Author Archives: Grace Deitzler

In the face of national anti-trans legislation, local game developer and OSU graduate raises over $400k for trans advocacy groups

Content warning: this article includes mentions of transphobia and suicide.

Rue Dickey found himself feeling helpless and frustrated upon reading the news about the onslaught of anti-transgender legislation sweeping the country this year. In the four months of 2022 alone, nearly 240 anti-LGBTQ bills have been filed in states across the United States. This skyrocketing number is up from around 41 such bills in 2018, and around half of these bills targeting transgender folks specifically. In February 2022, Texas governor Greg Abbott called for teachers and members of the public to report parents of transgender children to authorities, equating providing support and medical care for trans youth to child abuse –  a move that made national headlines.  It’s imperative that we understand the consequences of this wave of horrific and discriminatory legislation: a survey by the Trevor Project found that 42% of LGBTQ youth have seriously considered suicide within the past year alone, and over half of transgender and nonbinary youth have considered suicide.

Rue (they/he) graduated from Oregon State University in 2019, and they are currently the Marketing Coordinator for the Corvallis Community Center. They also develop and create content for TTRPGs, or Tabletop Role Playing Games. TTRPGs are role playing games in which players describe their characters’ actions and adhere to a set of rules and characterizations based on the world setting, and characters work together to achieve a goal or go on an adventure. They often involve improvisation and their choices shape the world around them. Think Dungeons & Dragons – many TTRPGs involve the use of dice rolling to determine the outcomes of certain actions and events.

Rue Dickey, 2019 OSU graduate and Marketing Director for the Corvallis Community Center.

Gaming as a way to crowdfund for a cause

Wanting to do something to help children and transgender people living in Texas, Rue decided to turn his passion for TTRPGs into a fundraiser. The online indie game hosting platform itch.io has been used in the past to create fundraisers for charities by bundling together and selling games. A few of Rue’s friends who run a BIPOC tabletop server have had experience with creating profit-sharing bundles using the platform in the past, so after he consulted them and walked through the steps, he set up a bund?ndraiser, Rue wanted to ensure that the money was going directly to transgender people. “At the time, a lot of the larger media outlets were encouraging people to donate to Equality Texas, which works to get pro-queer legislature through in Texas, but they don’t necessarily help trans folks on an individual level.”  

After tweeting about the fundraiser and soliciting ideas for charities, he landed on two organizations in Texas that are trans-led and focused on transgender individuals: TENT (Transgender Education Network of Texas, a trans-led group that works to combat misinformation on the community level through the corporate level, offering workshops as well as emergency relief funds for trans folks in need) and OLTT (Organización Latina Trans in Texas, a Latina trans woman-led organization focusing on transgender immigrants in Texas, assisting with the legal processes of immigration, name changes, and paperwork.) Both charities serve transgender folks directly in Texas, and you can donate to the organizations by following the links we have included in the article. Both charities were thrilled to learn about the donation – for OLTT, it’s the largest single donation they have ever received, and they will be able to use it to perform needed renovations and expansions at their shelter facilities.

Since the fundraiser ended, Rue has been interviewed by several national news outlets, including NBC, Gizmodo, and The Mary Sue, as well as gaming-centric websites like Polygon, Dicebreaker, and GamesHub. Although they have received some harassment and nasty DMs, Rue says that the support from the community has vastly overshadowed the naysayers. Similarly, he spoke of the overwhelming rush of support from trans folks, queer folks, and allies to the movement in the face of structural legislation that seeks to harm trans people. 

“It restores a bit of my faith in humanity to see that on a structural level, they are trying to get rid of us, but on a community level, there is support – there will always be a place to go and people looking out for you.”

Tune in at 5 PM on Sunday, April 24 for this special episode of Inspiration Dissemination. Stream the show live or listen to this episode wherever you get your podcasts! You can keep up with Rue and their games on twitter and itch.io.

This article was written by Grace Deitzler.

Microbial and biochemical community dynamics in low-oxygen Oregon waters

Much like Oregon’s forests experience wildfire seasons, the waters off the Oregon coast experience what are called “hypoxia seasons”. During these periods, which occur in the summer, northern winds bring nutrient-rich water to the Eastern Current Boundary off the Oregon Coast. While that might sound like a good thing, the upwells bring a bloom of microscopic organisms such as phytoplankton that consume these nutrients and then die off. As they die off, they sink and are then decomposed by marine microorganisms. This process of decomposition removes oxygen from the water, creating what’s called an oxygen minimum zone, or OMZs. These OMZs can span thousands of square miles. While mobile organisms such as fish can escape these areas and relocate, place-bound creatures such as crabs and bottom-dwelling fish can perish in these low oxygen zones. While these hypoxia seasons can occur due to natural phenomena, stratification of the water column due to other factors such as climate change can increase the frequency or severity of these seasons.

