(image from pxfuel.com)

Reflection assignments as an active learning strategy are commonly seen in humanities courses. The purpose of this writing is to share an example of how simple reflection activities can make a huge impact in two math courses.

MTH 251 Differential Calculus covers five units, with one exam for each unit, counting 14% of the final grade. Before students attempt to take the unit exam, they are assigned to read textbook readings, watch instructor-created lecture videos, work on Canvas-based homework assignment and Adaptive Learning based practice assignments in Knewton Lab online platform. After assignment due date expires, students are assigned to complete a weekly written homework reflection. The weekly homework and the weekly homework reflection together count for 14% of final grade in this course, weighing the same as each of the unit exams.

MTH 341 Linear Algebra I has ten weekly modules. Each week, students  read textbook assigned readings, watch lecture videos created by the instructor (Dr.   ), complete post-reading questions in quiz format, work on graded group discussion questions to solve math problems in small groups, complete written homework individually, and in the following week, complete a written homework response activity individually in discussion format.

The written homework reflection in MATH 251 and the written homework response in MATH 341 are both reflection activities designed to optimize student learning success, through comparing their own homework solutions with answer keys and evaluate whether they did it correctly or incorrectly and analyze where they did it wrong and how to get it right. The purpose of such weekly reflection is to help students develop meta-cognitive skills related to their learning. By looking back at students’ own work and learning from their mistakes, they develop an understanding of what is the proper way to solve a problem and what is not the proper way for solving a particular math problem. It also prompts students to plan for proper action in the future and exercises students’ executive functioning skills (CAST, 2018).

Here is what the instructions for the weekly reflection look like:
1. First answer the weekly prompt: Reflecting on the Unit 1 module, which topics did you struggle with the most?
2. Download the written homework solutions PDF: (Solution for each written homework in pdf format is attached here.)
3. Look over the solutions and compare to your submitted homework. Look for any problems where your solution differs from the posted solution.

• If your solutions had one or more incorrect problems then in the discussion board please discuss the following:
• why you struggled with certain problems
• why each solution makes sense now
• what will you do in the future when solving problems similar to these?
• what did you learn by making a mistake?
• what did you learn from looking at the solutions?
• If you are still confused about a problem, ask a question. DO NOT simply list which problems you got wrong.
• If your solutions are all correct then in the discussion board please discuss the problem that you found the most challenging. Describe what specific tasks helped you to complete that problem. Be as detailed as you can about your solution process.

Students not only posted their own reflections, but they also comment on or answer other students’ reflections as well. Additionally, the instructor and the four TAs in the course responded actively to students’ reflections, which makes the reflection more valuable since students get encouragement, praises, or corrections from the instructor and teaching assistants. Again, feedback from experts is critical in the success of a reflection activity (Vandenbussche, 2018)

Image 1: How reflection usually looks like and How reflection should look like (Image Source)

Many students were reflecting on what they did wrong and asked for help. Some were reflecting on their time management in completing the homework assignments. And we were glad to see students completing homework, evaluating their own work, analyzing where they did wrong, and planning for future improvement. Overall, the purpose of this assignment is accomplished!

(Image by Dave_Here)

A great benefit that comes from these weekly reflection activities is increased or sustained homework completion rate. For MTH 251 winter 2021 week 1 to week 7, over 85% of students completed the weekly homework and the reflection activity on average. For MTH 341 Fall 20 week 1 to week 7, over 90% of students on average completed the weekly homework and the reflection assignments. All math teachers love to see their students practice with homework assignments before they attempt to take the quizzes or exams! And evidence-based research tells us that deliberate practice with targeted feedback promotes mastery learning (Ambrose et al., 2010).

So, if it works in math courses, it will work in Chemistry, Biology, Physics, Engineering and other STEM courses too! If you’re interested in implementing this technique in your teaching and have questions about setting it up, feel free to contact us. We’d love to help you figure out the easiest way to set it up in your course.

References

Ambrose, S.A., Bridges, M.W., DiPietro, M., Lovettt, M.C. , Norman, M.K., & The Eberly Center for Teaching Excellence at Carnegie Mellon University. (2010). How learning works: Seven research-based principles for smart teaching. San Francisco, CA: Jossey-Bass

Instructors and course designers often use quizzes or forms for assessment, retrieval practice, self-checks, or collecting information from students. Did you know that Qualtrics surveys can take your interaction game to an even higher level of sophistication?

Qualtrics surveys can easily be linked to or embedded in a page in your Learning Management System. They can also be added as an assignment through the LTI integration.

The LTI integration has recently become an available feature for Oregon State University Canvas users. The integration links the survey to the student’s LMS account and is useful for awarding points automatically for completing the survey. In addition, several types of questions can be scored; thus, a survey can be used as a quiz and the integration tool will send the points to the gradebook.

If your LMS doesn’t have a Qualtrics LTI integration, or you don’t want to go through all the steps of setting it up, you can still use Qualtrics activities, but you will have to add any points manually in your gradebook.

## Ideas for Qualtrics activities

Here are a few ways to use a Qualtrics survey:

1. Self-check activity / formative assessment / quiz: design a survey to increase active learning or assess content. Qualtrics can be your tool of choice because:
• It’s more versatile than a quiz or Google form (e.g. more types of questions, complex branching possible based on answer).
• It can be customized with different colors, fonts, and backgrounds.
• The instructor can access student answers and use this information to provide individualized support or improve course materials.
2. Class pulse: Send a survey during the term to ask students how they are doing.
3. Suggestion box: Have a permanent page in your course where students can submit suggestions.
4. Voting ballot / poll: Create a survey to allow students to vote on a topic, favorite presentation, meeting time, etc. or to answer a poll.
5. Topic selection tool: Provide an easy way for students to claim their topic through a survey that eliminates an option once it’s chosen.
6. Muddiest point survey: Gather students’ input on the week’s materials: which concepts were unclear? Which information was particularly compelling?
7. Team member evaluation: In group work, it can be a good idea to have students evaluate their team members, to increase accountability and make sure that everyone is pulling their weight. You can create a survey asking students to rate their peers on specific criteria and provide comments on performance.

## How to create a survey

Creating a survey in Qualtrics is very straightforward. Log into your account and create a new project. You can choose from a variety of question types, including multiple choice, ranking, slider, matrix, etc. Make sure to check which questions are accessible to screen-reading programs. If you’d like to track or manage the time a student spends on a page, you can use a timing question.

For Oregon State University users, the default look is the OSU theme. Through the Look and Feel menu section, you can choose a different theme or customize the layout, style, background, colors and text size to fit your needs and your course aesthetic.

## How to link a survey

Linking to a survey is the easiest way to include it in your course. In your survey, go to Distributions and choose the Anonymous link. If you need the student’s identification information, make sure to add a question asking for their name or email.

