As described in an earlier post, Use a Mix Map for Blended Learning, the blended learning mix map is a widely used tool to visualize and design hybrid (or “blended”) courses that integrate scheduled face-to-face meetings with online elements. The two overlapping circles in this planning template provide space to list online learning activities, face-to-face learning activities and possibly activities that occur in both learning environments.

Blended Learning Mix Map

Where Does Learning Actually Occur?

Oregon State University faculty have found utility in drafting mix maps while in the early phases of hybrid course development. Many of those faculty suggested that the traditional two-circle mix map needed one improvement, namely a third circle! In response, the Center for Teaching and Learning and Ecampus created the Three-Disc Hybrid Design Mix Map.

Three-Disc Hybrid Design Mix Map

Does your blended course have learning activities that extend beyond the online and classroom environments (for example, service-learning, field or clinical experiences)? If so, this three-disc mix map is an ideal course planning tool. The “Other” circle is the place to list learning activities that principally take place somewhere other than the classroom and the online course site.

Sketch a Three-Disc Mix Map in Three Steps

You could create one mix map for your entire course, but many instructors prefer to focus on a single representative week of the course. There are three steps to sketching out your blended course vision on the three-disc mix map:

1 – List each learning activity in the appropriate circle. Consider these activities from the student perspective. For instance, collaborating on a group poster project, taking a quiz or making a presentation. Be sure to include “other” learning that occurs beyond the online and in-class environments. Consider the balance between learning activities in the three circles.

As to which learning activities fit where, that’s a topic to carefully consider and to converse about with your teaching colleagues as well as an instructional designer. For instance, think about the positioning of weekly discussions in your course. In terms of student learning outcomes, do discussions work best for you and your students in the classroom, online or possibly in both places? Can discussions be structured to bridge the gap between learning environments? Remember to consider how the timing of discussions will be woven into the broader, ongoing flow of blended learning in your course. And remember that classroom meeting time is finite and measured to the nearest minute in a hybrid course, so be judicious in using that time strategically!

2 – Use arrows to draw functional connections between the learning activities. For example, a weekly quiz is based on narrated online lectures, or an in-class discussion applies information from online readings. Aim to link every activity to at least one other activity. Be especially attentive to linkages between the online and face-to-face activities.

3 – List the average amount of time per week that you expect students will spend on each learning activity. For instance, two hours of reading or 90 minutes of problem solving. Check to see if the weekly total make sense in light of the Oregon State University credit hour policy, which states, “One credit is generally given for three hours per week of work in and out of class.”

Speaking of time expectations, 15 minutes is a reasonable amount of time for you to create a first draft of a mix map.

Mixing and Remixing

I recommend that you periodically revisit—and possibly redraw—your mix map, perhaps a week later, then a month later, to see how your blended course vision has evolved. A mix map is a malleable vision of a blended course at a given moment in the course design and development process; it’s not an end point. As the design and development process moves forward, remixing the map comes naturally.

In working with mix maps and more broadly with blended course design and teaching, focus on deeply interweaving the various course elements. Hybrid courses can truly be “the best of both worlds” of online and on-the-ground teaching and learning, by building on the strengths of each of these educational modalities, but only with intentional design that explicitly, and seamlessly, meshes the online, in-class and “other” elements of the course!

Resources

The OSU Hybrid Learning website provides downloadable mix map templates and sample mix maps. For more about blended learning, refer to these earlier blog posts: Blended Learning: What Do the Faculty Say? – Part 1 and Part 2, and Susan Fein’s excellent Blended Learning: What Does the Research Show?

If you’d like to take a deeper dive into blended learning, see the Blended Learning Toolkit and Kathryn Linder’s superb guide, The Blended Course Design Workbook.

The other day, my six-year-old asked me what the word “industrious” means, and I was overcome with pride and, moments later, mild panic as I tried to answer his question and couldn’t clearly articulate the meaning of the word.

This experience ended well (thanks, Alexa), but prompted me to think about how often we use words without fully understanding what they mean. We don’t question the meaning of these words when they are used in our work or daily interactions. We may use these words ourselves on occasion–or with regularity–but when we stop and try to define these words, the proper associations and descriptions don’t come immediately to mind.

In my work as an instructional designer, it’s common to talk about universal design or inclusive design, and in many cases, to use these descriptors interchangeably, when talking about design that is usable by a wide range of people. To a lesser extent, accessibility is used in a similar way, but, I think, our shared understanding of this term is more reliable.

For this blog post, I would like to spend some time defining and distinguishing these terms and grounding them in a historical context to more fully convey the nuances and layers of meaning ascribed to each term. I’ll wrap up with some strategies for designing courses to better meet the needs of all learners.

Accessibility

According to the Web Accessibility Initiative (WAI), “Web accessibility means that websites, tools, and technologies are designed and developed so that people with disabilities can use them.” It’s clear from this definition that accessibility is intended to address the needs of users with disabilities, so let’s consider disability. 

Prior to 2001, the World Health Organization (WHO) defined disability as a personal health condition. This definition placed emphasis on the individual. However, in 2001, the WHO redefined disability as a mismatched interaction between a person and their environment. This new definition places emphasis on the environment, rather than the individual. As a result, the onus is no longer only on the disabled individual to manage their health condition; rather, those who have influence over the environment need to make changes to the environment to better accommodate everyone who is interacting with it. In our case, the learning environment is the web, or more specifically, online courses. 

Unlike the other two design approaches we’ll consider, accessibility is intended to address the needs of users with disabilities. Another distinguishing feature of accessibility is that it describes an end goal. Our web content should be presented in such a way that the end result is an accessible website or technology. While this post will not go into the how of making web content accessible, here are some elements you may be familiar with: alternative text (alt tags), headings (H1, H2, H3, etc.), color contrast, captions and/or transcripts, reading order, keyboard navigation, and descriptive URLs are all examples of accessibility elements. All of these elements define what our design should look like, not how to get there.

