Author Archives: Lisa Hildebrand

From hooves to helicopters: the study of foot-and-mouth disease virus in African buffalo 

Foot-and-mouth disease (FMD) virus is one of the most infectious viral diseases in the world. FMD virus affects all cloven-hooved animals and there have been outbreaks all over the world except for in North America. While FMD virus doesn’t necessarily cause fatality in animals, it causes severe milk production losses and can leave affected individuals severely weakened and debilitated. This is particularly problematic for people who keep livestock as it can affect their livelihoods and economic welfare. Our guest this week is Cambrey Knapp, a 2nd year PhD student in Comparative Health Science who is studying wildlife-livestock interactions related to FMD virus around Kruger National Park in South Africa. African buffalo within Kruger National Park harbor FMD virus and it can spillover to livestock that are kept in the surrounding areas outside of the park. Cambrey’s research is investigating which viral lineages of FMD virus are most prone to spillover and the temporal aspects of transmission by looking at historic and contemporary African buffalo and cattle samples.

Curious to know how helicopters factor in to the whole story? Tune in to our interview with Cambrey this Sunday (June 2nd) at 7 pm PST on KBVR 88.7 FM. If you miss the live show, you can check out the interview wherever you get your podcasts, including on our KBVR page, Spotify, Apple Podcasts or anywhere else!   

Working towards sustainability in the doula workforce

Studies have shown that birthing mothers paired with doulas have better birth outcomes than mothers that do not work with doulas. For example, doula-assisted mothers are four times less likely to have a low birth weight baby, two times less likely to experience a birth complication and are significantly more likely to initiate breast-feeding, compared to non-doula-assisted mothers1. Yet, the doula workforce suffers from high levels of burn-out often due to being underpaid, overextended, and disrespected in their work, which often results in doulas leaving the profession2. Given the clear benefits of doula-assisted pregnancy and birth, these issues need to be solved. But, how? Well, one person on the job is Master’s student Katie Minich! Katie is in the Applied Anthropology program working with Drs. Melissa Cheyney and David Lewis. Katie’s research aims to better understand how we can improve the sustainability and best practices for doulas post-training.

Tune in to our interview with Katie this Sunday (May 26th) at 7 pm PST on KBVR 88.7 FM. We will be covering a whole range of topics, including Katie’s eight years of experience as a doula herself, why Oregon is one of the best places to be a doula in the US, and more! 

If you miss the live show, you can check out the interview wherever you get your podcasts, including on our KBVR page, Spotify, Apple Podcasts or anywhere else!   

If you’re interested in learning more about the topics discussed, check out the following resources:

Minich, K. I. (2023). “Listening to Doulas in Southern Oregon: Exploring Motivations and Experiences of Birthworkers.” McNair National Research Journal, 2. https://maop14.wildapricot.org/resources/Documents/2023-McNair%20National%20Research%20Journal%20-%20FINAL.pdf 

Minich, K. I. (2023) “Listening to Doulas in Southern Oregon: Understanding Value and Care.” Southern Oregon University Ronald E. McNair Post Baccalaureate Achievement Program McNair Scholars Journal, 19. https://digital.sou.edu/digital/collection/p16085coll19/id/23004/rec/18 

The Uplift Lab: Home – Uplift Lab

Profile on research award: Announcing the Deanna Kingston Scholarship for Graduate Student Excellence | Anthropology, Anthropology Academic Programs, Graduate Anthropology, Prospective OSU Anthropology Graduate Students | College of Liberal Arts | Oregon State University

Graduate Student profile: Anthropology Graduate Students | Anthropology, About Anthropology, Faculty & Staff Directory | College of Liberal Arts | Oregon State University

References

1 Gruber, K.J., Cupito, S.H., and Dobson, C.F. (2013) Impact of Doulas on Healthy Birth Outcomes. The Journal of Perinatal Education, 22(1): 49-58. 