## How to embed a survey

Embedding a survey instead of linking it can make for a smoother learning experience by integrating the questions with other learning material on that page. To embed a survey on a page, use a simple iframe like this: <iframe src=”insert survey link here” width=”1000px” height=”500px”></iframe> and adjust the dimensions or style it as desired.

## How to integrate a survey via LTI

Integrating via LTI is a bit more complex and will depend on your LMS and your organization’s settings. For Oregon State University users, instructions are provided in this article: Use Qualtrics in Canvas.

## Conclusion

Qualtrics is a useful tool for adding more interactivity into your course. Setting up the surveys can be very simple or more involved depending on the task. Watch out for future posts in which we will give examples and details on how to design and create some of the more complex types of Qualtrics activities.

This post was written in collaboration by Deborah Mundorff and Dana Simionescu.

### Part I: Role of Course Developer as Media Curator

This post is Part I of a two-part series on video selection and use in online courses. Part I provides the reasoning behind understanding course videos selection by course developers as a curatorial process. Part II will explore video curation in practice in course development and provide a course design perspective on video presentation and management issues.

### Recent Video Use Trends

In September of 2020 the enterprise video company Kaltura Inc. conducted its seventh annual State of Video in Education 2020 report. The report included responses from across the education system spectrum with higher education institutions making up 53% of all respondents (Figure 1.).

This report described how remote teaching-driven course changes impacted video adoption and use in education. Remote teaching and learning was the most common use of video (83% of respondents). Lecture captured as video was used by 69% of the responding institutions.

The executive summary identified a number of key insights and trends related to changes in video use in education. A select few can be seen below:

• Use of video for remote teaching and learning grew by 28% over 2019.
• Video use is viewed as positive. Respondents (84%) saw video as having a positive impact on student satisfaction, 73% seeing video increase student achievements and 76% believe it increased instructor satisfaction.
• Students as creators of video increased by 13% from 2019 to 2020.
• In higher education there was rising video use for remote teaching, lecture capture, and flipping the classroom.
• Actual growth in the use of video for remote teaching and learning grew by 28%.
• A majority of respondents (68%) want to continue to blend traditional teaching with today’s virtual innovations; such as video.

In some ways this is not surprising. This past year forced many instructors in higher education to convert face-to-face courses to remote instruction. Much of that transition was accomplished with synchronous sessions via ZOOM or some other video conferencing program. Live video conference sessions, if recorded, also served as a support resource for students. In response to the challenges of the past year both live and recorded video were adopted to make remote learning doable. Fully online courses do not have this live element as they are asynchronous and did not have to adapt in this way.

In asynchronous courses at Oregon State University our Ecampus course developers utilize video differently. Video is as a key media element in delivering course content to learners, promoting faculty presence, and to build depth into projects and assignments. Video content may be produced internally by course developers (e.g., instructors) and used in courses via an enterprise video system (e.g., Kaltura). Video content may also be sourced from external video-based social media sites (e.g., YouTube and Vimeo) or educational and commercial collections (e.g., Kanopy or Amazon) and via syndicated video sources (e.g., podcasts and Twitter).

Given the plethora of video available and a trend toward increased video integration into instruction the challenge to course developers is the selecting, managing, and presenting video content to support and compliment course learning outcomes. Ultimately this also becomes a course design challenge for instructional designers who must adapt to manage the integration of increasing levels of video in the course in a way that makes sense from a pedagogical perspective as well as visual design aesthetic.

### Course Developers as Media Curators

What is a Curator?

The growing value of video in the experience of a course suggests that course developers (e.g., instructors) consider a new way of thinking about how video is selected, managed and presented. In essence, I am suggesting that for a given course the course developer serves as a curator of video content.

But what is curator? Should a course developer really think like a curator? How might curated media shape course development and instructional design?

In order to explore this notion of course developers as media curators a bit more I would like to share the definition of what a curator is from the American Alliance of Museum (AAM) Curators Committee (2009). The preamble to the curator core competencies of a curator defined the term curator as:

Curators are highly knowledgeable, experienced, or educated
in a discipline
relevant to the museum’s purpose or mission.

Curators are further described as having nine core competencies and related applied skills. The competencies are:

Collection planning       Scholary Research              Exhibition Development
Collecting                        Object Research                  Education
Collection Care               Applied Research               Outreach & Advocacy

In Figure 2. we see these same foundational roles expressed by the AAM coupled with a definition of curator and description of the work of a curator. Also included is the domain of the work. Those domains are preservation, research, and communication. The global context of curation is, in this definition, a museum. The more discrete context is the exhibition, or exhibit application. Yet it is all part of a curator’s work.

What we see in this definition in Figure 2. is the premise that curators select, gather, care for, and prepare presentations of single items that in aggregate make up a curated collection. That collection becomes a resource and object of education, outreach, advocacy and presentation.

This makes the act of curatorship a scholarly and creative practice that is deeply intentional and based upon the definitional parameters of the organization doing the work.

Course Developers – Curators of Video Collections

Now let us think about what an online course developer is and what they do. At Ecampus course developers collaborate with instructional designers to plan an online course. Instructional designers advise and take content selected by the course developer and build that content into Canvas, our learning management system.  The created courses are then shared with students. Course developers are considered content experts much like museum curators are. Let’s look at that a bit more closely.

In Figure 3. below we can see a comparison between the definitional role and duties of a museum curator and course developer. There are striking parallels between these roles. So much so that it would seem reasonable to think about what a course developer does as also a curatorial practice. A practice focused on the learning content, including video, for a given course.

Perhaps the greatest difference between these to two curatorial practices is the context of each. In asynchronous course development it is not uncommon for instructors to perform many of these same functions as museum curators but on a more discrete scale. The scope and context of their focus is obviously different.

In essence a course developer actively gathers and in may cases, creates unique course elements that form the curated media collection for a course. That collection of texts (readings), images, web resources and video is then used for education, research, and perhaps outreach with a constant eye on student access to media. Ultimately a course media collection is intended to permit the course developer to fulfill the purpose of the course and guide students in achieving the course learning outcomes.

The physical design of the course, with its media collection, is the domain of the instructional designer. The collaboration between the course developer and instructional designer are key in preparing the course as an “education exhibition” of sorts that has clear learning outcomes.

### Course Video Selection: The Art of Curatorship

We began this discussion with the importance of video in online course development and design. With that in mind it is logical that video curation is an important element of course-wide media collection identification.

Video collection, cataloging, arranging and assembling for display in a course fits quite well within the parameters of curating. Any curation is also about a level of storying, opportunities for engagement, information sharing and perspective sharing (Potter, 2017). In course development these processes as applied to course media, and in particular video, have the potential to create and shape the nature, experience, and associated learning in an online course.

