Tag Archives: HJ Andrews Forest

You don’t look your age: pruning young forests to mimic old-growth forest

“I’m always looking at the age of the forest, looking for fish, assessing the light levels. Once you’ve studied it, you can’t ignore it.” Allison Swartz, a PhD student in the Forest Ecosystems and Society program in the College of Forestry at Oregon State, is in the midst of a multi-year study on forest stream ecosystems. “My work focuses on canopy structure—how the forest age and structure influences life in streams,” says Allison. “People are always shocked at how many organisms live in such a small section of stream. So much life in there, but you don’t realize it when you’re walking nearby on the trail.”

Three scientists holding large nets stand in a rocky forest stream. One wears a backpack with cable coming out of it.
No, that’s not a Ghostbuster backpack! Here, Allison is using an electrofishing device that stuns fish just long enough for them to be scooped up, measured, and released. From left to right: Allison Swartz, Cedar Mackaness, Alvaro Cortes. Photo credit: Dana Warren

Following a timber harvest, there is a big increase in the amount of light reaching the forest floor. The increase in light also results in an increase in stream temperatures. Fish such as salmon and trout, which prefer cold water, are very sensitive to temperature changes. Since these fish are commercially and recreationally important, Oregon’s water quality regulations include strict requirements for maintaining stream temperatures. As a result, buffer areas of uncut forest are left around streams during timber harvests. These buffer areas, like much of the forests in the Pacific Northwest, and in the United States in general, can be characterized as being in a state of regeneration. Dense, regenerating stands of trees from 20-90 years old, are sometimes called second-growth forest. These forests tend to let less light through than an old growth forest does. Allison’s work focuses on how life in streams responds to differences in forest growth stage.

A Pacific giant salamander – a top-level stream predator and common resident of Oregon’s forest streams. Photo credit Allison Swartz.

The definition of the term old-growth forest depends on which expert you ask, and there is even less agreement on the concept of second-growth forest. Nevertheless, broadly speaking an old-growth forest has a wide range of tree species, ages, and sizes, including both living and dead trees, and a complex canopy structure. Openings in the canopy from fallen trees allow a greater variety of plant species to be established, some of which can only take root under gaps in the canopy but which can persist after the gap in the canopy is filled with new trees. The tightly-packed canopy limits the amount of light that can reach the forest floor, including the surface of the streams that Allison studies.

Forest stream near Yellowbottom Recreation Area, Oregon. Credit: Daniel Watkins

Allison’s research project is focused on six streams in the MacKenzie river basin, which includes private land owned by the Weyerhaeuser company, parts of the Willamette National Forest, and federal land. At some of these sites, after an initial survey, gaps were cut into the forest canopy to mimic light availability in an old growth forest. Sites with cut canopies were paired with uncut areas along the same stream. The daily ebb-and-flow of aquatic species is monitored by measuring the oxygen content of the water. The aquatic and terrestrial ecosystems have mainly been studied separately, she explained, but the linkages between these systems are complex. Measurements of vertebrate species are carried out using electrofishing techniques. “We do vertebrate surveys which infludes a few species of fish and Pacific giant salamanders. We measure and weight them and then return them to the stream,” Allison explained.

Measuring cutthroat trout. Photo credit Allison Swartz.

Over the last few years, Allison has spent three months of the summer living and working at one of her research sites, the HJ Andrews Experimental Forest. “We didn’t have much in terms of internet the first few years, so you connect with people and with the environment more,” Allison said. 

Allison never expected to be in a college of forestry. Her background is in hydrology, and she spent some time working for the United States Geological Survey before beginning graduate work. She has enjoyed being part of a research area with such direct policy and management impacts. “We all use wood, all the time, for everything. So we can’t deny that we need this as a resource,” says Allison. “It’s great that we’re looking at ways to manage this the best we can—to make a balance for everybody.”

Allison’s Apple Podcast Link

Over sixty years digging and we’re still finding new ‘dirt’ on HJ Andrews

One kilometer. Or roughly ten football fields. That’s the extent of the area over which Karla Jarecke, a Ph.D. candidate in the College of Forestry’s Department of Forest, Ecosystems & Society can feasibly navigate her way through the trail-less HJ Andrews Experimental forest to collect the data she needs in a typical day of field work. Imagining a football field is perhaps not the best way to appreciate this feat, nor envision the complex topography that makes up this coniferous forest on the western flanks of the Cascade mountains, roughly 50 miles East of Eugene. But these characteristics are precisely what have made this forest valuable to scientists since 1948 and continue to make it the ideal place for Karla’s research.

Experimental watersheds like the HJ Andrews forest were established initially to understand how clear-cutting influenced forest drainage and other ecosystem processes such as regrowth of plants and change in nutrients in soils and streams. This was during the time when timber-take was increasing and we still had little understanding of its ecosystem effects. Karla’s work is also forward-thinking, but less on the lines of what will happen to drainage when trees are removed and more focused on understanding the availability of water for trees to use now and in the future. She wants to know what influence topography has on plant water availability in mountainous landscapes.