2021 was one of the worst years on record for hypoxic waters off the Western coast of the United States. A major contributing factor was the extremely early start to the upwelling triggered by strong winds. Measurements of dissolved oxygen and ocean acidity were high enough to be consistent with conditions that can lead to dead zones, and this is exactly what happened. Massive die-offs of crabs are concerning as the harvesting of Dungeness crab is one of the most lucrative fishing industries in the state. Other species and organisms move into shallower waters, disturbing the delicate balance of the coastal ecosystems. From the smallest microbe to the largest whale, almost every part of the coast can be affected by hypoxia season. 

Our guest this week is Sarah Wolf, a fourth year PhD candidate in the Department of Microbiology here at Oregon State. Sarah, who is co-advised by Dr. Steve Giovannoni and Dr. Francis Chan, studies how microbes operate in these OMZs. Her work centers around microbial physiology and enzyme kinetics, and how these things change over time and in varying oxygen concentrations. To do this, she spent her second year developing a mesocosm, which is a closed environment that allows for the study of a natural environment, which replicates conditions found in low oxygen environments. 

Sarah Wolf, a fourth year PhD Candidate in the department of Microbiology, in her lab

Her experiments involve hauling hundreds of liters of ocean water from the Oregon coast back to her lab in Nash Hall, where she filters and portions it into different jugs hooked up to a controlled gas delivery system which allows her to precisely control the concentration of oxygen in the mesocosm. Over a period of four months Sarah samples the water in these jugs to look at the microbial composition, carbon levels, oxygen respiration rates, cell counts, and other measures of the biological and chemical dynamics occurring in low oxygen. Organic matter can get transformed by different microorganisms that “eat” different pieces through the use of enzymes, but many enzymes which can break down large, complex molecules require oxygen, and in low oxygen conditions, this can be a problem for the breakdown and accumulation of organic matter. This is the kind of phenomenon that Sarah is studying in these mesocosms, which her lab affectionately refers to as the “Data Machine”. 

Sarah’s journey into science has been a little nontraditional. A first generation college student, she started out her education as a political science major at Montana State before moving to the University of the Virgin Islands for a semester abroad. At the time she wasn’t really sure how to get into research or science as a career. During this semester her interest in microbiology was sparked during an environmental science course which led to her first research experience, studying water quality in St. Thomas. This experience resulted in an award-winning poster at a conference, and prompted Sarah to change her major to Microbiology and transfer to California State University Los Angeles. Her second research experience was very different – an internship at NASA’s Jet Propulsion Laboratory studying cleanroom microbiology, which resulted in a publication identifying two novel species of Bacillus isolated from the Kennedy Space Center. Ultimately Sarah’s journey brought her here to Oregon State, which she was drawn to because of its strong marine microbiology research program.

Sarah works on the “Data Machine”

But Sarah’s passion for science doesn’t stop at the lab: during the Covid-19 pandemic, she began creating and teaching lessons for children stuck at home. During this time she taught over 60 kids remotely, with lessons about microbes ranging from marine microbiology to astrobiology and even how to create your own sourdough starter at home. Eventually she compiled these lessons onto her website where parents and teachers alike can download them for use in classrooms and at home. She also began reviewing children’s science books on her Instagram page (@scientist.sarahwolf), and inviting experts in different fields to participate in livestreams about books relating to their topics. A practicing Catholic, she also shares thoughts and resources about religion and science, especially topics surrounding climate science. With around 12k followers, Sarah’s outreach on Instagram has certainly found its audience, and will only continue to grow. 

If you’re curious about microbes in low oxygen conditions, what it’s like to be a science educator and social media influencer, or want to hear more about Sarah’s journey in her own words, tune in at 7 PM on March 13th to catch the live episode at 7 PM PST on 88.7 FM Corvallis, online at https://kbvrfm.orangemedianetwork.com – or you can catch this episode after the show airs wherever you get your podcasts! 

Trusting Your Gut: Lessons in molecular neuroscience and mental health

The bacteria in your gut can talk to your brain.

No, really.

It might sound like science fiction, but you’ve probably heard the phrase ‘gut-brain axis’ used in recent years to describe this phenomenon. What we call the “gut” actually refers to the small and large intestines, where a collection of microorganisms known as the gut microbiome reside. In addition to the microbes that inhabit it, your gut contains around 500 million neurons, which connect to your brain through bidirectional nerves – the biggest of which is the vagus nerve. Bacteria might be able to interact with specialized sensory cells within the gut lining and trigger neuronal firing from the gut to the brain.