In making decisions about video use in online courses, a course developer would apply their knowledge and expertise to curate the selections. Clear learning outcomes provide a pedagogical and content structure to the video curation process. Once a video collection is established other decisions may come into play that reference an aesthetic for the collection. This is the art of curatorship.

The art of curatorship has been viewed as closely aligned  to a design process (Shuey, 2014) and may be guided by an interpretation of the universal visual design principles as conceptual guides to the education exhibition that is the online course. In this sense the curator is not thinking as much about the collection items per se but more about how the collection fits together to provide and support a narrative, flow, or education scaffolding for the course.

### Thinking Like A Curator

As an exercise in curatorial thinking let’s take some re-interpreted concepts of visual design and see if they help us think through how we curate not only individual videos but also a video collection. This brief list includes accompanying questions that are informed by the identified principle and may shape the curation of video. In these examples found videos are outside video sources where created videos are those made by the course developer.

• Balance: What is the intended balance between: Created and found curated videos? Permanent video and temporary (single-use) video content?
• Emphasis: How does found video reinforce or extend created video? Is there a particular focus or intention of video use?
• Movement: Is there a scaffolding of curated video that matches the scaffolding of the course progression? How does the video curation contribute to that progression?
• Pattern: Is curated content focused, more general in nature, or quite diverse in source, topic or message?
• Rhythm: Does video use and viewing support or promote a rhythm of engagement for the course that compliments course objectives?
• Repetition: Are curated videos reinforcing similar ideas or concepts? Are videos used consistently for certain aspects of the course (i.e., narrated lectures)?
• Proportion: Does the video collection time commitment fit within the time expectations for the course? What is the ideal proportion of video to text, image, and other course media?
• Variety: Are curated videos from different content sources and types? What is the ideal balance for the course?
• Unity: Does the video collection promote a sense of wholeness to the course? Could the video collection, on its own, communicate identifiable ideas, patterns of ideas, or a range of perspectives on a topic?
Does video accessibility contribute to the overall course accessibility?

In working through this exercise, we begin to move beyond video collecting by subject toward a more complete analysis of video collection selection and use that includes intertwined pedagogic and aesthetic considerations. This helps create a video collection that is intentional in its item selection, organization and use.

### Final Thoughts

Recent research by Kaltura Inc. indicates that video use in education is on the rise in the past year. A continued growth of access to video and ability to create video coupled with an interest in integrating video in education efforts suggests course developers have a challenging task regarding media selection and use.

This article presents the idea that course developers, whether obvious or not, are actively engaged in a curatorial process regarding media selection and use. In addition, because of the importance and prevalence of video, its curation is presented as a key element of the larger course media curation effort. Lastly, we have explored how video collections contribute to academic and aesthetic value of a course and provided some key considerations based upon extending classic visual design principles to a curatorial practice.

It is interesting that the term curation has Latin roots in the verb curare; which means to take care of. Course developers conducting intentional video curation contribute to meaningful media curation for a course. This engagement in the practice of a curator is truly a professional act of caring about the quality of course development and the impact on student learning.

In Part II of this series we will address the practice of video curation in the context of an online course and explore instructional design considerations for video use that balance and complement a sample course video collection.

### References

American Alliance of Museums. (2009). Curators Committee (CurCom): Curator’s core competencies. https://www.aam-us.org/professional-networks/curators-committee/

Kaltura Inc. (2020) The state of video in education 2020: Insights and trends [seventh edition].
https: //corp.kaltura.com/resources/the-state-of-video-in-education-2020/

Potter, J. (2017). Curation. In K. Peppler (Ed.), The SAGE encyclopedia of out of school learning (pp. 4-6). SAGE Publications Inc., Thousand Oaks, CA.

Shuey, G. (2014, October 21). The art of content curation. RELEVANCE.
https: //www.relevance.com/the-art-of-content-curation/

Wikipedia (n.d.). Definition of term collection.
https://en.wikipedia.org/wiki/Collection_(artwork)

Wikipedia (n.d.). Definition of term curator.
https://en.wikipedia.org/wiki/Curator

Video Resources

Special thanks for the following individuals for their contributions to this article.

• Chris Lindberg, Instructional Design Specialist, Oregon State University, Ecampus, Corvallis, Oregon.
• Cody Rademacher, Curator, Holocaust Museum & Cohen Education Center. Naples, Florida.

People spend more time in virtual worlds than ever before. And educators are leveraging these popular forms of recorded and interactive escapism to increase student engagement. Recently academic departments have begun to experiment with the use of virtual reality (VR) headsets, which have become much easier to use and far less expensive. Headsets can make people feel like they have traveled to a new place, so they are an intriguing new tool for learning. They can create an experience that differs significantly from using a computer to work or play in an online environment.

When using a computer to visit an online world, your sense of immersion is affected by many factors, including the quality of video and audio, the number of distractions from real life, and your virtual representation on the screen. It is like a tug-of-war. Your avatar may be traveling in a helicopter through a fantasy landscape, but your brain also knows that you are sitting in front of your desk. You can see and feel the cat in your lap for example, but it is not in the helicopter with your avatar, so you are managing two worlds at once. In a continuum of this sense of immersion, at what point is there presence, where you lose connection with your environment and truly feel that you are somewhere else?

Using a VR headset instead of a computer may move you along this pathway, because you don’t see your desktop or clearly hear the sounds of your household. The sense of being connected with the everyday world changes. “I usually say the way to tell if it is working is if you take off the goggles and are surprised by which direction you are now facing,” says Warren Blyth, Multimedia Developer at Course Development and Training Department (CDT) at Oregon State University’s Ecampus. And whether you are a student who may find themselves in a class with VR components, or an instructor curious about adding this kind of experience to your teaching, VR, like most new adventures, will be shaped by your readiness for it.

# Researching

Technology lift may be a part of your pre-departure phase. This is a term floating around the CDT Department, thanks to the adventurous lexicon of Assistant Director of Course Development & Training Laurie Kirkner, who says that “technology lift takes place over a longer period of time than cognitive load, which is specific to working memory. It includes activities like reading manuals, investigating safety protocols and coping with expectations. And it will vary with the difficulty of the task and your skill level, just like cognitive load.”

Technology lift in anticipation of a VR journey may be analogous to researching luggage before taking a trip to a foreign city. You may ask: how much weight can I lift and for how long? Many of us have witnessed the oversupplied backpacker on a trip overseas. She struggles with a heavy load while shouldering her way through the crowds. One wonders if more thoughtful preparation could have saved her from being on the brink of pitching over during her first day in Paris. And although she probably had a great time anyway, planning ahead may have been worthwhile.