Meter deep soil pits at Karla’s field site.

Back to bushwhacking. The answer to Karla’s research question lies beneath the uneven forest floor. Specifically, in the soil. Soil is the stuff made up of weathered rock, decomposing organic material and lots of life but it is also the medium through which much of the water within a forest drainage moves. Across her study area, Karla has 54 sites where she collects data from sensors that measure soil moisture at two different depths. These steel rods send electrical currents into the ground, which depending on how quickly they travel can tell her how much water is present in the soil. She also keeps track of sensors that measure atmospheric conditions, like temperature and air humidity. This information builds on the incredible sixty-year data set that has been collected on soil moisture within HJ Andrews, but with a new perspective.

Digging soil pits on steep slopes occasionally required stacking logs at the base of a tarp to prevent the soil from sliding down the hill.
Photo credit: Lina DiGregorio

Karla explains that there have been long-standing assumptions surrounding elevation gradients and their control on water availability in a forest system. This understanding has led to modeling tools currently used to extrapolate soil moisture across a landscape. But so far, her data show huge variability on surprisingly small scales that cannot be explained by gradient alone. This indicates that there are other controls on the spatial availability of soil moisture in such mountainous terrain.

“We’re finding that model doesn’t work really well in places where soil properties are complicated and topography is variable. And that’s just the first part of my research.”

The next phase of Karla’s work seeks to evaluate tree stress in the forest and determine if there are any connections between this and the variability she is finding in soil moisture across spatial scales. True to the complex nature of the landscape, this work is complicated! But to Karla, it’s important. Growing up in the mid-west, Karla came to know water as “green” and when she moved West, first to fulfill an internship in Colorado and then to pursue her graduate work here in the Pacific Northwest, she was (and still is) amazed by the abundance of clean, clear rivers and streams. And it’s something she doesn’t ever want to take for granted.

Karla and her sister Stephani snowshoeing on Tumalo Mountain in the Cascade Range of central Oregon.

To find out more about Karla’s research and her journey from farming in Italy to studying soil, tune in on Sunday, October 27th at 7 PM on KBVR 88.7 FM, live stream the show at http://www.orangemedianetwork.com/kbvr_fm/, or download our podcast on iTunes.

Karla’s episode on Apple Podcasts

A bird’s eye view: hindsight and foresight from long term bird surveys

The Hermit Warbler is a songbird that lives its life in two areas of the world. It spends its breeding season (late May-early July) in the coniferous forests of the Pacific Northwest (PNW) and migrates to Central America for the winter. Due to the long journey from the Central America to the PNW, it is dependent on food resources being available throughout its journey and when it arrives to breed. The environmental conditions across its range are tightly linked to habitat resources, and unfavorable climatic conditions, such as those becoming less frequent due to climate change, can negatively affect bird populations. Changes in bird populations are not always easy to notice, especially with small songbirds that live high in tree canopies. Studying birds for one or a few years may not be enough to signal the change in their well-being.

A Hermit Warbler singing on a lichen-covered branch in the forest canopy. Male Hermit Warblers will defend their territories ferociously against other males during the breeding season. H.J. Andrews Experimental Forest, May 2017.

Fortunately, long term data sets are becoming more available thanks to long term study programs. For example, the Willamette National Forest in Oregon is home to H. J. Andrews Experimental Forest (the Andrews). Designated by the USDA Forest Service Pacific Northwest Research Station, the Andrews forest hosts many forest research projects and has been monitored since 1948. In 1980, it was became one of the National Science Foundation’s Long Term Ecological Research sites ensuring that it will remain a resource for scientists for years to come. Bird surveys at the Andrews began 11 years ago, and researchers at Oregon State University are beginning to draw connections between changing climate and bird communities in relation to the forest’s structure and compositions.

H.J. Andrews Experimental Forest, where long-term bird study is launched in 2009 by Drs. Matt Betts and Sarah Frey. The forest sits on the moist foothills of western Cascades in Willamette National Forest.

One of these researchers, Hankyu Kim PhD student in the Department of Forest Ecosystems and Society, is using this data to study the Hermit Warbler and other bird species at the Andrews. Hankyu is interested in how and why bird communities are changing over time. With 11 years of bird observations and extensive temperature data, he is attempting to estimate how population of birds persist in the forests. To begin approximating how current climate effects birds, we need to have an idea about bird communities in the past. Past conditions can help us explore how birds might respond to future climate scenarios. Without the effort of many researchers before him to monitor birds, his investigation would be impossible.

Bird surveys are conducted via point counts. Researchers stand at a point count station for 10 minutes and count all bird species they see and hear. Listen to a hermit warbler and some other background birdsongs recorded at H.J Andrews in June 2017.

Hankyu realized the importance of long-term data after reviewing the 45-years of wintering waterbird surveys collected by the Birdwatching Club at Seoul National University, Korea during his time as an undergrad. The group took annual trips to the major Rivers and Coastal Areas, and in just a couple decades the members of the club had recorded declines and disappearances of some species that were once common and widespread. This finding inspired Hankyu to pursue graduate school to study unnoticed or uncharismatic species that are in danger of decline. Every species plays a critical role in the ecosystem, even if that role has not yet been discovered.