Another distinguishing feature is that accessibility is required by law. We won’t delve into the specifics here, but it’s important to recognize that accessibility is a legal compliance issue.

Universal Design for Learning (UDL)

While accessibility addresses specific features of a website or online learning environment, Universal Design for Learning (UDL) takes a broader approach. UDL guidelines still emphasize accessibility, but the emphasis is not solely on making disability accommodations or complying with the law. The goal of UDL is to provide the greatest degree of access and usability for the widest range of individuals.

UDL includes a framework with three general principles, each of which includes multiple guidelines and checkpoints for actual practice. A UDL approach is structured and practical and, similar to accessibility, UDL defines an end goal: a product that is usable by the widest range of individuals possible. The framework, however, emphasizes the design, which is only one aspect of creating an online course.

To broaden our understanding of UDL, it’s important to understand that UDL emerged from universal design, which is an architectural concept. Architecture, unlike the web, is physically fixed, and as such, the emphasis is on a single design that works for everyone. 

Inclusive Design

While UDL emerged from architecture, inclusive design was “born out of digital environments,” and, while architecture is fixed, the web is flexible and ever-changing. As such, inclusive design emphasizes flexibility and process. Inclusive design is iterative. With an emphasis on iteration and process, inclusive design cannot be separated from the lived experience of actual users. In other words, if the users (in our case, students) are contributing to and evaluating the design, then we can no longer separate the design and delivery–the creation and facilitation activities.

With a focus on process, inclusive design emphasizes co-creation and frequent feedback from multiple developers as well as end users. In particular, seeking contributions from excluded communities during the entire design and evaluation process is critical to an inclusive process.

Unlike accessibility and UDL, inclusive design is focused on process and iteration. To help illustrate how we see these three design approaches working together, my colleague, Elisabeth McBrien and I created the figure below (figure 1).

Three circles. The outer circle represents inclusive design. The middle circle represents UDL. And the smallest circle represents accessibility.
Figure 1. An inclusive design process will always include UDL and accessibility as end goals.

We see accessibility compliance as core to any design. UDL goes beyond the requirements of accessibility to meet the needs of all users. In an inclusive design process, UDL and accessibility are always the end goal, but inclusive design emphasizes the importance of feedback and iteration. We can always improve and we always have more work to do.

In Practice

Now that we have a better understanding how accessibility, UDL, and inclusive design work together to contribute to a learning environment that meets the needs of all learners, how do we apply them and improve? Ecampus has many guidelines and templates that help us to meet the goals of accessibility and UDL, but how can we be more inclusive throughout this process? 

Here are some inclusive approaches that you might consider integrating into your course facilitation and teaching:

  • Build rapport with students. This is accomplished by infusing instructor presence whenever possible. Respond to Q&A questions and emails within 24-48 hours. Share resources. Deliver feedback promptly. An important element of rapport and presence is showing your personality, so consider using video to welcome students and to encourage them throughout the course.
  • Solicit feedback. One of the easiest ways to solicit feedback from your students is to use a survey. Keep surveys short and consider asking students to share in a few words how the course is going or what they find most challenging.
  • Establish clear criteria and structure. Rubrics, templates, examples, and consistent naming and organization of course materials are just a few ways to provide clarity and structure.
  • Acknowledge student contributions. Praise is an instant confidence booster. Do you have a student–particularly, an underrepresented student–who did an exceptional job on one of your assignments? Let them know. Consider sharing their work as an example–with their permission, of course.
  • Feature counter-stereotypical examples of people in your field. One common barrier to success for underrepresented students is that they don’t see themselves reflected in a particular discipline. Make sure your readings, examples, and other course materials represent a variety of identities. If there’s a lack of diversity in your field, find a way to acknowledge this to your students.
  • Promote student agency and autonomy by giving them choice, whenever possible. Providing choice and promoting agency allow students to connect your course to their own experiences and values.
  • Emphasize real world applications of course work. Often, we assume that our students understand the purpose of course activities, but this is not always the case. Sharing real world applications will help students to see the value and greater purpose of their studies.

Final Thoughts

We’ve covered a lot in this post, and I hope that we’ve come away with a better understanding of disability, accessibility, Universal Design for Learning (UDL), and inclusive design. One of the most important takeaways is that inclusive design is an ongoing process of feedback and iteration. As our student body changes, so do their needs. In an upcoming blog post, Elisabeth McBrien will share more details about student needs and how you might use student personas to design more inclusively.  

As we continue the challenging–yet meaningful–work of creating welcoming online learning environments, it’s important that we have a shared understanding of what that work entails, what work we have done, and what work we have yet to do.

Resources

  1. Appert, L. et al. (2018) Guide for Inclusive Teaching at Columbia. Columbia University: Center for Teaching and Learning.
  2. Gannon, Kevin. (2018) The case for inclusive teaching. Chronicle of Higher Education.
  3. Hogan, Kelly A. and Sathy, Viji. (2019, July 22) “Want to Reach All of Your Students? Here’s How to Make Your Teaching More Inclusive: Advice Guide.” Chronicle of Higher Education.
  4. The inclusive design guide. Inclusive Design Research Centre at OCAD University. CC-BY 3.0.
  5. Inclusive Teaching: Supporting All Students in the College Classroom. EdX course from Columbia University.

Introduction

For those who work in higher education, it may not come as a surprise that the field of instructional design has grown in tandem with the expansion of online programs and courses. Evidence of this growth abounds. While the discipline of instructional design has expanded rapidly in recent years, the history of instructional design is not well known by those outside of the field.

This post will cover a brief history of instructional design with a particular emphasis on design: What influences design? How are design decisions made? How has the way we approached design changed over time? We’ll also consider how instructional designers actually design courses and the importance of course structure as an inclusive practice.