## Platform Safety

Before entering a new VR space you can find out what controls exist for dealing with inappropriate or annoying behavior. For example, some platforms allow you to mute the audio of other avatars or create a personal space bubble. If you plan to meet others or visit a popular platform it can be helpful to do a test run by yourself beforehand, taking the time to get used to the location without any social awkwardness concerns. Owners, builders and organizers of platforms may have additional controls like banishing certain users –  instantly and/or permanently. In addition there may be codes of conduct governing acceptable behavior. It is great to learn something about the culture before arriving.

Pre-departure planning can increase positive experiences and keep you safe. For example, people have experienced sexual harassment, lack of respect for personal boundaries, and socially undesirable behaviors in real life (IRL) as well as in VR. “Social VR creates a life-like, immersive and public experience. Given this immersive nature and the overwhelmingly unequal gender dynamic with more men than women in this space, respondents talked about these spaces as seeming similar to public settings where they have been harassed.” (Outlaw & Duckles, 2017) You can take off the headset for a quick exit and also research other strategies to keep your trip free of pests.

## Privacy

Because there is so much more data to potentially capture via these headsets, privacy is an increasingly important issue. “I think we’re all sitting on this time bomb with regard to “inside out” tracking,” says Blyth. “At the moment the companies using it are carefully assuring us that the 3D models they’re building at 30+ frames per second, of the insides of our house (including other people in our houses) are just for local tracking and not being sent back to any server for processing/monetizing. But even those assurances (from Facebook specifically, regarding the Quest and Rift S) have carried an ‘at the moment’ tag.” (Lang, 2019) So before you turn your headset on, it is a good idea to really consider the privacy policy on the manufacturer’s website.

If you took a trip to Paris, how would you get from the Charles de Gaulle airport to your hotel? After getting through customs you may feel jet lagged and confused, which is not a good time to learn new things. So your cognitive load would be less heavy if, for example, you already knew how to buy a ticket and get on the right train. In VR, navigation systems vary widely, so you may want to learn something about them before departure. A good example is learning how to move, fly, or teleport. And especially if you plan to meet others, it is helpful to know how to open the menu system and search for locations/meetings.

# Planning

When you go places, you occupy new spaces. Once you put on a VR headset, you will set up a play area that can be stationary or quite a bit bigger. For the Oculus Quest 2, a popular newer headset, at least 6.5 feet by 6.5 feet is recommended for natural body movement. Once you get out the measuring tape, your house may suddenly feel claustrophobic as you figure out the distance between the couch and the cat box. So consider how much movement you would like to have on your trip and whether it is worth moving the furniture.

For a voyage to Paris, you might think about which beret (and matching scarf) to bring along for a feeling of style and comfort. For your VR trip, the headset will eliminate any possibility of style, but you can still plan for comfort. In the last couple of years, headsets have become much less onerous; for example, they are now untethered from computers, and lighter. But there are still personal adjustments that can make you feel more at ease. And in regards to style, you could always try a beret over the headset.

“Did you know? The world’s first VR headset was created in 1968, and weighed so much it had to be mounted from a ceiling. Due to its appearance, it was nicknamed “The Sword of Damocles.””  (Best Reviews, 2020)

### Interpupillary Distance

When shopping for the right backpack for your trip to the City of Light, the size and shape of your body comes into consideration. For VR, it turns out that the distance between your eyes is important. This is because you want the lens spacing in the headset and your interpupillary distance (IPD) to line up in order to decrease the possibility of motion sickness. This may be especially important for people with smaller bodies, such as women. According to the 2012 Anthropometric Survey of U.S. Army Personnel, the mean interpupillary distance is 61.7mm for women and 64.0mm for men. The Oculus Quest 2, for example, has three IPD settings: 61mm or smaller, 61 to 66mm, and 66 mm or larger. You can check with your optometrist to find your own IPD and then make sure that your headset is on the right setting.

## Controllers

Before you put your headset on and can’t see anything, you may want to try out your hand controllers, which can include features such as buttons, thumb-sticks and triggers. You could view support materials from the manufacturer or other users to investigate all of the functions in order to create a tactile memory of the controllers.

# Saying goodbye to the cat

## Expectations

As you get to the final stages of pre-departure, you may want to check in with your expectations. “Virtual reality – even the name is hype,” says Nick Harper, CDT Multimedia Developer. “VR only addresses the senses of sight and sound, and even those may not work well for some users. Touch, smell and taste are underdeveloped at this point. So trying to immerse yourself in VR through a headset can feel like a struggle because your body wants to keep you safe and your brain is getting so many mixed signals.” One thing we know for sure is that your virtual trip will not be like anyone else’s experience. It may disappoint, or possibly blow your mind. And your memories will be affected by any problems you run into along the way. For example, if you walked right into a sewer during your first trip to Paris, it might be hard for you to believe other people had an amazing time in the Louvre or atop the Eiffel Tower.

## Au revoir

Right before you leave, there is a point where you say some goodbyes. After all, you are leaving to meet new people and experience groovy new things in virtual reality. And the cat can’t come along. So saying goodbye may mean removing pets and humans from your play area, shutting the door, and putting the phone on mute. With the headset on, immersed in video and audio, it won’t be fun to step on your pet or hear snarky comments from your roommate (even if you are wearing a beret). Finding a way not to have an audience on the ground can help you relax and feel immersed.

It may be said that reading about VR is like dancing about architecture. So if you do get the chance, try it for yourself, (and also maybe think about that trip to Paris). No matter how many descriptions you read, the final destination will surprise (and hopefully delight) you in ways you may never have imagined. Especially if you have researched, planned, packed your bag and said goodbye to the cat, you will be ready for a great trip. Bon voyage!

• Take some time to plan/create your play area.
• Research the platform codes of conduct.
• Find out what controls exist to minimize unwanted interactions.
• Learn how to navigate, access the menu system and search for locations/meetings.
• Experiment with controller functions and create a tactile memory.
• Adjust the straps so that they are snug but not cutting off circulation.
• Create a distraction free space.
• Take a test run before meeting others.

# References

Kei Studios. (2017, November 23). A Complete Virtual Reality Glossary.

https://kei-studios.com/complete-virtual-reality-glossary/.

Ffiske, T., & Mandahus, L. (2020, January 21). Analysis: How the Design of VR Headsets

Causes Motion Sickness. Virtual Perceptions.

Fulvio, J. M. (2020, January 1). Variations in visual sensitivity predict motion sickness in virtual

reality. BioRxiv.

https://www.biorxiv.org/content/10.1101/488817v5

Gordon, C. C., Blackwell, C. L., Bradtmiller, B., Parham, J. L., Barrientos, P., Paquette, S. P.,

Corner, B. D., Carosn, J. M., Venezia, J. C., Rockwell, B. M., Murcher, M., & Kristensen, S.