Tune in on Sunday May, 19 at 7 pm to hear more about Hankyu Kim’s research with birds. Not a local listener? Stream the show live or catch up when the podcast episode is released.

Want more about the Hermit Warblers in Oregon? Check out this video of Oregon Field Guide featuring Hankyu and some of his colleagues from Oregon State University.

Hankyu’s episode on Apple Podcasts

When Paths Cross: The Intersection of Art, Science and Humanities on the Discovery Trail

When you think about a high school field trip to the forest, what comes to mind? Hiking boots, binoculars, magnifying glasses, plant and fungi identification, data collection – the science stuff, right? Well, some high school students are getting much more than a science lesson on the Discovery Trail  at the HJ Andrews Long-Term Ecological Research Forest in the western Cascades Mountains, where researchers are seeking to provide a more holistic experience by connecting students with the forest though art, imagination, critical thinking and reflection.

Sarah (red hard hat) observing two student groups on the Discovery Trail (October 2017); Photo Credit: Mark Schulze

Working with environmental scholar and philosopher Dr. Michael Nelson at Oregon State University (OSU), Sarah Kelly is pursuing a Master of Arts degree as a member of the first cohort of the Environmental Arts and Humanities program. Through this program, Sarah works with many collaborators at the HJ Andrews Forest to enrich the experiences of middle and high school students through environmental education.

Sarah giving presentation on the Discovery Trail for the Long-Term Ecological Research 7 midterm review (August 2017); Photo Credit: Lina DiGregorio

Built in 2011, the Discovery Trail at the HJ Andrews Forest not only provides researchers access to field sites, but also is a venue for educational programming. Since the trail’s inception, researchers have designed curriculum that integrated the arts, humanities and science – the foundation of Sarah’s research.  The objective for the trail curriculum is to invite students to explore their own curiosity and values for forests while learning about place through observation, mindfulness exercises, scientific inquiry, and storytelling. Sarah and other researchers are interested in how this integrated arts/science curriculum stimulates appreciation and empathy for non-humans and ecosystems. This curriculum was first used on the trail in 2016.

Two students examining the dry streambed at stop 3 on the Discovery Trail (October 2017); Photo Credit: Mark Schulze

With the use of iPads to guide activities and collect research data, students engage with the forest at a series of stops. After a silent sensory walk to just be in the forest, students cluster in small groups to participate in the lessons at a designated location. At one stop, students are instructed to gain intimate knowledge of one plant by observing all of its features and completing a blind contour drawing. A clearing at another stop encourages students to find clues and identify reasons for disturbances in the forest and their impacts – positive and negative – on the forest ecosystem. Another stop invites students to consider how we can care for forests by reading Salmon Boy, a Native American legend about a boy that gains an appreciation for non-human life by becoming a salmon.

Two students reading Salmon Boy near Lookout Creek at stop 6 (October 2017); Photo Credit: Mark Schulze

Using the iPads to log student experiences on the trail, pre- and post-stop reflections, surveys and interviews, Sarah and her collaborators are able to understand the students’ experiences on the trail and assess any cognitive or affective shifts. Several weeks after the trip, teachers are also interviewed to find if the trail experience has impacted student learning and behavior in the classroom. Many teachers are returning visitors, bringing different classes to the Discovery Trail each year.

Sarah’s first trip to the Pacific Northwest; Multnomah Falls in background (November 2014)

So far, the students have expressed positive feedback about their trip on the Discovery Trail with many citing their relaxed mood, new career interests and inspiration to better care for nature. Sarah is busily analyzing the data collected to support her findings and identify ways to continue to enhance the program.

Sarah cultivated a new interest in human impacts on the environment while working for a green events company – the kind that focuses on sustainability – after completing her BA in Communications at her hometown university, the University of Houston. A few years after graduating, she led campus sustainability initiatives for her alma mater – a job she enjoyed immensely, but she always knew that graduate school was her next big undertaking. A work trip to attend the Association for the Advancement of Sustainability in Higher Education conference brought Sarah to Portland, Oregon, where she and her husband, Dwan, fell in love with the Pacific Northwest.

Sarah working on her research project during a Spring Creek Project retreat at Shotpouch Cabin (January 2017); Photo Credit: Jill Sisson

Eventually, Sarah was able to combine her graduate school dreams with her desire to live in Oregon when she became a student at OSU. Sarah is now nearing the end of her graduate studies and recently participated in a Spring Creek Project Retreat to work on a writing piece, as part of her final project – a creative non-fiction composition about her experience with students on the trail. After leaving Houston, Sarah has learned to embrace and enjoy uncertainty and is keeping all possibilities open for her next big step. There is no doubt she will be working to improve the world around us.

Join us on Sunday, February 11 at 7 PM on KBVR Corvallis 88.7 FM or stream live to journey with Sarah through her environmental education research and path to graduate school.

Sarah’s episode on Apple Podcasts