Instructional Design: Theory and History

Every instructional design curriculum teaches three general theories or theoretical frameworks for learning: behaviorism, cognitivism, and constructivism. While an instructional designer (ID) probably wouldn’t call herself a cognitivist or a behaviorist, for example, these theories influence instructional design and the way IDs approach the design process.

The field of instructional design is widely believed to have originated during World War II, when training videos like this one were created to prepare soldiers with the knowledge and skills they would need in battle. This form of audio-visual instruction, although embraced by the military, was not initially embraced by schools.

B.F. Skinner
“B.F. Skinner” Portrait Art Print
by Xiquid

In the 1950s, behaviorists, such as B.F. Skinner, dominated popular thought on how to teach and design instruction. For behaviorists, learning results in an observable change in behavior. The optimal design of a learning environment from a behaviorist perspective would be an environment that increases student motivation for learning, provides reinforcement for demonstrating learning, and removes distractions. Behaviorists are always designing for a specific response, and instruction is intended to teach discrete knowledge and skills. For behaviorists, motivation is critical, but only important to the extent that it elicits the desired behavior. 

Cognitivism was largely a response to behaviorism. Cognitivists emphasized the role of cognition and the mind; they acknowledged that, when designing learning environments, there is more to consider than the content to be learned. More than environmental factors and instructional components, the learners’ own readiness, or prior knowledge, along with their beliefs and attitudes, require consideration. Design, from a cognitivist approach, often emphasizes preparedness and self-awareness. Scaffolding learning and teaching study skills and time-management (metacognitive skills) are practices grounded in a cognitivist framework.

While cognitivists emphasize the learner experience, and in particular, acknowledge that learners’ existing knowledge and past histories influence their experience, the learner is still receiving information and acting on it–responding to carefully designed learning environments.

Constructivism, the most current of the three frameworks, on the other hand, emphasizes that the learner is constructing their own understanding of the world, not just responding to it. Learners are activity creating knowledge as they engage with the learning environment.

All–or nearly all–modern pedagogical approaches are influenced by these theoretical frameworks for learning.

Design Approaches

A single course can be seen as a microcosm of theoretical frameworks, historical models, and value-laden judgements of pedagogical approaches

Learning theories are important because they influence our design models, but by no means are learning theories the only factor guiding design decisions. In our daily work, IDs rely on many different tools and resources. Often, IDs will use multiple tools to make decisions and overcome design challenges. So, how do we accomplish this work in practice?

  1. We look to established learning outcomes. We talk about learning goals and activities with faculty. We ask questions to guide decision making about how to meet course learning outcomes through our course design.
  2. We look to research-based frameworks and pedagogical approaches such as universal design for learning (UDL), inclusive design, active learning, student-centered design, and many other models. These models may be influenced by learning theory, but they are more practical in nature.
  3. We look to human models. We often heed advice and follow the examples our more experienced peers.
  4. We look to our own past experiences and solutions that have worked in similar situations, and we apply what we learned to future situations.
  5. We make professional judgements; judgements rooted in our tacit knowledge of what we believe “good design” looks like. For better or for worse, we follow our intuition. Our gut.

Over time, one can see that instructional design has evolved from an emphasis on teaching discrete knowledge and skills that can be easily measured (behaviorism) to an emphasis on guiding unique learners to actively create their own understanding (constructivism). Design approaches, however, are not as straightforward as simply taking a theory and applying it to a learning situation or some course material. Instructional design is nuanced. It is art and science. A single course can be seen as a microcosm of theoretical frameworks, historical models, and value-laden judgements of pedagogical approaches–as well as value-laden judgements of disciplinary knowledge and its importance. But. That’s another blog post.

Design Structure to Meet Diverse Needs

Meeting diverse needs, however, does not necessitate complexity in course design

If learners are unique, if learning can’t be programmed, if learning environments must be adaptable, if learners are constructing their own knowledge, how is all of this accommodated in a course design?

Designing from a modern constructivist perspective, from the viewpoint that students have vastly different backgrounds, past experiences, and world-views, requires that many diverse needs be accommodated in a single course. Meeting diverse needs, however, does not necessitate complexity in course design. Meeting diverse needs means that we need to provide support, so that it is there for those who need it, but not distracting to those who don’t need it. Design needs to be intuitive and seamless for the user.

Recent research on inclusive practices in design and teaching identify structure as an inclusive practice. Design can be viewed as a way of applying, or ensuring, a course structure is present. In that way, working with an instructional designer will make your course more inclusive. But, I digress. Or, do I?

Sathy and Hogan contend, in their guide, that structure benefits all students, but some, particularly those from underrepresented groups, benefit disproportionately. Conversely, not enough structure, leaves too many students behind. Since many of the same students who benefit from additional course structure also succeed a lower rates, providing course structure may also help to close the achievement gap.

How are We Doing This?

The good news is that Ecampus is invested in creating courses that are designed–or structured–in a way that meets the needs of many different learners. Working with an Ecampus instructional designer will ensure that your course materials are clearly presented to your students. In fact, many of the resources we provide–course planning templates, rubrics, module outlines, consistent navigation in Canvas, course banners and other icons and visual cues–are intended to ensure that your students navigate your course materials and find what they need, when they need it.

References

Icons made by phatplus and Freepik from www.flaticon.com are licensed by CC 3.0 BY

Boling, E., Alangari, H., Hajdu, I. M., Guo, M., Gyabak, K., Khlaif, Z., . . . Techawitthayachinda, R. (2017). Core Judgments of Instructional Designers in Practice. Performance Improvement Quarterly, 30(3), 199-219. doi:10.1002/piq.21250

Eddy, S.L. and Hogan, K. A. (2017) “Getting Under the Hood: How and for Whom Does Increasing Course Structure Work?” CBE—Life Sciences Education. Retrieved from https://www.lifescied.org/doi/10.1187/cbe.14-03-0050

Sathy, V. and Hogan, K.A. (2019). “Want to Reach All of Your Students? Here’s How to Make Your Teaching More Inclusive: Advice Guide. Chronicle of Higher Education. Retrieved from https://www.chronicle.com/interactives/20190719_inclusive_teaching

Tanner, K.D. (2013) “Structure Matters: Twenty-One Teaching Strategies to Promote Student Engagement and Cultivate Classroom Equity,” CBE—Life Sciences Education. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762997/

This post is the second in a three-part series that summarizes conclusions and insights from research of active, blended, and adaptive learning practices. Part one covered active learning, and today’s article focuses on the value of blended learning.