(2014, December). 2012 Anthropometric Survey of U.S. Army Personnel: Methods and

Summary Statistics. Defense Technical Information Center.

https://apps.dtic.mil/dtic/tr/fulltext/u2/a611869.pdf

Lang, B. (2019, August 6). Here’s What Facebook Says About Camera Privacy on Quest & Rift

Mason, W. (2020, August 19). Oculus “Always On” Services and Privacy Policy May Be a

Outlaw, J., Duckles, B. (2017, October). Why Women Don’t Like Social Virtual Reality: A Study of Safety, Usability, and Self-Expression in Social VR. The Extended Mind.  https://static1.squarespace.com/static/56e315ede321404618e90757/t/5afca0716d2a73e7b3c77f28/1526505624385/The+Extended+Mind_Why+Women+Don%27t+Like+Social+VR_Oct+16+2017.pdf

The Economist. (2019, November 21). Virtual reality continues to make people sick.            https://www.economist.com/science-and-technology/2019/11/23/virtual-reality-continues-to-make-people-sick

## Introduction

The LMS Canvas by Instructure comes with a decent set of styled elements to start with, but diving into the HTML editor is where you can really modify content, giving it a specific look and feel. Recently I have found that I am going to these customized elements more often to help achieve learning outcomes and provide a different look and feel for accessible course pages.

It is not limitless, however, or even as open as regular web development would be. Canvas has an HTML Editor Allowlist for elements, styles and classes (though some absent from this list will work if you give it a go!). Many of these are activated by using in-line `class` or `style`, but other attributes are also available.

Without further ado, here are three of the more popular elements I have been drawn to when creating courses over the past few terms.

## Accessible Rich Internet Applications (ARIA)

Defined as

a set of attributes that define ways to make web content and web applications more accessible to people with disabilities
Source

These attributes are some of the most popular because they help with accessibility (particularly, screen readers) on the course site. Where native HTML5 elements are not available, these ARIA attributes help to explain what a particular piece of content does and how a learner should interact with it. By using these, we help to make courses open to a wider set of learners.

See the Canvas HTML Editor Allowlist for a full list of supported ARIA attributes.

### Example 1: Element Togglers

You want to include an element on your course site that expands to reveal more content. You will need to make a screen reader aware that the content is there, and what it does. Using the following should get you off to a good start:

```<span class="element_toggler" role="button" aria-controls="something"
aria-label="longer description of the element" aria-expanded="false">

<div id="something" style="display: none;">
The explanation.
</div>```
`aria-controls="something"`
combines with `id="something"` later on in the code. The value must match the `id` value for it to work correctly. This is used to interact with the element.
`aria-label="longer description of the element"`
used to describe the functionality of the element if it is not explained prior to the interaction.
`aria-expanded="false`
used to tell the screen reader the button is initially closed.

### Example 2: Descriptions

You have a particularly visual element on the page, and you want to write a larger piece of text for a screen reader to explain this. You can use `aria-describedby` and then link it to the id of an element (in the `<span>` below):

```<p><img src="close_up.jpg" aria-describedby="close_up">
<br>
<span id="close_up">A close-up view of the rock target named "Máaz" from the SuperCam
instrument on NASA's Perseverance Mars rover.</span>
Analysis of SuperCam data shows that Máaz has a basaltic composition.
It is either an igneous rock or consists of fine grains of igneous material
that were cemented together in a watery environment.<br>
Full image and caption from
<a href="https://www.jpl.nasa.gov/images/supercam-close-up-of-maaz">
NASA Jet Propulsion Labratory.</a> NASA/JPL-Caltech/LANL/CNES/CNRS
</p>```

## Device specific content

Next up, is hidden content. So you added the element_toggler above, but your learners with the Canvas Mobile App let you know they cannot click it!

Some of the projects I work on with these elements require an entirely different way of accessing the content on a mobile device.

### A potential fix

Create different versions of the content by hiding each one depending on the device.