2 MamaGlow Foundation. (2023) Birth worker burnout: Exploring integrative approaches to nurturing a healthy doula workforce. https://mamaglowfoundation.org/wp-content/uploads/2023/01/Birth_Worker_Burnout_Brief.pdf

Training the trainers who train trainers of little humans

Do you feel dizzy after reading that title? Me too, after writing it, but this week on the show we did indeed speak to a trainer of the trainers who train trainers of little humans! Meet Maya Johnson, a 3rd year PhD student in the School of Human Development and Family Sciences. For her research, Maya studies early childhood education policy and the childcare system within Oregon, with a pretty applied policy focus. Alongside doing her research, in her capacity as a graduate research assistant at OSU, some of what Maya does is to write trainings and coaching systems for individuals who train early childhood educators (hence the trainer of trainers who train trainers).

Check out our interview with Maya wherever you get your podcasts, including on our KBVR pageSpotify or Apple Podcasts! We cover a whole range of topics related to early childhood education, such as the HeadStart program, the childcare crises, why we don’t know a whole lot about the education stats of children under the age of 6 in Oregon, and what Maya is doing to hopefully change that problem!

If you’re interested in learning more about some of the topics discussed, check out the following resources:

  1. A “policy brief” that Maya put together for a final project in a social policy class she took: Toward Just and Livable Wages: Early Educator Compensation Reform in Oregon
  2. The Oregon Child Care Research Partnership is where a lot of the early childcare education policy research in Oregon comes from if you want to know more about the kind of research that goes into child care policy. 
  3. Maya works on the Early Learning System Initiative (ELSI) in helping build a system of support for Oregon’s early educators. 
  4. If you want to learn more about Maya or get in touch with her, here is her OSU profile page: https://health.oregonstate.edu/directory/maya-johnson

Sniffing for science

On our last episode for winter term, we interviewed Kayla Fratt, who is currently a PhD student in the Department of Fisheries, Wildlife, and Conservation Sciences. However, aside from being a graduate student, Kayla is also one of the founders and trainers for K9 Conservationists, an organization that unites highly trained conservation detection dog teams with researchers to collect scientific data. For her graduate research, Kayla is working with her canine colleagues, Barley & Niffler, to understand island biogeography effects on diet and movement for sea wolves in southeast Alaska and basic natural history of pumas in El Salvador.

If you’re curious to hear all about how Kayla became a certified dog behavior consultant, how and why in the world you train a dog to sniff out poop, and the plans for Kayla’s PhD dissertation, check out the podcast episode anywhere you listen to podcasts, including on our KBVR page, Spotify or Apple Podcasts!

A surprise trip to the coldest continent on Earth!

Due to some unforeseen circumstances, we had a very impromptu guest join us for our show on February 18th. Rachel Kaplan is a 4th year PhD student in the College of Earth, Ocean, and Atmospheric Sciences, who researchers whales and krill around the world to better understand predator-prey dynamics. Part of her PhD research involves going to Antarctica so we sat down with Rachel to chat about what it’s like conducting field work on the coldest continent on Earth!

You can listen to the episode anywhere you listen to your podcasts, including on KBVR, Spotify, Apple, or anywhere else!

The Memoir of El

This week on ID we interview El Rose, a talented first year MFA student of non-fiction in the School of Writing, Literature and Film. El draws on their background growing up in rural Arkansas to write about topics of class, immigration, intergenerational trauma, identity, and the intersection of it all. 

Their work falls primarily within the realm of memoir. ‘Memoir’ is derived from the French word ‘mémoire’, which means ‘reminiscence’ or ‘memory’. Memoir falls into the category of non-fiction but is ultimately a subjective narrative in which the author remembers experiences, emotions, and events from a certain event or period in their life. Memoirs focus on conveying their perception of these memories in a way that is emotionally truthful but isn’t necessarily factual. 

El began their journey in writing at the University of Memphis, although they’ve been writing in one manner or another for most of their life. They spent eight years between finishing undergrad and coming to OSU, working through the ranks in the food industry and eventually becoming an owner of a cafe in the Portland area. Through a series of perfectly timed events, and their own desire to make more space to take their writing seriously, El came to OSU to set out on the grad school journey. 