First Things First

What, exactly, is “blended” learning? Dictionary.com defines it as a “style of education in which students learn via electronic and online media as well as traditional face-to-face learning.” This is a fairly simplistic view, so Clifford Maxwell (2016), on the Blended Learning Universe website, offers a more detailed definition that clarifies three distinct parts:

  1. Any formal education program in which at least part of the learning is delivered online, wherein the student controls some element of time, place, path or pace.
  2. Some portion of the student’s learning occurs in a supervised physical location away from home, such as in a traditional on-campus classroom.
  3. The learning design is structured to ensure that both the online and in-person modalities are connected to provide a cohesive and integrated learning experience.

It’s important to note that a face-to-face class that simply uses an online component as a repository for course materials is not true blended learning. The first element in Maxwell’s definition, where the student independently controls some aspect of learning in the online environment, is key to distinguishing blended learning from the mere addition of technology.

You may also be familiar with other popular terms for blended learning, including hybrid or flipped classroom. Again, the common denominator is that the course design intentionally, and seamlessly, integrates both modalities to achieve the learning outcomes.

Let’s examine what the research says about the benefits of combining asynchronous, student-controlled learning with instructor-driven, face-to-face teaching.

Does Blended Learning Offer Benefits?

Blended Learning Icon

The short answer is yes.

The online component of blended learning can help “level the playing field.” In many face-to-face classes, students may be too shy or reluctant to speak up, ask questions, or offer an alternate idea. A blended environment combines the benefit of giving students time to compose thoughtful comments for an online discussion without the pressure and think-on-your-feet demand of live discourse, while maintaining direct peer engagement and social connections during in-classroom sessions (Hoxie, Stillman, & Chesal, 2014). Blended learning, through its asynchronous component, allows students to engage with materials at their own pace and reflect on their learning when applying new concepts and principles (Margulieux, McCracken, & Catrambone, 2015).

Since well-designed online learning produces equivalent outcomes to in-person classes, lecture and other passive information can be shifted to the online format, freeing up face-to-face class time for active learning, such as peer discussions, team projects, problem-based learning, supporting hands-on labs or walking through simulations (Bowen, Chingos, Lack, & Nygren, 2014). One research study found that combining online activities with in-person sessions also increased students’ motivation to succeed (Sithole, Chiyaka, & McCarthy, 2017).

What Makes Blended Learning So Effective?

Five young people studying with laptop and tablet computers on white desk. Beautiful girls and guys working together wearing casual clothes. Multi-ethnic group smiling.

Nearly all the research reviewed concluded that blended learning affords measurable advantages over exclusively face-to-face or fully online learning (U.S. Department of Education, Office of Planning, Evaluation, and Policy Development, 2009). The combination of technology with well-designed in-person interaction provides fertile ground for student learning. Important behaviors and interactions such as instructor feedback, assignment scaffolding, hands-on activities, reflection, repetition and practice were enhanced, and students also gained advantages in terms of flexibility, time management, and convenience (Margulieux, McCracken, & Catrambone, 2015).

Blended learning tends to benefit disadvantaged or academically underprepared students, groups that typically struggle in fully online courses (Chingosa, Griffiths, Mulhern, and Spies, 2017). Combining technology with in-person teaching helped to mitigate some challenges faced by many students in scientific disciplines, improving persistence and graduation rates. And since blended learning can be supportive for a broader range of students, it may increase retention and persistence for underrepresented groups, such as students of color (Bax, Campbell, Eabron, & Thomson, 2014–15).

Blended learning  benefits instructors, too. When asked about blended learning, most university faculty and instructors believe it to be more effective (Bernard, Borokhovski, Schmid, Tamim, & Abrami, 2014). The technologies used often capture and provide important data analytics, which help instructors more quickly identify under-performing students so they can provide extra support or guidance (McDonald, 2014). Many online tools are interactive, fun and engaging, which encourages student interaction and enhances collaboration (Hoxie, Stillman, & Chesal, 2014). Blended learning is growing in acceptance and often seen as a favorable approach because it synthesizes the advantages of traditional instruction with the flexibility and convenience of online learning (Liu, et al., 2016).

A Leap of Faith

Is blended learning right for your discipline or area of expertise? If you want to give it a try, there are many excellent internet resources available to support your transition.

Though faculty can choose to develop a blended class on their own, Oregon State instructors who develop a hybrid course through Ecampus receive full support and resources, including collaboration with an instructional designer, video creation and media development assistance. The OSU Center for Teaching and Learning offers workshops and guidance for blended, flipped, and hybrid classes. The Blended Learning Universe website, referenced earlier, also provides many resources, including a design guide, to support the transformation of a face-to-face class into a cohesive blended learning experience.

If you are ready to reap the benefits of both online and face-to-face teaching, I urge you to go for it! After all, the research shows that it’s a pretty safe leap.

For those of you already on board with blended learning, let us hear from you! Share your stories of success, lessons learned, do’s and don’ts, and anything else that would contribute to instructors still thinking about giving blended learning a try.

