the Online Classroom

Teamwork 5 Dysfunctions

 

By Susan Fein, Instructional Designer, susan.fein@oregonstate.edu

In my role as an instructional designer, the faculty I work with are often looking for ways to increase student engagement and add a “wow” factor to their online course. One way to do that is to add or increase active learning practices.

Active learning requires students to do something and think about what they are doing, rather than simply listening, as with a passive-learning lecture (Bonwell & Eison, 1991). Active learning brings positive and lasting outcomes to students, including better retention and grasp of concepts, and is particularly evident when students work together to develop solutions (Chickering & Gamson, 1987).

Tackling Discussions

In 2019, I worked with an instructor developing a biochemistry/biophysics course for Ecampus. The instructor loved the peer-to-peer interaction intended for discussions, but was discouraged by the often lackluster exchange commonly demonstrated in the posts. She wanted to liven up these conversations, not only to increase the strength of the community but also to have an impact on the value of the learning that took place.

Enter knowledge boards! With a simple but creative retooling of the predictable initial-post-and-two-replies format, the instructor found a way to reimagine the often mundane discussion board and transform it into a lively and highly engaging conversation and exchange of knowledge.

How did she do this? Rather than compel all students to respond to a narrow or artificially-constructed prompt, the instructor instead posted several relevant topics or short questions extracted from the concepts presented during that week’s lectures and readings. Topics might be a single word or a short phrase, and the questions were tightly focused and direct.

Choice and Agency

From this list of 5 to 10 conversation starters that give breadth to the topics, the students can choose which they want to respond to, often selecting what’s of greatest interest to them. These posts could be anything related to the topic or question, so students are free to approach from any perspective or direction.

The instructor found that the students more freely contributed ideas, insights, understandings, questions, confusion, and commentary. They were encouraged to ask questions of each other to delve into significant points. Students could engage in as many conversations as desired, at their discretion. As a result, they tended to be more actively involved, not only with the content and concepts from that week’s materials, but also with each other, producing a strong community of inquiry.

This simple change transformed the tired and (dare I say it?) potentially boring weekly discussion into a meaningful opportunity for a lively and valuable knowledge exchange. The instructor explained that students also report that this knowledge board becomes a study guide, summarizing multiple approaches and insightful content they use for studying, so many revisit the posts even after that week is over as a way to review.

But Wait…There’s More!

The instructor didn’t stop at discussions in her pursuit of increased engagement and active learning. Her next “trick” was to evaluate how the assessments, especially homework problems, were presented.

A typical format in many Ecampus courses is to have students complete homework assignments individually, and these are generally graded on the correctness of the answers. But once again, this instructor redesigned a conventional activity by applying principles of active learning and collaborative pedagogy to improve learning outcomes.

In the new version, students first answer and submit solutions to the homework individually, and this initial phase is graded on proper application of concepts, rather than on the correctness of the answer. Next, students work together in small groups of 3 or 4 to discuss the same set of problems and, as a group, arrive at consensus of the correct answers.

The active learning “magic” occurs during this critical second phase. If one student is confident about an answer, they present evidence from the lectures and readings to persuade their peers. And when a student is not certain that they correctly grasped the concepts, they discuss the problem and relevant principles, learning from each other through this review, hearing different perspectives and interpretations of the materials. It is through these vital peer-to-peer interactions that the active learning takes place.

As the last phase of the activity, the group submits their answers, which are graded for correctness.

This reshaping of a classic homework activity results in deeper levels of understanding and stronger knowledge retention (Weimer, 2012). And there’s an added benefit for the instructor, too. Since there are fewer papers to grade, formatting homework as a group submission means extra time to offer more and better feedback than would be feasible when grading each student individually. A win-win bonus!

Benefits of Active Learning

These are just two simple but ingenious ways to reformat classic forms of interaction and assessment.

Do you have an idea of how you can alter an activity in your course to make it more interesting and engaging? If you sense that your online course could use a boost, consider incorporating more active learning principles to add the extra oomph that could transform your teaching content from mundane to magical!

So let’s close this post in true active learning style and take a moment to reflect. What kinds of active learning practices have you tried in your course? How did those go? We’d love to hear your thoughts and experiences, so please share in comments.

References

Bonwell, C. C., & Eison, J. A. (1991). Active Learning; Creating Excitement in the Classroom (Vol. Education Report No. 1). Washington, D.C.: The George Washington University, School of Education and Human Development.

Chickering, A. W., & Gamson, Z. F. (1987, March). Seven Principles for Good Practice. AAHE Bulletin 39, 3-7.