To hear more about how writing a memoir works, as well as El’s journey from Arkansas to Oregon, tune in this Sunday, November 12th live on 88.7 FM or on the live stream. Missed the show? You can listen to the recorded episode on your preferred podcast platform!

Poopy predators: Assessing carnivore diet and population dynamics via non-invasive genetics 

Ellen with a wolf den in Alaska

Getting to the bottom of what top predators in an ecosystem are eating is critical to understand how they may be influencing dynamics in the entire system and food web. But how do you figure out what a predator is eating if it’s hard to catch and collar or watch continuously? Easy, you use their poop! Ellen Dymit, a 4th year graduate student in the Department of Fisheries, Wildlife, and Conservation Sciences advised by Dr. Taal Levi, is our guest on the show this week and she is a poop-tracker extraordinaire!

For her PhD research, Ellen uses primarily non-invasive genetic methods to study large carnivores in two projects in Alaska and Central America. While the systems and carnivores she studies for these two projects are pretty different, the techniques she uses to analyze the collected scats are the same. The Alaska project is focused on determining what different wolf populations and packs across coastal Alaska are consuming, whether individuals are specialized in their feeding habits, and how large the populations are. The Central America project, which is based out of Guatemala, looks at a whole host of predators, including jaguars, pumas, and ocelots, to gain a better understand of the food web dynamics in the ecosystem.

One of Ellen’s extremely remote field camps in Alaska

Both of these projects involve some unique challenges in the field that Ellen has had to learn to tackle. DNA can deteriorate pretty quickly, especially in warm Guatemalan temperatures, which is problematic when you’re trying to analyze it. Yet, Ellen’s lab has perfected methods over the last few years to work with neotropical samples. Ellen’s Alaska field work is incredibly remote as it’s just Ellen and one field technician roaming the Alaskan tundra in search of wolf scat. Accessing her field sites involves being flown in on a small fixed wing plane, where they are extremely space and weight-limited. Therefore, every single piece of gear needs to be weighed to ensure that the pilot has enough fuel to get to the site and back. As a result, Ellen isn’t able to collect the entire scat samples that she finds but can only take a small, representative sample.

Ellen sub-sampling a wolf scat

Ellen’s incredibly adventurous field work is followed by months spent in the lab processing her precious scat samples. So far, her results have revealed some pretty interesting differences in diet of wolf packs and populations across three field sites in Alaska. The Guatemalan project, which occurs in collaboration with the Wildlife Conservation Society Guatemala, is one of the first to analyze a large sample size of ocelot scats and the first to attempt DNA metabarcoding of samples collected in the neotropics. 

To hear more details about both of these projects, as well as Ellen’s background and some bad-a$$ stories from her Alaskan field work, tune in this Sunday, October 15th live on 88.7 FM or on the live stream. Missed the show? You can listen to the recorded episode on your preferred podcast platform!

The opposite of a pest: Bees, wasps and other beneficial bugs

Lots of terrestrial invertebrates have bad reputations. Spiders, bees, flies, wasps, ants. They’re thought of as pests in the garden or they are perceived as threatening, possibly wanting to sting or bite us. I’ll admit it, I’m terrified and grossed out by most invertebrates every time I see one in my house. But this week’s guest may have successfully managed to get me to change my tune…

Scott (left) and his intern/doppelganger Tucker (right) in the field.

Scott Mitchell is a 4th year PhD student in the Department of Fisheries, Wildlife, and Conservation Sciences advised by Dr. Sandy DeBano. His overarching research goal is to understand how different land management practices may impact beneficial invertebrate communities in a variety of managed landscapes. Yes, you read that right: beneficial invertebrates. Because while many invertebrates have a bad rep, they’re actually unsung heroes of the world. They pollinate plants, aerate soil, eat actual pest invertebrates and are prey for many other species. In order to tackle his overarching research goal, Scott is conducting two studies in Oregon; one focuses on native bees while the second looks at non-pollinators such as wasps, spiders, and beetles.

