When the sheriff character in the original “Jaws” movie first sees the giant shark, he exclaims to the captain “You’re gonna need a bigger boat”.
An analogous statement regarding the energy requirements associated with the coming proliferation of conversational virtual beings (based on Artificial Intelligence) is that the technosphere is going to need a bigger power supply.
By virtual beings I mean all the digital, language-capable, denizens of the emerging metaverse (broadly defined), including chatbots (like ChatGPT), AI-assisted search engines (like Perplexity AI), and AI-based residents of Meta’s visor-enable virtual reality world. Coming down the line are speaking holograms, and holodecks (as in Star Trek).
The process by which these advanced digital creatures learn to speak is based on development of neural networks that are trained with a large body of textural information (like Wikipedia, books, and an array of content available on the Internet). Training means determining statistical relationships between the occurrence of different words in the training text, which the algorithm then uses to formulate a response based on keyword inputs (queries).
Training a large language model such as ChatGPT requires a hefty input of computing power because it involves extensive trial and error testing. Chatbots affiliated with AI-assisted Internet searches use not just a pre-trained language model but also integrate the search output into their responses. This kind of processing will be energy demanding (perhaps 5 times greater than for a standard search), which will add up considering the billions of searches made per day.
If these virtual beings were only going to be used by a minority of people (such as now visit Meta’s colony in the metaverse), the power draw would be minor. But, very likely, their seductive appeal will be so great (albeit with an occasional hint of menace) that they will become a standard feature of ordinary life. Just in the field of education, there is vast potential for inspiring and informing students using dialogic Chatbots.
The overshoot model argues that global energy consumption should be reduced rather than expanded because of the many negative environmental externalities (unaccounted for damages) caused by energy production ̶ from both fossil fuel and renewable sources.
However, at least for electricity, that seems unlikely given the burgeoning energy demand in the developed world noted here, and the aspiration to raise standards of living in the developing world.
Since 66% of global electricity production is still based on combustion on fossil fuels, any increase in electricity consumption will tend to result in more greenhouse gas emissions and more societal problems with climate change. The obvious conclusion in that new energy demand must be met by nonfossil fuel sources like hydro, wind, solar, geothermal, and nuclear fission. Companies such as Google, Microsoft, and Meta that are building the metaverse will experience huge increases in energy consumption in the near future; they should be held to their commitments to run on carbon neutral power sources.
New energy technologies that could contribute to a clean global power supply in the coming decades include geologic hydrogen and solar energy from space. These sources, however, will require long-term investments in research and development.
The global renewable energy revolution is off to a good start and has a bright future, but it will require steady political pressure to 1) stop building new fossil fuel burning facilities, 2) replace aging fossil-fuel-based infrastructure with renewable sources, and 3) build new renewable energy sources that can accommodate the increasing demand that is surely coming.
Pope Francis issued an encyclical (Laudato Si) in 2015 about “care for our common home”. The document discussed a wide range of global environmental change topics, notably climate change and loss of biodiversity. It aimed to provide a moral rationale for simultaneously addressing the issues of global environmental change and human inequity. The encyclical runs to nearly 200 pages and is not a light read. Perhaps to make its message more accessible, the Vatican recently produced and released (October 12, 2022) a related video (The Letter: Laudato Si Film), clocking in at 81 minutes.
The encyclical was released just prior to the United Nations Framework Convention on Climate Change COP21 meeting that was held in Paris. The product of that meeting was The Paris Agreement, which is widely perceived as a significant step towards mitigating global climate change. Considering that there are 1.3 billion Catholics who ostensibly consider the pope infallible, the encyclical may well have strengthened global political will to seriously address the climate change issue.
The film is a very different vehicle from the encyclical, leaving behind the encyclical’s more controversial aspects (discussed below) and presenting an engaging narrative about global change with good visuals and music. The premise of the film is that the Pope invites a set of 5 people from widely different backgrounds to Rome for a “dialogue” about the encyclical.
1. A poor black man from Senegal who is considering an attempt to migrate to the EU because of the deteriorating environment in his home country. He represents the billion or so people expected to be displaced by climate change this century.
2. An indigenous man from Brazil whose forest homeland in the Amazon Basin is under siege. He represents forest dwellers throughout the tropical zone who are losing their homes to rampant deforestation.
3. A young woman from India. She represents the voice of a younger generation who will be forced to deal with the massive environmental change problems caused by their elders (intergenerational inequity).
4. A man and a woman from the U.S. who are scientists working on monitoring and understanding coral reef decline. They represent the community of research scientists trying to understand climate change impacts and what to do about them.
Each participant is shown in their home environment receiving a letter of invitation from the Pope. The film then documents their experiences in Rome, including discussions amongst themselves and with the pope.
The film was engaging and had a positive message about the need for solidarity across all humanity in the face of threats from climate change and loss of biodiversity.