Susan Fein, Oregon State University Ecampus Instructional Designer
susan.fein@oregonstate.edu | 541-747-3364

References

  • Bax, P., Campbell, M., Eabron, T., & Thomson, D. (2014–15). Factors that Impede the Progress, Success, and Persistence to Pursue STEM Education for Henderson State University Students Who Are Enrolled in Honors College and in the McNair Scholars Program. Henderson State University. Arkadelphia: Academic Forum.
  • Bernard, R. M., Borokhovski, E., Schmid, R. F., Tamim, R. M., & Abrami, P. C. (2014). A meta-analysis of blended learning and technology use in higher education: From the general to the applied. J Comput High Educ, 26, 87–122.
  • Bowen, W. G., Chingos, M. M., Lack, K. A., & Nygren, T. I. (2014). Interactive learning online at public universities: Evidence from a six-campus randomized trial. Journal of Policy Analysis and Management, 33(1), 94–111.
  • Chingosa, M. M., Griffiths, R. J., Mulhern, C., & Spies, R. R. (2017). Interactive online learning on campus: Comparing students’ outcomes in hybrid and traditional courses in the university system of Maryland. The Journal of Higher Education, 88(2), 210-233.
  • Hoxie, A.-M., Stillman, J., & Chesal, K. (2014). Blended learning in New York City. In A. G. Picciano, & C. R. Graham (Eds.), Blended Learning Research Perspectives (Vol. 2, pp. 327-347). New York: Routledge.
  • Liu, Q., Peng, W., Zhang, F., Hu, R., Li, Y., & Yan, W. (2016). The effectiveness of blended learning in health professions: Systematic review and meta-analysis. Journal of Medical Internet Research, 18(1). doi:10.2196/jmir.4807
  • Maxwell, C. (2016, March 4). What blended learning is – and isn’t. Blog post. Retrieved from Blended Learning Universe.
  • Margulieux, L. E., McCracken, W. M., & Catrambone, R. (2015). Mixing in-class and online learning: Content meta-analysis of outcomes for hybrid, blended, and flipped courses. In O. Lindwall, P. Hakkinen, T. Koschmann, & P. Tchoun (Ed.), Exploring the Material Conditions of Learning: Computer Supported Collaborative Learning (CSCL) Conference (pp. 220-227). Gothenburg, Sweden: The International Society of the Learning Sciences.
  • McDonald, P. L. (2014). Variation in adult learners’ experience of blended learning in higher education. In Blended Learning Research Perspectives (Vol. 2, pp. 238-257). Routledge.
  • Sithole, A., Chiyaka, E. T., & McCarthy, P. (2017). Student attraction, persistence and retention in STEM programs: Successes and continuing challenges. Higher Education Studies, 7(1).
  • U.S. Department of Education, Office of Planning, Evaluation, and Policy Development. (2009). Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies. Washington, D.C.

Image Credits

  • Blended Learning Icon: Innovation Co-Lab Duke Innovation Co-Lab [CC0]
  • Leap of Faith: Photo by Denny Luan on Unsplash
  • School photo created by javi_indy – www.freepik.com

One of the most common questions I get as an Instructional Designer is, “How do I prevent cheating in my online course?” Instructors are looking for detection strategies and often punitive measures to catch, report, and punish academic cheaters. Their concerns are understandable—searching Google for the phrase “take my test for me,” returns pages and pages of results from services with names like “Online Class Hero” and “Noneedtostudy.com” that promise to use “American Experts” to help pass your course with “flying grades.” 1 But by focusing only on what detection measures we can implement and the means and methods by which students are cheating, we are asking the wrong questions. Instead let’s consider what we can do to understand why students cheat, and how careful course and assessment design might reduce their motivation to do so.

A new study published in Computers & Education identified five specified themes in analyzing the reasons students provided when seeking help from contract cheating services (Amigud & Lancaster, 2019):

  • Academic Aptitude – “Please teach me how to write an essay.”
  • Perseverance – “I can’t look at it anymore.”
  • Personal Issues – “I have such a bad migraine.”
  • Competing Objectives – “I work so I don’t have time.”
  • Self-Discipline – “I procrastinated until today.”

Their results showed that students don’t begin a course with the intention of academic misconduct. Rather, they reach a point, often after initially attempting the work, when the perception of pressures, lack of skills, or lack of resources removes their will to complete the course themselves. Online students may be more likely to have external obligations and involvement in non-academic activities. According to a 2016 study, a significant majority of online students are often juggling other obligations, including raising children and working while earning their degrees (Clinefelter & Aslanian, 2016).

While issues with cheating are never going to be completely eliminated, several strategies have emerged in recent research that focus on reducing cheating from a lens of design rather than one of punishment. Here are ten of my favorite approaches that speak to the justifications identified by students that led to cheating:

  1. Make sure that students are aware of academic support services (Yu, Glanzer, Johnson, Sriram, & Moore, 2018). Oregon State, like many universities, offers writing help, subject-area tutors and for Ecampus students, a Student Success team that can help identify resources and provide coaching on academic skills. Encourage students, leading up to exams or big assessment projects, to reach out during online office hours or via email if they feel they need assistance.
  2. Have students create study guides as a precursor assignment to an exam—perhaps using online tools to create mindmaps or flashcards. Students who are better prepared for assessments have a reduced incentive to cheat. Study guides can be a non-graded activity, like a game or practice quiz, or provided as a learning resource.
  3. Ensure that students understand the benefits of producing their own work and that the assessment is designed to help them develop and demonstrate subject knowledge (Lancaster & Clarke, 2015). Clarify for students the relevance of a particular assessment and how it relates to the weekly and larger course learning outcomes.
  4. Provide examples of work that meets your expectations along with specific evaluation criteria. Students need to understand how they are being graded and be able to judge the quality of their own work. A student feeling in the dark about what is expected from them may be more likely to turn to outside help.
  5. Provide students with opportunities throughout the course to participate in activities, such as discussions and assignments, that will prepare them for summative assessments (Morris, 2018).
  6. Allow students to use external sources of information while taking tests. Assessments in which students are allowed to leverage the materials they have learned from to construct a response do a better job of assessing higher order learning. Memorizing and repeating information is rarely what we hope students to achieve at the end of instruction.
  7. Introduce alternative forms of assessment. Creative instructors can design learning activities that require students to develop a deeper understanding and take on more challenging assignments. Examples of these include recorded presentations, debates, case studies, portfolios, and research projects.
  8. Rather than a large summative exam at the end of a course, focus on more frequent smaller, formative assessments (Lancaster & Clarke, 2015). Provide students with an ongoing opportunity to demonstrate their knowledge without the pressure introduced by a final exam that accounts for a substantial portion of their grade.
  9. Create a course environment that is safe to make and learn from mistakes. Build into a course non-graded activities in which students can practice the skills they will need to demonstrate during an exam.
  10. Build a relationship with students. When instructors are responsive to student questions, provide substantive feedback throughout a course and find other ways to interact with students — they are less likely to cheat. It matters if students believe an instructor cares about them (Bluestein, 2015).