Weimer, M. (2012, March 27). Five Key Principles of Active Learning. Retrieved from Faculty Focus: https://www.facultyfocus.com/articles/teaching-and-learning/five-key-principles-of-active-learning/

Evaluating Textbooks

When selecting a textbook, there are a number of factors to evaluate. In addition to assessing the textbook for appropriate content, one category that I recommend looking at is how inclusive the textbook is. Here are a few guiding questions to ask when evaluating textbooks for inclusion:

student studying on a laptop
Photo by Surface on Unsplash

  • What is the cost of this textbook? Have you looked for open (free) textbooks, perhaps from the Open Textbook Library or considered writing or adapting your own? Affordability is inclusive.
  • Do the textbook images of people represent diverse cultural heritage and lived experiences?
  • Are the contributions to the field that are highlighted in the textbook from a diverse range of scholars in the field? If not, is there discussion about why certain voices were historically excluded from the field?
  • Is the textbook accessible? If there is an e-book, do the images have alt text, for example? Can students with disabilities access all materials in the book?
  • If the textbook is an e-book, are the concepts presented in multiple ways, such as text, infographic, slide decks, or multimedia elements? Giving students choices in how they explore the course concepts empowers them to use their existing preferences, and helps them develop new strengths and avenues for learning.

What to Do When the Textbook Is Not Ideal

It’s tough to find a textbook that is inclusive and has all of the concepts you are hoping to teach. What can you do when you find a textbook that has the concepts you need but is lacking in inclusive excellence? Here are some simple ideas for addressing this:

  • Consider giving publisher feedback. Write a brief email to the publisher about your concerns around a lack of representation in the book or whatever it is that you see as missing. 
  • For any text you choose, consider inviting students to write to the publisher if they see areas for improvement, whether that is with cost, bias, or other issues. You could include the contact information for the publisher in your course materials page, inviting students to write in feedback directly to the publisher. 
  • Acknowledge to your students that the textbook isn’t as inclusive as you would like it to be. Share the ways that you are advocating for better quality. You could also invite students to have a bias hunt discussion about the textbook or course materials. Then you could collect that feedback and send it to the publisher.
  • If the textbook lacks contributions from a diverse range of scholars, consider adding scholarly articles, images, or interviews from diverse professionals in your field to your course learning materials pages, in your LMS course site.
  • Consider highlighting professional organizations in your field that promote and mentor the professional development of scholars from specific historically underrepresented communities.

Have you had success in this area of evaluating textbooks? Have you found a publisher or textbook that has made gains in this area? If so, please share your resources in the comments.

References: 

We believe textbooks should be diverse and inclusive. Here’s what we’re doing about it.

Peralta Online Equity Rubric

UDL Progression Rubric

Open Textbook Library

Image credit: Surface on Unsplash

When looking at the name Serverless, it may seem obvious what Serverless is; the lack of a server for an application. The name is actually quite deceiving, as Serverless applications still require servers to perform their duties. Serverless actually refers to a collection of managed cloud services that help to run our applications including storage, databases, functions, back and forth data transfer and more. With serverless, a cloud provider like Amazon Web Services, Google Cloud or Microsoft Azure handle all the configuration, provisioning and management of the server instead of the developer. In simple terms, this means organizations adopting a serverless architecture will be saving a lot of time and money by removing the need to worry about setting up and managing servers.

The Platform Development Team (part of the multimedia group at Oregon State University Ecampus) builds and maintains a number of platforms that leverage Serverless. Web Platforms are pieces of software that facilitate the creation and consumption of content or activities at scale. By using Serverless, our team has experienced a huge decrease in time needed to develop and deploy new platforms and applications. Without the need for our team to configure and manage servers we can handle the setup of our backend for new applications more quickly and efficiently. Any support needed for a dedicated server has also completely disappeared, that is now all handled by the cloud provider. Another huge money saver for our team has been the lack of need for a dedicated server (a server dedicated to you, not shared with anyone else). In the past when using a dedicated server, you would have to pay for both the server, in addition to any resources dedicated to that server, these costs continue to occur even when the server is not in use. With Serverless, you simply pay for what you use, this means when our applications are not receiving requests we are not being charged. When a serverless architecture is performing jobs, the costs accrued are very small, each job costing less than a fraction of a penny. The combination of both an increase in our speed to produce new applications and the lower price tag of using Serverless to handle tasks has allowed our team to undoubtedly save on development costs and provide software to users in a timelier manner.