Our guest this week is Caroline Hernández, a PhD student in the Maude David Lab in the Department of Microbiology, and she is studying exactly this phenomenon. While the idea that the gut and the brain are connected is not exactly new (ever heard the phrase “a gut feeling” or felt “butterflies” in your gut when you’re nervous?), there still isn’t much known about how exactly this works on a molecular level. This is what Caroline’s work aims to untangle, using an in vitro  (which means outside of a living organism – in this case, cells in a petri dish) approach: if you could grow both the sensory gut cells and neurons in the same petri dish, and then expose them to gut bacteria, what could you observe about their interactions? 

Caroline Hernández in her lab at Oregon State, using a stereo microscope to identify anatomical structures in a mouse before dissecting out a nerve bundle

The answer to this question could tell us a lot about how the gut-brain axis works on a molecular level, and could help researchers understand the mechanisms by which the gut microbiome can possibly modulate behavior, mood, learning, and cognition. This could have important implications down the line for how we conceptualize and potentially treat mood and behavioral disorders. Some mouse studies have already shown that mice treated with the probiotic Lactobacillus rhamnosus display reduced anxiety-like and depressive behaviors, for example – but exactly how this works isn’t really clear.

The challenges of in vitro research

Before these mechanisms can really be untangled, there are several challenges that Caroline is working on solving. The biggest one is just getting the cells to grow at all: Caroline and her team must first carefully extract specific gut sensory tissue and a specific ganglion (which is a blob of neurons) from mice, a delicate process that requires the use of specialized tools and equipment. Once they’ve verified that they have the correct anatomy, the tissues are moved into media, a liquid that contains specialized nutrients to help provide the cells with the growth factors they need to stay alive. Because this is very cutting-edge research, Caroline’s team is among the first in the world to attempt this technique – meaning there is a lot of trial and error and not a great amount of resources out there to help. There have been a number of hurdles along the way, but Caroline is no stranger to meeting challenges head-on and overcoming them with incredible resilience.

From art interactions to microbial interactions

Her journey into science started in a somewhat unexpected way: Caroline began her undergraduate career as a studio art major in community college. Her art was focused on interactivity and she was especially interested in how the person perceiving the art could interact with and explore it. Eventually she decided that while she was quite skilled at it, art was not the career path she wanted to pursue, so she switched into science, where she began her Bachelors of Science in molecular and cellular biology at the University of Illinois in Urbana Champaign. 

During her undergraduate degree, a mental health crisis prompted Caroline to file for a medical withdrawal from her program. The break was much needed and allowed her to focus on taking care of herself and her health before returning to the rigorous and intense program three years later. Caroline is now a strong supporter of mental health resource awareness – in this episode of Inspiration Dissemination she will describe some of the challenges and barriers she faced when returning to finish her degree, and some of the pushback she faced when deciding to pursue a PhD. 

“Not everyone was supportive,” she says. “I didn’t receive great encouragement from some of my advisors.”

Where she did find support and community was in her undergraduate research lab. Her work in this lab on the effects of diet and the microbiome on human health gave her the confidence to pursue graduate school, demonstrating that she was more than capable of engaging in independent research. In particular Caroline recalls her mentor Leila Shinn, a PhD student at the time in that lab, who had a profound impact on her decision to apply to graduate programs.

Tune in on Feb 27th to hear the rest of Caroline’s story and what brought her to Oregon State in particular. You can listen live at 7 PM PST on 88.7 FM Corvallis, online at https://kbvrfm.orangemedianetwork.com, or you can catch the episode after the show airs wherever you get your podcasts. 

If you are an undergraduate student or graduate student at Oregon State University and are experiencing mental health struggles, you’re not alone and there are resources to help. CAPS offers crisis counseling services as well as individual therapy and support and skill-building groups. 

Nuclear: the history, present, and future of the solution to the energy crisis

In August of 2015, the Animas River in Colorado turned yellow almost overnight. Approximately three million gallons of toxic waste water were released into the watershed following the breaching of a tailings dam at the Gold King Mine. The acidic drainage led to heavy metal contamination in the river reaching hundreds of times the safe limits allowed for domestic water, having devastating effects on aquatic life as well as the ecosystems and communities surrounding the Silverton and Durango area. 

This environmental disaster was counted by our guest this week, Nuclear Science and Engineering PhD student Dusty Mangus, as a close-to-home critical moment in inspiring what would become his pursuit of an education and career in engineering. “I became interested in the ways that engineering could be used to develop solutions to remediate such disasters,” he recalls.