(See captions for images at the end of the blog post)

The first study occurs in the Starkey Experimental Forest and Range which is managed by the US Forest Service. The initial research at Starkey in the 1900s was about how cattle grazing impacts on the land. Since then, many more studies have been undertaken and are ongoing, including about forest management, wildlife, plants, and recreation. For Scott’s study, he is collaborating with the Forest Service to look how bee community composition may differ in a number of experimental treatments that are already ongoing at Starkey. The two treatments that Scott is looking into are thinning (thinned vs unthinned forest) and ungulate density (high vs low). The current hypothesis is that in high ungulate densities, flower booms may be reduced due to high grazing and trampling by many ungulate (specifically elk) individuals, thus reducing the number of available blooms to bees. While in the thinning treatments, Scott is expecting to see more flower blooms available to bees in the thinned sites due to increased access to light and resources because of a reduced tree canopy cover. To accomplish this project, Scott collects bee samples in traps and handnets, as well as data on blooming plants.

(See captions for images at the end of the blog post)

Scott’s second study explores non-pollinator community composition in cherry orchards in the Dalles along the Columbia River Gorge. Agricultural landscapes, such as orchards, are heavily managed to produce and maximize a particular agricultural product. However, growers have options about how they choose to manage their land. So, Scott is working closely with a grower to see how different plants planted underneath orchards can benefit the grower and/or the ecology of the system as a whole. 

To hear more details about both of these projects, as well as Scott’s background and several minutes dedicated solely to raving about wasps, tune in this Sunday, April 23rd live on 88.7 FM or on the live stream. Missed the show? You can listen to the recorded episode on your preferred podcast platform! 

Figure captions

Image 1: This bright green native bee is foraging on flowers for nectar and pollen. It is probably in the genus Osmia.

Image 2: A brightly colored bumblebee foraging on a rose.

Image 3: This is one of the most common bumblebee species in western Oregon – the aptly named yellow-faced bumble bee (Bombus vosnesenskii).

Image 4: Most native bees, like this small mining bee are friendly creatures and will even crawl onto your hands or fingers if you let them. No bees (or human fingers) were harmed in the making of this photo.

Image 5: While Scott doesn’t know what his favorite wasp is, this large furry, friendly bee is his favorite native bee species. It is known as the Pacific digger bee or Anthophora pacifica. This is his favorite bee because they are very agile fliers and fun to watch foraging on flowers. They are a solitary species that lives in the ground.

Image 6: Not only are wasps beautiful, but sometimes the signs they leave behind can be too. This is a gall from a gall forming cynipid wasp. Wasp galls are a growth on plants that occurs when a wasp lays its eggs inside of a leaf or other plant structure.

Image 7: This is a pair of wasps in the family Sphecidae. The wasp on top is a male wasp (males are often smaller than females in wasps and bees) and he is likely guarding a potential mate by hanging onto her back.

Image 8: This is a beautiful bright metallic jewel wasp, probably in the family Chrysididae. This wasp was mentioned in the episode.

Image 9: This sphecid wasp is foraging on nectar on flowers. Many insects, including wasps, use nectar as an energy source in their adult life stage – even if they act as predators when foraging for their young.

Image 10: This is a tiny wasp on a flower. This wasp is around 1.5-3 millimeters long.

Nobody wants to eat bitter cheese

There are many adjectives used to describe the taste of different kinds of cheese: mild, tangy, buttery, nutty, sharp, smoky, I could continue but I won’t. Our preferences between these different characteristics will then drive what cheese we look for in stores and buy. But I would wager that most people (or dare I say anyone?) are rarely looking for a bitter cheese. I had never thought about how cheese could be bitter; probably because it’s something that I’ve never tasted before and that’s because the cheese production industry actively works to prevent cheese from being bitter. Intrigued? Good, because our guest this week researches why and how cheese can become bitter.