To do this, you will need to divide the content using two containers. Using the same element_toggler code from above, we can easily add a separate, but hidden part underneath for Canvas app users.

```<span class="element_toggler" role="button" aria-controls="something"
aria-label="longer description of the element" aria-expanded="false">
View the explanation</span>

<div id="something" style="display: none;">
The explanation.
</div>

<div class="hidden-desktop hidden-tablet hidden-phone">
The explanation.
</div>```

The addition of the `class="hidden-desktop hidden-tablet hidden-phone"` attributes will hide this container for most users. As it is sitting outside of the element toggler, however, mobile app users do not need to click the element toggler to see the explanation! This provides a more accessible option for users of those devices.

Note: if you have access to the stylesheet for your institution, it would be more beneficial to add these changes there than on a per-page basis.

## Anchoring to part of a page

If you have ever seen text content that says something similar to this…

As we discussed before…

As I mentioned previously…

Back in Module 3, we talked about…

…then you need to use this simple feature of the anchor element!

I use this a lot on course content that requires students to refer to previous material. Everyone will have heard of a hyperlink using the `<a>` tag, but you can also use this anchor to link to a certain part of the page. I regularly use it to send learners to particular headings or content that they would find relevant for assignments. If you set up your course from the start with this in mind, it can be a fast way to group revision material from certain parts of a page, or create more accessible navigation menus.

Give an element an id, like this:

`<h3 id="section_2">Section 2</h3>`

Then, when you want to send a learner back to that part of the page, just reference it by adding the id to the end of the page link with a `#`. For example:

`<a href="https://yoursite/page#section_2">Section 2</a>`

This will take the learner directly to the heading with the id of ‘section_2’, which you set up before.

You can even do this within the same page to jump to that part of the page. Just link it like this without the rest of the URL.

`<a href="#section_2”>Section 2</a>`

## Conclusion

These are a sample of the elements, classes, and styles I have used to enhance content over the last few terms. With each, accessibility has been a must, which requires a bit of reflection on how learners would interact with the content. There are a lot more available, and you have a list in the Canvas HTML Editor Allowlist to start experimenting. By thinking of accessibility from the early stages of course design, more users can appreciate these page elements and content.

## References

1. The Canvas Style Allowlist: [http://bit.ly/cnvs-allowlist]
2. “ARIA” from MDN Web Docs/Mozilla [https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA]

## Why Group Work Is Important

Love it or hate it, group work is an important part of education. Learning to work cooperatively with diverse people is a core 21st century skill, one which employers increasingly value and expect new workers to have mastered. Experience gathered from group work in educational settings directly transfers to and prepares students for successful collaboration in work teams. By collaborating in teams, students learn a wide range of discrete as well as soft skills that make group work worth the effort, including those below.

• Technology skills
• Social skills
• Self-awareness
• Empathy
• Coping with stress
• Creating work plans and schedules
• Forecasting needs and hurdles
• Time management & meeting deadlines
• Working with difficult personalities
• Managing & navigating unmet expectations
• Following up & messaging
• Accountability

Pedagogically, group work supports a constructivist approach to learning, in which students contribute to the learning environment, build knowledge both individually and collectively, and co-create the classroom environment. Constructivist theory posits that learning is a social process and values student interaction with and contributions to collective knowledge. Group work and student collaboration are foundational methods in constructivist classrooms that help students develop the knowledge and skills that allow them to meet learning objectives. Additionally, group work is seen as a key element of student-student interaction.

## Considerations for Successful Groups

The first thing instructors should consider when planning to incorporate group work is to reflect on WHY they are assigning it- as an objective of learning or as a means of learning. Group work for the purpose of learning collectively, producing collaboratively, or for gaining experience working cooperatively are all valid reasons to include group work.

Additionally, instructors must consider the limits of the asynchronous modality when creating group assignments. We all know how difficult it can be if the group you end up working in is not harmonious; For students in asynchronous online courses, group work can be even more difficult, with challenges like different time zones, different daily schedules, and lack of face to face collaboration opportunities. Even the most thoughtfully designed group activities can run into problems. What happens when one student fails to contribute? Do the other group members take up the slack and cover for their absent partner? How should a group handle an overbearing group member who takes on more than their fair share of the project? Anticipating the potential hurdles that may arise when planning the group project and incorporating support and resources for struggling groups can alleviate these barriers to a large degree.

An important consideration when creating group assignments is Conrad & Donaldson’s Phases of Engagement model, which advises instructors to structure group work so that students can build up group cohesion through low-stakes activities like icebreakers, introductions, and discussion forum posting towards the beginning of the term before ramping up to more complicated collaborative projects. This scaffolding of tasks helps groups bond and build community among members, facilitating better working relationships and the trust necessary to work through the intricacies of a complex group project. The theory can be helpful when approaching a series of courses within a specific degree program as well, moving from simple group projects in lower division courses to co-facilitating and transformative ongoing engagement at the upper levels.

Another model that can help instructors understand how to structure group work is Peter Lencioni’s Five Dysfunctions of a Team, which describes a pyramid of features that are required for groups to function effectively. Lencioni claims that trust is the foundation of any functioning group, followed in ascending order by managing conflict through healthy discourse, ensuring commitment and buy-in, providing a method of accountability for team members, and a focus on collective results over personal prestige. Avoiding dysfunction by clearly structuring group work to anticipate and provide tools for dealing with these problems can ensure teams get off on the right footing and can work together smoothly.

Additionally, instructors should consider the type of collaboration that is common within their own discipline, whether it be performing distinct roles within a team or more general projects requiring cooperation. Designers often work together creatively to develop and improve products; medical teams must work collectively but in distinct roles to serve patients; computer software developers must be able to distribute work and manage tight deadlines; public-facing personnel must be able to amicably respond to a range of customer behaviors. Connecting group work explicitly to real-world work scenarios helps students see the value and relevance of their learning, which helps increase engagement and dedication. Structuring group projects to mimic the type of work tasks they can anticipate also provides the added value of preparing students for scenarios they will actually be faced with on the job.

Finally, since asynchronous group work relies heavily on technology, ensure that the technology to be used by the group is familiar or can be mastered quickly. Provide detailed instructions or tutorials for how to use the technology, plan for how to handle issues students might face with technology, and share resources they can tap should they run into problems. University instructional technology support can be linked to, and websites and apps often offer training videos.

### Types of group work

• Pair/partner work
• Informal cooperative active learning
• Group essays or projects
• Group presentations

### Setting groups up for success

• Set up groups of the right size, preferably with an odd number of participants
• Make groups heterogenous to encourage peer-to-peer learning
• Provide opportunities for students to activate their unique background knowledge and perspectives
• Provide detailed instructions for group interaction expectations
• Provide guidance on strategies for dividing the workload, such as setting up roles (ie: organizer, recorder, liaison, etc.)
• Provide detailed instructions and rubrics for expected process and product
• Split the grade for group work between collective and individual grades
• Build in check-ins with instructor early on and midway
• Plan for interventions if groups are not functioning well
• Allow team members to evaluate each other’s and their own performance for contribution, cooperation, & timeliness

#### Sources

What are the benefits of group work? – Eberly Center

21st Century Skills Map

Group work as an incentive for learning – students’ experiences of group work

Group work – Teaching practice – Learning and teaching guidance – Elevate – Staff

Transforming The Online Learner

Increasing Student-to-Student Engagement: Applying Conrad and Donaldson’s “Phases of Engagement” in the Online Classroom

Teamwork 5 Dysfunctions

By Susan Fein, Instructional Designer, susan.fein@oregonstate.edu