No single strategy is guaranteed to immunize your course against the possibility that a student will use some form of cheating. Almost any type of assignment can be purchased quickly online. The goal of any assessment should be to ensure that students have met the learning outcomes—not to see if we can catch them cheating. Instead, focus on understanding pressures a student might face to succeed in a course, and the obstacles they could encounter in doing so. Work hard to connect with your students during course delivery and humanize the experience of learning online. Thoughtful design strategies, those that prioritize supporting student academic progress, can alleviate the conditions that lead to academic integrity issues.


1 This search was suggested by an article published in the New England Board of Higher Education on cheating in online programs. (Berkey & Halfond, 2015)

References

Amigud, A., & Lancaster, T. (2019). 246 reasons to cheat: An analysis of students’ reasons for seeking to outsource academic work. Computers & Education, 134, 98–107. https://doi.org/10.1016/j.compedu.2019.01.017

Berkey, D., & Halfond, J. (2015). Cheating, student authentication and proctoring in online programs.

Bluestein, S. A. (2015). Connecting Student-Faculty Interaction to Academic Dishonesty. Community College Journal of Research and Practice, 39(2), 179–191. https://doi.org/10.1080/10668926.2013.848176

Clinefelter, D. D. L., & Aslanian, C. B. (2016). Comprehensive Data on Demands and Preferences. 60.

Lancaster, T., & Clarke, R. (2015). Contract Cheating: The Outsourcing of Assessed Student Work. In T. A. Bretag (Ed.), Handbook of Academic Integrity (pp. 1–14). https://doi.org/10.1007/978-981-287-079-7_17-1

Morris, E. J. (2018). Academic integrity matters: five considerations for addressing contract cheating. International Journal for Educational Integrity, 14(1), 15. https://doi.org/10.1007/s40979-018-0038-5

Yu, H., Glanzer, P. L., Johnson, B. R., Sriram, R., & Moore, B. (2018). Why College Students Cheat: A Conceptual Model of Five Factors. The Review of Higher Education, 41(4), 549–576. https://doi.org/10.1353/rhe.2018.0025

game controller on work desk

What can instructional designers learn from video game design? This might seem like a silly question—what do video games have to do with learning? Why might we use video games as an inspiration in pedagogy? As instructional designers, faculty often come to us with a variety of problems to address in their course designs—a lack of student interaction, how to improve student application of a given topic, and many more. While there are many tools at our disposal, I’d like to propose an extra tool belt for our kit: what if we thought more like game designers?

Video games excel at creating engaging and motivating learning environments. Hold on a minute, I hear you saying, video games don’t teach anything! In order for games to onboard players, games teach players how to navigate the “physical” game world, use the game’s controls, identify the rules of what is and is not allowed, interpret the feedback the game communicates about those rules, identify the current outcome, form and execute strategies, and a large variety of other things depending on the game, and that’s usually just the tutorial level!

What is the experience like in a learning environment when students begin an online course? They learn how to navigate the course site, use the tools necessary for the course, identify the assessment directions and feedback, identify the short-term and long-term course outcomes, learn material at a variety of different learning levels, and large variety of other things depending on the class, and that’s usually just the first week or two! Sound familiar? What are some things that video games do well during this on-boarding/tutorial to setup players for success? And how might instructional designers and faculty use these elements as inspiration in their classes?

The following list includes nine tips on how game design tackles tutorial levels and how these designs could be implemented in a course design:

  1. Early tasks are very simple, have low stakes, and feedback for these tasks is often very limited—either “you got it” or “try again”. Consider having some low-stakes assignments early in the course that are pass/fail.
  2. If negative feedback is received (dying, losing a life, failing a level, etc.), it is often accompanied by a hint, never an answer. If you have a MCQ, do not allow students to see the correct answer, but consider adding comments to appear if a student selects an incorrect answer that offers hints.
  3. If negative feedback is received, the game does not move on until the current outcome is achieved. Allow multiple attempts on quizzes or assignments and/or setup prerequisite activities or modules.
  4. Game levels allow for flexible time—different players complete levels at different rates. Design tasks with flexible due dates. Many courses already allow some flexibility for students to complete activities and assessments within weekly modules—can that flexibility be extended beyond a weekly time frame?
  5. Tutorial quests usually have predetermined and clearly communicated outcomes. All objectives are observable by both the game and the player. Create outcomes and rubric conditions/language that are self-assessable, even if the instructor will complete the grading.
  6. Tasks and game levels are usually cumulative in nature and progress using scaffolded levels/activities. Consider breaking up large assignments or activities into smaller, more cumulative parts.
    • For example, the first quest in The Elder Scrolls V: Skyrim is a great example for Nos. 5 and 6 above. It consists of four required objectives and two optional objectives:
      • Make your way to the keep.
      • Enter the Keep with Hadvar or Ralof.
      • Escape Helgen.
      • Find some equipment (Hadvar) / Loot Gunjar’s body (Ralof).
        • Optional: Search a barrel for potions.
        • Optional: Pick the lock of a cage.
  7. There are varying degrees of assumed prior knowledge, but no matter what, everyone participates in the tutorial levels. They are not optional. Consider saving optional “side quests” for later in a course or having an introductory module for everyone, regardless of skill level.
  8. The “tutorial” process usually ends when all skills have been introduced, but some games continue to add new skills throughout, inserting mid-game tutorials when necessary. Return to some of the design ideas on this list if a course introduces new topics throughout.
  9. After a requisite number of skills are mastered and players are able to fully play the game, the only major changes in design are increases in difficulty. These changes in difficulty are usually inline with maintaining a flow state by balancing the amount of challenge to the skill level of the player. As course material and activities increase in difficulty, make sure there are ample opportunities for students to develop their abilities in tandem.