Paige in the lab

Paige Benson is a first year Master’s student advised by Dr. David Dallas in the Food Science Department. For her research, Paige is trying to understand how starter cultures affect the bitterness in aged gouda and cheddar cheeses. The cheese-making process begins with ripening milk, during which milk sugar is converted to lactic acid. To ensure that this process isn’t random, cheese makers use starter cultures of bacteria to control the ripening process. The bitterness problems don’t appear until the very end when a cheese is in its aging stage, which can take anywhere from 0-90 days. During this aging process, casein proteins (one of the main proteins in milk and therefore cheese) are being broken down into smaller peptides and it’s during this step that bitterness can arise. Even though this bitter cheese problem has been widely reported for decades (probably centuries), there are many different hypotheses about what causes the bitterness. Some say it might be the concentration of peptides, while others believe it’s a result of the starter culture used, and a third school of thought is that it’s the specific types of peptides. Paige is trying to bring some clarity to this problem by focusing on the bitterness that might be coming from the peptides.

To accomplish this work, Paige will be making lots of mini cheeses from different starter cultures, then aging them and extracting the peptides from the cheese to investigate the peptide profiles through genome sequencing. Scaling down the size of the cheeses will allow Paige to investigate starter cultures in isolation as well as in combination with different strains to see how this may affect peptide profiles, and therefore potentially bitterness.

Some of the mini cheeses Paige makes for her research

Besides Paige’s research in cheese, we will also be discussing her background which also features lots of dairy! As a Minnesotan, Paige grew up surrounded by the best of the best dairy. In fact, her grandparents owned and ran a dairy farm, where Paige spent many of her summers and holidays. Her passion for food science was solidified when she started working as an organic farmer during her senior year of high school and she hasn’t ever looked back. Join us on Sunday, April 16th at 7 pm live on 88.7 FM or on the live stream. Missed the live show? You can listen to the recorded episode on your preferred podcast platform!

What to do with all the whey?

You probably already know that skim milk and buttermilk are byproducts of cheese-making. But did you know that whey is another major byproduct of the cheese-making process? Maybe you did. Well, did you know that for each 1 kg of cheese obtained, there are about 9 kg of whey produced as a byproduct?! What in the world is done with all of that whey? And what even is whey? In this week’s episode, Food Science Master’s student Alyssa Thibodeau tells us all about it!

Alyssa making cheese!

Whey is the liquid that remains after milk has been curdled and strained to produce cheese (both soft and hard cheeses) and yoghurt. Whey is mainly water but it also has lots of proteins and fats, as well as some vitamins, minerals, and a little bit of lactose. There are two types of whey: acid-whey (byproduct of yoghurt and soft cheese production) and sweet-whey (byproduct of hard cheese production). Most people are probably familiar with whey protein, which is isolated from whey. The whey protein isolates are only a small component of the liquid though and unfortunately the process of isolating the proteins is very energy inefficient. So, it is not the most efficient or effective way of using the huge quantities of whey produced. This is where Alyssa comes in. Alyssa’s research at OSU is focused on trying to develop a whey-beverage. Because of the small amounts of lactose that are in whey, yeast can be used to ferment the lactose, creating ethanol. This ethanol can then be converted by bacteria to acetic acid. Does this process sound a little familiar? It is! A similar process is involved when making kombucha and the end-product in Alyssa’s mind isn’t too far off of kombucha. She envisions creating an organic, acid-based or vinegar-type beverage from whey. 

Morphology of yeast species Brettanomyces anomalus which Alyssa is planning on using for her whey-beverage.

How does one get into creating the potentially next-level kombucha? Alyssa’s route to graduate school has been backwards, one that most students don’t get to experience. While the majority of students get a degree, get a job and then start a family, Alyssa started a family, got a job, and then went to graduate school. On top of being a single mother in graduate school, she is also a first-gen student and Hispanic. To quote Alyssa: “It makes me proud every day that I am able to go back to school as a single mom. In the past, this would have maybe been too hard to do or wouldn’t have been possible for older generations but our generations are progressing and people are making decisions for themselves.”.

Intrigued by Alyssa’s research and personal journey? You can hear all about it on Sunday, January 29th at 7 pm on https://kbvrfm.orangemedianetwork.com/. Missed the live show? You can listen to the recorded episode on your preferred podcast platform!