In my role as an instructional designer, the faculty I work with are often looking for ways to increase student engagement and add a “wow” factor to their online course. One way to do that is to add or increase active learning practices.

Active learning requires students to do something and think about what they are doing, rather than simply listening, as with a passive-learning lecture (Bonwell & Eison, 1991). Active learning brings positive and lasting outcomes to students, including better retention and grasp of concepts, and is particularly evident when students work together to develop solutions (Chickering & Gamson, 1987).

# Tackling Discussions

In 2019, I worked with an instructor developing a biochemistry/biophysics course for Ecampus. The instructor loved the peer-to-peer interaction intended for discussions, but was discouraged by the often lackluster exchange commonly demonstrated in the posts. She wanted to liven up these conversations, not only to increase the strength of the community but also to have an impact on the value of the learning that took place.

Enter knowledge boards! With a simple but creative retooling of the predictable initial-post-and-two-replies format, the instructor found a way to reimagine the often mundane discussion board and transform it into a lively and highly engaging conversation and exchange of knowledge.

How did she do this? Rather than compel all students to respond to a narrow or artificially-constructed prompt, the instructor instead posted several relevant topics or short questions extracted from the concepts presented during that week’s lectures and readings. Topics might be a single word or a short phrase, and the questions were tightly focused and direct.

# Choice and Agency

From this list of 5 to 10 conversation starters that give breadth to the topics, the students can choose which they want to respond to, often selecting what’s of greatest interest to them. These posts could be anything related to the topic or question, so students are free to approach from any perspective or direction.

The instructor found that the students more freely contributed ideas, insights, understandings, questions, confusion, and commentary. They were encouraged to ask questions of each other to delve into significant points. Students could engage in as many conversations as desired, at their discretion. As a result, they tended to be more actively involved, not only with the content and concepts from that week’s materials, but also with each other, producing a strong community of inquiry.

This simple change transformed the tired and (dare I say it?) potentially boring weekly discussion into a meaningful opportunity for a lively and valuable knowledge exchange. The instructor explained that students also report that this knowledge board becomes a study guide, summarizing multiple approaches and insightful content they use for studying, so many revisit the posts even after that week is over as a way to review.

# But Wait…There’s More!

The instructor didn’t stop at discussions in her pursuit of increased engagement and active learning. Her next “trick” was to evaluate how the assessments, especially homework problems, were presented.

A typical format in many Ecampus courses is to have students complete homework assignments individually, and these are generally graded on the correctness of the answers. But once again, this instructor redesigned a conventional activity by applying principles of active learning and collaborative pedagogy to improve learning outcomes.

In the new version, students first answer and submit solutions to the homework individually, and this initial phase is graded on proper application of concepts, rather than on the correctness of the answer. Next, students work together in small groups of 3 or 4 to discuss the same set of problems and, as a group, arrive at consensus of the correct answers.

The active learning “magic” occurs during this critical second phase. If one student is confident about an answer, they present evidence from the lectures and readings to persuade their peers. And when a student is not certain that they correctly grasped the concepts, they discuss the problem and relevant principles, learning from each other through this review, hearing different perspectives and interpretations of the materials. It is through these vital peer-to-peer interactions that the active learning takes place.

As the last phase of the activity, the group submits their answers, which are graded for correctness.

This reshaping of a classic homework activity results in deeper levels of understanding and stronger knowledge retention (Weimer, 2012). And there’s an added benefit for the instructor, too. Since there are fewer papers to grade, formatting homework as a group submission means extra time to offer more and better feedback than would be feasible when grading each student individually. A win-win bonus!

# Benefits of Active Learning

These are just two simple but ingenious ways to reformat classic forms of interaction and assessment.

Do you have an idea of how you can alter an activity in your course to make it more interesting and engaging? If you sense that your online course could use a boost, consider incorporating more active learning principles to add the extra oomph that could transform your teaching content from mundane to magical!

So let’s close this post in true active learning style and take a moment to reflect. What kinds of active learning practices have you tried in your course? How did those go? We’d love to hear your thoughts and experiences, so please share in comments.

# References

Bonwell, C. C., & Eison, J. A. (1991). Active Learning; Creating Excitement in the Classroom (Vol. Education Report No. 1). Washington, D.C.: The George Washington University, School of Education and Human Development.

Chickering, A. W., & Gamson, Z. F. (1987, March). Seven Principles for Good Practice. AAHE Bulletin 39, 3-7.

Weimer, M. (2012, March 27). Five Key Principles of Active Learning. Retrieved from Faculty Focus: https://www.facultyfocus.com/articles/teaching-and-learning/five-key-principles-of-active-learning/

# Evaluating Textbooks

When selecting a textbook, there are a number of factors to evaluate. In addition to assessing the textbook for appropriate content, one category that I recommend looking at is how inclusive the textbook is. Here are a few guiding questions to ask when evaluating textbooks for inclusion:

• What is the cost of this textbook? Have you looked for open (free) textbooks, perhaps from the Open Textbook Library or considered writing or adapting your own? Affordability is inclusive.
• Do the textbook images of people represent diverse cultural heritage and lived experiences?
• Are the contributions to the field that are highlighted in the textbook from a diverse range of scholars in the field? If not, is there discussion about why certain voices were historically excluded from the field?
• Is the textbook accessible? If there is an e-book, do the images have alt text, for example? Can students with disabilities access all materials in the book?
• If the textbook is an e-book, are the concepts presented in multiple ways, such as text, infographic, slide decks, or multimedia elements? Giving students choices in how they explore the course concepts empowers them to use their existing preferences, and helps them develop new strengths and avenues for learning.

# What to Do When the Textbook Is Not Ideal

It’s tough to find a textbook that is inclusive and has all of the concepts you are hoping to teach. What can you do when you find a textbook that has the concepts you need but is lacking in inclusive excellence? Here are some simple ideas for addressing this:

• Consider giving publisher feedback. Write a brief email to the publisher about your concerns around a lack of representation in the book or whatever it is that you see as missing.
• For any text you choose, consider inviting students to write to the publisher if they see areas for improvement, whether that is with cost, bias, or other issues. You could include the contact information for the publisher in your course materials page, inviting students to write in feedback directly to the publisher.
• Acknowledge to your students that the textbook isn’t as inclusive as you would like it to be. Share the ways that you are advocating for better quality. You could also invite students to have a bias hunt discussion about the textbook or course materials. Then you could collect that feedback and send it to the publisher.
• If the textbook lacks contributions from a diverse range of scholars, consider adding scholarly articles, images, or interviews from diverse professionals in your field to your course learning materials pages, in your LMS course site.
• Consider highlighting professional organizations in your field that promote and mentor the professional development of scholars from specific historically underrepresented communities.

Have you had success in this area of evaluating textbooks? Have you found a publisher or textbook that has made gains in this area? If so, please share your resources in the comments.

References:

We believe textbooks should be diverse and inclusive. Here’s what we’re doing about it.

Peralta Online Equity Rubric

UDL Progression Rubric

Open Textbook Library

Image credit: Surface on Unsplash

Memory plays the central role in learning – it is “the mechanism by which our teaching literally changes students’ minds and brains” (Miller, 2014, p. 88). Thus, understanding how memory works is important for both instructional designers and instructors. According to modern theories, memory involves three major processes: encoding (transforming information into memory representations), storage (the maintenance of these representations for a long time), and retrieval (the process of accessing the stored representations when we need them for some goal or task) (Miller, 2014). Let’s briefly review these processes and see how they may inform our course design and instruction.