Following his BS of Engineering from Fort Lewis College in Durango, Colorado, Dusty moved to the Pacific Northwest to pursue his PhD in Nuclear Engineering here at Oregon State, where he works with Dr. Samuel Briggs. His research here focuses on an application of engineering to solve one of the biggest problems of our age: energy – and more specifically, the use of nuclear energy. Dusty’s primary focus is on using liquid sodium as an alternative coolant for nuclear reactors, and the longevity of various materials used to construct vessels for such reactors. But before we can get into what that means, we should define a few things: what is nuclear energy? Why is nuclear energy a promising alternative to fossil fuels? And why does it have such an undeserved bad rap?

Going Nuclear

Nuclear energy comes from breaking apart the nuclei of atoms. The nucleus is the core of the atom and holds an enormous amount of energy. Breaking apart atoms, also called fission, can be used to generate electricity. Nuclear reactors are machines that have been designed to control the process of nuclear fission and use the heat generated by this reaction to power generators, which create electricity. Nuclear reactors typically use the element uranium as the fuel source to produce fission, though other elements such as thorium could also be used. The heat created by fission then warms the coolant surrounding the reaction, typically water, which then produces steam. The United States alone has more than 100 nuclear reactors which produce around 20% of the nation’s electricity; however, the majority of the electricity produced in the US is from fossil fuels. This extremely potent energy source almost fully powers some nations including France and Lithuania. 

One of the benefits of nuclear energy is that unlike fossil fuels, nuclear reactors do not produce carbon emissions that contribute to the accumulation of greenhouse gases in the atmosphere. In addition, unlike other alternative energy sources, nuclear plants can support the grid 24/7: extreme weather or lack of sunshine does not shut them down. They also take up less of a footprint than, say, wind farms.  

However, despite their benefits and usefulness, nuclear energy has a bit of a sordid history which has led to a persistent, albeit fading in recent years, negative reputation. While atomic radiation and nuclear fission were researched and developed starting in the late 1800s, many of the advancements in the technology were made between 1939-1945, where development was focused on the atomic bomb. First generation nuclear reactors were developed in the 1950s and 60s, and several of these reactors ran for close to 50 years before decommission. It was in 1986 the infamous Chernobyl nuclear disaster occurred: a flawed reactor design led to a steam explosion and fires which released radioactive material into the environment, killing several workers in the days and weeks following the accident as a result of acute radiation exposure. This incident would have a decades-long impact on the perception of the safety of nuclear reactors, despite the significant effect of the accident on reactor safety design. 

Nuclear Reactor Safety

Despite the perception formed by the events of Chernobyl and other nuclear reactor meltdowns such as the 2011 disaster in Fukushima, Japan, nuclear energy is actually one of the safest energy sources available to mankind, according to a 2012 Forbes article which ranked the mortality rate per kilowatt hour of energy from different sources. Perhaps unsurprisingly, coal tops the list, with a global average of 100,000 deaths per trillion kilowatt hour. Nuclear energy is at the bottom of the list with only about 0.1 deaths per trillion kilowatt hour, making it even safer by this metric than natural gas (4,000 deaths), hydro (1400 deaths), and wind (150 deaths). Modern nuclear reactors are built with passive redundant safety systems that help to avoid the disasters of their predecessors.

Dusty’s research helps to address one of the issues surrounding nuclear reactor safety: coolant material. Typical reactors use water as a coolant: water absorbs the heat from the reaction and it then turns to steam. Once water turns to steam at 100 degrees Celsius, the heat transfer is much less efficient – the workaround to this is putting the water under high pressure, which raises the boiling point. However, this comes with an increased safety risk and a manufacturing challenge: water under high pressure requires large, thick metal vessels to contain it.

Sodium, infamous for its role in the inorganic compound known as salt, is actually a metal. In its liquid phase, it is much like mercury: metallic and viscous. Liquid sodium can be used as a low-pressure, safer coolant that transfers heat efficiently and can keep a reactor core cool without requiring external power. The boiling point of liquid sodium is around 900 degrees Celsius, whereas a nuclear reactor operates in the range of around 300-500 degrees Celsius – meaning that reactors can operate within a much safer range of temperatures at atmospheric pressure as compared to reactors that use conventional water cooling systems.

Dusty’s research is helping to push the field of nuclear reactor efficiency and safety into the future. Nuclear energy promises a safer, greener solution to the energy crisis, providing a potent alternative to current fuel sources that generate greenhouse gas emissions. Nuclear energy utilized efficiently could even the capability to power the sequestration of carbon dioxide from the atmosphere, leading to a cleaner, greener future. 

Did we hook you on nuclear energy yet? Tune in to the show or catch the podcast to learn more about the history, present and future of this potent and promising energy source!  Be sure to listen live on Sunday January 30th at 7PM on 88.7FM or download the podcast if you missed it.