Apart from its cost benefits, there are also many other positives to using a serverless architecture. These include security, scalability and accessibility. Because the server is no longer managed by the developer, many of the security aspects for applications that a developer would have had to manage in the past are handled by the cloud provider. There are still many security concerns a developer has to consider and handle outside of what the cloud provider handles, but Serverless helps reduce the list of concerns for the developer. Scalability is also a huge plus. As an application gets more popular or starts receiving more requests, Serverless allows scaling to handle those requests. With a dedicated server you would need to manually increase resources. Often when increasing the resources for a dedicated server there will likely be a good portion of those resources going to waste (wasted resources means wasted money), especially as the application receives different levels of traffic at different times. With Serverless, there is no need to worry about wasting resources because it only uses what is needed and scales to the amount of traffic an application is receiving. One of the main goals of our team is to make everything that we develop fully accessible. Serverless helps to us achieve this goal by being offering the ability to deliver content from different regions all over the world, rather than being dependent on a delivering all content from dedicated server located in Oregon. This allows students to more easily access our content and at higher speeds.

Ecampus’ Platform Development Team has seen so many benefits from using the serverless architecture over a dedicated server that it is now used in almost everything that we do. Every single one of our platforms including NES (our platform designed to handle long form content), SLIDE (our platform designed to add interactivity to slideshows), VDL (our platform designed to add interactivity to videos) and the upcoming interactive labs platform all have fully adopted a serverless architecture, which has helped us in producing interactive content for Ecampus’ courses in lightning fast speeds. We can also now utilize the time we have saved to improve our platforms and the overall interactive content that is used in Ecampus’ courses. In summary, Serverless has not only saved our team time and money but also has allowed us to offer better learning experiences to students taking Ecampus’ courses.

Author – David Jansen

Over the last several years, research on online education has been growing rapidly. There has been an increased demand for quality research online teaching and learning. This demand now seems more urgent as teaching modalities are changing due to the COVID-19 pandemic. Since 2016, the Ecampus Research Unit has been funding OSU faculty-led research on online and hybrid education through the Ecampus Research Fellows Program. The goals of the program are the following:

  • To fund research that is actionable and that impacts students’ learning online;
  • To provide the resources and support to “seed” pilot research leading to external grant applications;
  • To promote effective assessment of online learning at the course and program-levels at OSU;
  • To encourage the development of a robust research pipeline on online teaching and learning at OSU.

Ecampus Research Fellows are funded for one year to engage in an independent research project on a topic related to online teaching and learning. Fellows may apply for up to $20,000 to support their research project. Up to 5 projects are funded each year. The program follows a cohort model in which fellows meet on a quarterly basis as a group to discuss their projects and receive support from the Research Unit. Each fellow completes an Institutional Review Board (IRB)-approved independent research project, and they are required to write a white paper based on their project results. The program’s white papers are published by the Ecampus Research Unit.

Actionable research impacting online education

In the past five years, the program has funded 24 projects with 34 faculty from across the university. The funded research has been conducted in anthropology, biology, chemistry, education, engineering, geography, mathematics, philosophy, physics, psychology public health, rangeland science, sociology, statistics and veterinary medicine. The faculty have benefitted from having dedicated time and resources to undertake these research projects. Their fellows’ projects are significant for their own research pipelines, and their findings are valuable Ecampus as we continue to innovate in our development of online courses. An example is geography instructor, Damien Hommel’s project, which led to a larger effort toward expanding experiential education for Ecampus courses beyond his discipline. Other fellows’ projects are providing valuable information about peer influence, inclusive teaching, hybrid laboratories, video segmentation, online research platforms, and more.

Becoming a research fellow

Are you an OSU faculty member interested in doing research on online education in your discipline? Previous experience with classroom-based or human subjects research is not a requirement. The Ecampus Research Unit is available to support you with your application and the research design process. We will be accepting our 6th cohort in 2021. The application is available now and is due on November 1st. Funded projects will be notified by December 1st.

If you have questions about the program contact Mary Ellen Dello Stritto (maryellen.dellostritto@oregonstate.edu), the director of research for OSU Ecampus. Additionally, attend an information session on Tuesday, September 29, 2020 at 1p.m. or Friday, October 2, 2020 at 11a.m. To register for one of these information sessions email: maryellen.dellostritto@oregonstate.edu.

About the Oregon State University Ecampus Research Unit

The Oregon State University Ecampus Research Unit responds to and forecasts the needs and challenges of the online education field through conducting original research; fostering strategic collaborations; and creating evidence-based resources and tools that contribute to effective online teaching, learning and program administration. The OSU Ecampus Research Unit is part of Oregon State Ecampus, the university’s top-ranked online education provider. Learn more at ecampus.oregonstate.edu/research.