Games are a great model for designing engaging learning experiences, with significant research in psychology and education to back it up. By understanding how games are designed, we can apply this knowledge in our course designs to help make our courses more motivating and engaging for our students.

Additional Resources

Want to know more about the psychology of why these designs work? Start with these resources:

Whether you are a new or seasoned online instructor, understanding how to establish and maintain instructor presence is a commonly shared challenge. What is known about online learners is they want to know their instructors are engaged and regularly interacting in the course. Students also express how important it is to know that their instructors care about them.

There is a natural distance inherent in online classrooms which necessitates purposeful actions and intentional structures to prevent isolation and to foster connection. There is great news… this distance can be overcome!  Moreover, research has indicated that instructor presence has a relationship with perceived student satisfaction and success. Being there for your students can make a difference!

Being present goes a step further beyond students perceiving that their instructors are there. By definition, instructor presence is “the design, facilitation, and direction of cognitive and social process for the purpose of realizing personally meaningful and educationally worthwhile learning outcomes.” This may sound like a significant undertaking, but rest assured that you can craft your presence over time and that you have ample support from the Ecampus team. We can help bring your ideas to life!

Keep in mind that curating instructor presence will be an evolution. Learning environments and experiences are dynamic. In addition, the composition of students will change each term, so learner needs and wants will continually shift. Strategies used within a specific context may not work for another, and that is okay.

Let’s get started!

Try starting out small by exploring different ideas. Don’t be afraid to change directions if one approach doesn’t work. With all that said, what are some strategies for establishing and maintaining presence which can be leveraged today?

Establishing presence

  • Welcome announcements
  • Instructor introduction video
  • About your instructor page
  • Course overview video
  • Virtual office hours or individualized virtual sessions to connect with students
  • Personalized language to humanize the learning experience

Maintaining presence

  • Non-graded community building spaces to connect around complex learning activities
  • Announcements to send regular updates, reminders, and check-ins
    • Tip! Announcements can also be leveraged to share and highlight valuable connections, expand upon those insights, and provide relevant resources for learners to explore.
  • Monitor learner progress
    • Regular and timely feedback which is clear and actionable
    • Outreach to learners who are struggling or engagement is lacking
  • Present content in diverse ways
    • Module overview videos
    • Audio recordings (e.g. podcast)
    • Screencast demonstrations
  • Engage in course discussions
  • Solicit student feedback
    • Tip! Consider adding a short anonymous survey in the middle of the course.

As ideas begin to percolate, please do share those with your Instructional Designer so that together you can explore different strategies and tools that will work best for you.

References

  • Budhai, S., & Williams, M. (2016). Teaching Presence in Online Courses: Practical Applications, Co-Facilitation, and Technology Integration. The Journal of Effective Teaching,16(3), 76-84.
  • Ekmekci, O. (2013). Being There: Establishing Instructor Presence in an Online Learning Environment. Higher Education Studies, 3(1), 29-38.
  • Jaggers, S., Edgecombe, N., & West-Stacey, G. (2013, April). Creating an Effective Online Instructor Presence. Retrieved from https://ccrc.tc.columbia.edu/media/k2/attachments/effective-online-instructor-presence.pdf
  • Ladyshewsky, R. K. (2013). Instructor Presence in Online Courses and Student Satisfaction. International Journal for the Scholarship of Teaching and Learning, 7(1). doi:10.20429/ijsotl.2013.070113
  • Sandercock, I. (2014, October 14). The Importance of Instructor Presence in Online Courses. Retrieved from https://teachonline.asu.edu/2014/10/important-instructor-presence-online-course/
  • Smith, T. (2014, September 30). Managing Instructor Presence Online. Retrieved from http://teachonline.asu.edu/2012/08/managing-instructor-presence-online/#more-1069

Why Accessibility?

Online education provides access to all types of students and from all across the world. Each student is unique and has unique educational needs. To better attend to our student’s needs, we can develop course materials from the beginning to be more accessible for everyone.

What can I do?

Provide the equivalent alternative to multimedia

When creating or selecting multimedia for a course, an equivalent option should be provided for students that cannot access the multimedia. As an example, if you are creating lectures you should create a word for word transcript that can be posted or better yet, be used to create closed captions.

Provide “alternative” description for images

For students who use screen readers, adding an “ALT-TAG” on all images used in the course helps them to “see” images or skip over unnecessary decorative images efficiently. The ALT-Text should describe the educational value of that image. What they are they supposed to gain from that image and why is it essential to the course material?

Make all file types accessible

When creating or selecting documents to use in your class, you’ll want to make sure that all files are accessible to students. Using built-in accessibility feature in Word, PowerPoint and PDF documents will help to develop an accessible structure for that document.

Creating meaningful link names

All students will benefit from having a link that describes where they are going to link out to. Students who use screen readers will be especially grateful if they have a link that says “Oregon State University Library resources” instead of “click here” or simply the URL.

Use contrasting colors

Blind person frustrated because the computer says to push the red button but has no other ways of conveying which button to push.
Credit: Zero Project Conference

Dark text on light backgrounds or light text on dark backgrounds will help all students read your important information easier than, perhaps, orange text on a red background. Doing this also limits the trouble that students who are color blind to see the difference between the background and text. Remember to not use color as the only form of meaning. If you have red and green text showing students what to and not to include in a paper, make sure there are headings that also state that information. Want to know what colors and backgrounds work? Check out WebAIM’s Color Contrast Checker.