## Encoding – What Is the Role of Attention and Working Memory?

How does encoding happen? We receive information from our senses (visual, auditory, etc.), and then we perform a preconscious analysis to check whether it is important to survival and if it is related to our current goals. If it is, this information is retained and will be further processed and turned into mental representations. Thus, attention is the major process through which information enters our consciousness (MacKay, 1987). Attention is limited, and it is to some extent under voluntary control, but it can be easily disrupted by strong stimuli. Attention is crucial for memory, and without attention we cannot remember much (Miller, 2014).

How attention is directed depends on the way the content is presented and on the nature of the content itself (Richey et al., 2011). If the content is intrinsically motivating for the student, it will catch their attention more readily. But beyond that, the manner we design our instructional materials can influence how learners focus their attention to select and process the information, and in turn on what and how much gets stored in their memory. For example, we can ensure that students are guided to the most relevant content first by making that content more visually salient. Or we can tell an engaging story to focus their attention to the concepts that come next.

Working memory is a concept introduced in the 1970s by Alan Baddeley. This model describes immediate memory as a system of subcomponents, each of them processing specialized information such as sounds and visual-spatial information. This system also performs operations on this information and are managed by a mechanism called the central executive. The central executive combines the information from the various subcomponents, draws on information stored in long-term memory, and integrates new information with the old one (Baddeley, 1986).

Some researchers consider attention and working memory to be the same thing; while not everyone agrees, it is clear that they are highly interconnected and overlapping processes (Cowan, 2011; Engle, 2002). Attention is the process that decides what information stays in working memory and keeps it available for the current task. It is also involved in coordinating the working memory components and allocating resources based on needs and goals (Miller, 2014).

The capacity of each of the working memory components is limited. However, these components are mostly independent: visual information will interfere with other visual information, but not much with another type such as verbal information (Baddeley, 1986). Therefore, the most effective instructional materials will include a combination of media, such as images and text (or better yet, audio narration), rather than just images or just text.

## Storage – How Fast Do We Forget?

In the late 1800s, Hermann Ebbinghaus conducted his famous series of experiments on the shape of forgetting. The result was the forgetting curve (also called the retention curve), which is a function showing that the majority of forgetting takes place soon after learning, after which less information will be lost (Ebbinghaus, 1885). A recent review of studies on the retention curve concluded that the rate of forgetting may increase up to seven days, and slows down afterwards (Fisher & Radvansky, 2018). This interval is useful to consider when planning instruction. A well-designed course will include sufficient opportunities for practice and retrieval during this time, so as to minimize the forgetting that naturally occurs.

## Retrieval – How Do We Get It Out of Our Heads and Use It?

While long-term memory is considered unlimited, retrieval (or recall) can be challenging. Its success depends on a few factors. To retrieve memory representations, we use cues—information that serves as a starting point. Since a memory can include different sensory aspects, information with rich sensory associations is usually remembered more easily (Miller, 2014). Visual and spatial cues are particularly powerful: memory athletes perform some mind-blowing feats by using a special technique called “the memory palace”—imagining a familiar building or town and placing all content inside it in visual form (to learn more about this technique, check out this TED talk by science writer Joshua Foer).

Recall is also influenced by how the information was first processed: deep processing (focusing on meaning) will yield superior retrieval performance compared to shallow processing (focusing on superficial features like some key words or the layout of the information). However, equally important is a match between the type of processing that happens during encoding and the one that happens during retrieval (Miller, 2014). For instance, if the final exam contains multiple-choice questions, learners will perform better if they also practiced with multiple-choice questions when they learn the content. Finally, emotions have been shown to boost memory (Kensinger, 2009), and even negative emotions (such as fear or anger) can have a strong effect on recall (Porter & Peace, 2007).

## Conclusion – Implications for Instruction

What can we do to maximize our students’ memory potential? Based on these memory characteristics, here are a few strategies that can help:

1. Make use of graphic design and multimedia learning principles to create attention-grabbing, well-organized instructional materials that include a combination of media.
2. Include plenty of retrieval practice activities, such as polling during lectures, quizzes, or flashcards. The website Retrieval Practice is a fantastic resource for quick tips, detailed guides, and research. Top things to keep in mind:
• Boost retrieval practice through spacing (spreading sessions over time) and interleaving (mixing up related topics during a practice session).
• Make sure you plan some sessions for the critical seven-day period after introducing the material.
3. Consider teaching students the memory palace technique for content that requires heavy memorization.
4. Support every type of content visually where possible.
5. Encourage deep processing of the material, for example through reflections, problem-solving, or creative activities.
6. Ensure that students have opportunities to engage with the material during learning in the same way as they will during the exam.
7. Try to stimulate emotions in relation to the content. While negative affect can help (for example, recounting a sad story to illustrate a concept), it is probably best to focus on positive emotions through exciting news, inspiring anecdotes, and even more “extrinsic” factors such as humor, uplifting music, or attractive visual design.

Using these strategies will help you create learning experiences where students encode, store, and retrieve information efficiently, allowing them to use it effectively in their lives, studies, and work. Do you have any related experience or tips? If so, share in a comment!

## References

Baddeley, A. D. (1986). Working memory. Oxford University Press.

Cowan, N. (2011). The focus of attention as observed in visual working memory tasks: Making sense of competing claims. Neuropsychologia, 49(6), 1401–1406. https://doi.org/10.1016/j.neuropsychologia.2011.01.035

Ebbinghaus, H. (1885). Memory: A contribution to experimental psychology.

Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 19–23. https://doi.org/10.1111/1467-8721.00160

Fisher, J. S., & Radvansky, G. A. (2018). Patterns of forgetting. Journal of Memory and Language, 102, 130–141. https://doi.org/10.1016/j.jml.2018.05.008

Kensinger, E. A. (2009). How emotion affects older adults’ memories for event details. Memory, 17(2), 208–219. https://doi.org/10.1080/09658210802221425

MacKay, D. G. (1987). The organization of perception and action: A theory for language and other cognitive skills. Springer New York. http://dx.doi.org/10.1007/978-1-4612-4754-8

Miller, M. D. (2014). Minds online: Teaching effectively with technology. Harvard University Press.

Porter, S., & Peace, K. A. (2007). The scars of memory. Psychological Science, 18(5), 435–441. https://doi.org/10.1111/j.1467-9280.2007.01918.x

Richey, R., Klein, J. D., & Tracey, M. W. (2011). The instructional design knowledge base: Theory, research, and practice. Routledge.

Is it okay to use YouTube videos in your course? What about copyright? I get inquiries like this often. Here I’ll share the most common questions from instructors and the answers I provide.

Q: Should I be concerned about relying on a link to a YouTube video for essential course content? There are quite a few YouTube videos on a topic I cover in my course, and all of them are better than what I could put together on my own, given the constraints on my time and technical expertise.

A: There are several considerations when using YouTube videos:

•  YouTube videos may be taken down at some later date, and this would be a problem if you are relying on them for essential course content. However, you say there are “quite a few” videos on this topic. If the video you select for the course were taken down, would you be comfortable using a comparable video? A related consideration is, does the YouTube channel that posted the video own the rights to it? Or, have they pirated someone else’s content? We don’t want to share pirated videos with students because this models inappropriate intellectual property practices and because these videos are more likely to be removed by YouTube for copyright violation.
• Another consideration is that students have come to your course with the expectation that you will offer a unique educational experience tailored to the context of their university and the degree program they’re enrolled in. When presented with YouTube videos, some students may ask, why am I paying for a course delivered by a professional university instructor if I can get the content for free on YouTube? Students may not be aware of the time and attention that you have put into finding, sequencing, and providing context around external videos. Consider balancing the use of external videos with your own materials so that you are still able to communicate your individual teaching presence.

Q: Am I infringing on copyright in some way by including YouTube videos in my course?