If you have any tips or questions, please leave them in the comment area below.

Becoming a Student Again

With excitement and a bit of apprehension I logged in to my first ever online class. Sure, I’ve taught online classes for years, but this was my first time as a student in an online class that I had paid to take and where grades were given.

I reviewed the “Start Here” module and familiarized myself with the structure of the class before I opened the first lecture from my new instructor. The instructor’s voice came through my speakers and as she began to speak I noted the length of the lecture: 44 minutes. “What?!? I don’t have time for this,” I thought as I slammed my laptop shut. It suddenly and powerfully occurred to me that I did not have control over this classroom and my expectations as a student might be vastly different from my instructor’s.

Eventually, I settled in to the rhythm of the class and my instructor’s expectations. As it turns out, that 44 minute lecture was an outlier (the rest were closer to 15 minutes), and I figured out a way to incorporate the lectures into my schedule (I watched them while on the spin bike).

The Needs of the Online Student

As a working parent, trying to balance family, work, and school obligations, I am the target customer for online education, and I certainly felt the “squeeze” of all these obligations competing for my time. Like many of my students, my days are jam-packed and most of the time, I am scheduled to the minute. Uncertainties can throw my well-planned schedule into turmoil… “Wow, that reading took longer than I expected. No, I can’t participate in a live webinar or meet for a group project at 3pm. I have to pick up kids from school. Darn, this link is broken and the instructor hasn’t responded to my questions about it…now I’ve lost my window for working on this project. My dog died today, and while I had to go to work and had to make dinner, I just don’t have it in me to watch a class lecture and take a quiz. I’m too sad…can I have an extension?”

Meeting Our Students Where They Are

I ended up taking several classes from several instructors over the course of a year. Being a student in these classes exposed me to a number of different teaching styles and techniques and strategies, and I was able to experience these things from a student point of view. Based on my experience, here are 4 strategies for instructors that your students might find helpful:

  1. Provide time estimates for weekly activities. Estimated read times and watch times for learning materials are very helpful for a busy student trying to plan the week.
  2. Chunk the material. As an online student, I rarely had long chunks of time to work on my classes, but I could squeeze in smaller chunks of time here and there. And while students can start and stop a task as needed in the online classroom, it’s rewarding to actually finish a task in one sitting.
  3. Make it easy to find class resources. In the online classroom there are many wonderful learning materials we can easily incorporate (e.g., links to blogs, videos, calculators); but when these resources are scattered throughout 10 learning modules, they can be difficult for the student to find. Provide a works cited page (with hyperlinks) or a glossary of key terms to help students locate material, especially when studying for exams.
  4. Anticipate Questions. This might be tough the first time you teach a course, but over time we often see the same questions arising from our students. We can reduce the delay in response time, by anticipating these questions and providing answers and support ahead of time. This could be a Q&A sheet for complex assignments or a guided worksheet with comments from the instructor to help students get through well-known tricky spots.

The flexibility of the online classroom gives busy students around the world access to educational opportunities that have not been available in the past. These students are working hard in every aspect of their lives and with a little support from us, their online instructors, we can help them make the most of the time they have in order to learn and grow.

-Nikki Brown, Instructor, College of Business

Along with the vast growth of fully online education, a corresponding trend is the growing popularity of hybrid (or blended) courses and programs. OSU defines a hybrid course as one that includes both regularly scheduled on-site classroom meetings and significant online out-of-classroom components that replace regularly scheduled class meeting time.

The blended learning mix map from the Blended Learning Toolkit is a widely used tool to visualize a hybrid course under design or redesign. This simple template of two overlapping circles provides space to list online learning activities, face-to-face learning activities and possibly activities that occur in both learning environments. For example, discussions may be a regular course activity online, in class, or in both environments.

 

Blended Learning Mix Map

Much of the real value of developing a mix map is gained from drawing arrows to connect each element of the course to one or more other elements. For example, an arrow may show that course videos are linked to weekly quizzes that assess student mastery of the video content. Arrows can also be used to add information about the the pedagogical purpose behind the connection of elements as in a sample mix map from Univ. of Central Florida’s Kathie Holland.

Anthony Klotz, OSU assistant professor of business, illustrates 10 weeks of teaching-and-learning progression with his sample MGMT 453 mix map. He shows that discussion, review and Q&A take place throughout MGMT 453 both online and face-to-face. OSU’s Hybrid Learning website provides downloadable mix map templates and more sample mix maps.

If sketching out a mix map for a whole course seems daunting, then beginning with a mix map of a typical week of the course may be the place to start. A weekly mix map, as a representative chunk of the course may provide a conceptual template for many of the other weeks of the same course.

The mix map serves multiple purposes:

  • It gives a snapshot of the balance between online and face-to-face components. For example, does the proposed mix map for your course seem to show a classroom course with some online supplements? Or does it show an online course with an occasional face-to-face check-in?
  • The mix map is valuable to diagnose whether a hybrid course under design is actually a course and a half. Has a 4-credit course taken on the appearance and corresponding student workload of a 6-credit course? If you add a time estimate to each course element on the mix map (for instance, 2 hours to complete the weekly reading), what do all the activities in a week add up to?
  • The connecting arrows are useful to assess whether the course elements are well integrated. Are the online and face-to-face learning activities deeply interwoven or will students perceive the hybrid course as two separate courses, one online and one in-class, running on parallel tracks?
  • The mix map can be used as well to check alignment of learning activities with course learning outcomes or with more granular weekly learning objectives. Ask yourself, how do specific activities and the forms of assessment connected to them on the mix map align with your learning outcomes?

Consider using a mix map! Faculty developing blended courses frequently find that spending even 10-15 minutes sketching out their planned hybrid courses on these “magic circles” can lead to significant insights about course design.