However, I did have some concerns.
First was that the film seemed to be more about the victims of global environmental change (both human and nonhuman) than about the solutions. The participants were certainly sincere, and helped put a human face on the challenges ahead; but little was said about the personal changes and the political realities involved in transitioning to global sustainability.
Second was the emphasis on climate change as the sole driving force in the current surge of migration. Climate change is indeed driving international migration but a host of other factors are of equal or greater importance, including civil war, overuse of local natural resources, and gross defects in local governance. If indeed a billion people will potentially be displaced by climate change in this century, they can’t all migrate. Alternatives to migration include foreign aid for adaptation, and aid to improve local educational opportunities that would help train citizens for local economic activity and help limit population growth (the fertility rate in Senegal is 4.3 births per woman).
Third was that the film may point viewers towards reading the actual encyclical, which has inspired much more commentary ̶ both positive and negative ̶ than the film.
The proclamations of the pope usually do not draw much attention from the scientific community, but in the case of the Laudato Si encyclical, the science of global environmental change is front and center.
As I started reading the encyclical, I was surprised because the tone sounded as if it were written by an environmental science policy analyst rather than a religious leader (apparently there was a ghost writer). The scientific causes of climate change and biodiversity loss were reasonably explained, and it was refreshing to see the “dominion” over the Earth given to humanity by God presented more in terms of responsibility to conserve environmental quality than as a license to exploit limitless natural resources. The intrinsic value of all species, independent of their utility to humans, was recognized. When the text veered into explaining the Christian belief system (e.g. the Holy Trinity), it lost cogency from an Earth system science perspective.
The encyclical was well received by scientific authorities in some cases, perhaps because the Pope broadened the usual rationales for caring about climate change and biodiversity loss to include the moral dimension. Wealth-based inequity (relatively wealthy people have caused most of the greenhouse gas emissions but it is relatively poor people who will suffer the greatest impacts) and intergenerational inequity (recent generations have caused most of the greenhouse gas emissions but future generations will suffer the greatest impacts of climate change) are clearly moral issues.
Critiques of the encyclical have referred to its limited regard for the full suite of dimensions (technical, political, and economic) needed to address global environmental change. The encyclical comes across as hostile to the “technocratic paradigm”, suggesting some technofixes will induce more problems than they solve. There is much emphasis on reducing excess consumption. Realistically though, there must be a revolutionary change in technology towards renewable energy and complete product recycling. Likewise, beyond calling for a stronger climate change treaty (as the Pope did), we must have stronger institutions of global environmental governance, and new economic policies that prioritize sustainability.
The section of the encyclical about population control was especially provocative. The pope took issue with calls for limiting population growth for the sake of the environment, a position consistent with formal Catholic doctrine against contraception. This view rings false, however, because of the contradiction between saying that Earth’s natural resources are limited (as stated several times in the encyclical) and that all humans deserve a decent quality of life (which inevitably consumes natural resources), while at the same time maintaining that high rates of population growth in developing countries are not an issue. In contrast, the recent World Scientists’ Warning of a Climate Emergency 2022 called for “stabilizing and gradually reducing the human population by providing education and rights for girls and women”. Ehrlich and Harte also point out that unchecked population pressure on food supply and natural resources pushes development into ever more vulnerable ecosystems, and fosters ever more inegalitarian forms of government.
Pope Francis deserves credit for bringing attention to the moral questions raised by anthropogenically-driven global environmental change. Our contemporary materialistic and instrumental value system has proven to be unsustainable and should indeed be influenced by values based on respect for the natural environment, as well as values derived from human solidarity. The Laudato Si encyclical and film (along with associated praise and critique) are contributing in a positive way to the ongoing process of cultural evolution, which has now begun to operate at the global scale.
National governments the world over have made political commitments to reduce greenhouse gas emissions significantly in the next few decades. Because the generation of electricity, i.e. the power sector, is currently one of the largest anthropogenic sources of CO2 emissions (due to its reliance on coal and natural gas burning power plants), a great deal of research and investment is directed towards power sector decarbonization.
There are many pieces to the technical puzzle of how to decarbonize the power sector, and the optimum answer will differ depending on location and available resources. But generating electricity while avoiding fossil fuels altogether is entirely feasible.
In that regard, I was happy to see news of a funded power project that nicely weaves together many of the critical components needed to deliver carbon-free electricity at grid scale (Figure 1).
The facility in this case is being built in French Guiana by a consortium of private firms. The exciting thing to see is the co-location and integration of five key power generation components: (1) an array of solar panels, (2) an electrolyzer to produce hydrogen, (3) a hydrogen gas storage capability, (4) a hydrogen fuel cell that generates electricity, and (5) a short-term battery energy storage system. Functioning together, these components will provide a 24/7 baseload supply of carbon free electricity (10,000 households worth).
The solar array collects sunlight. Most of the energy is fed into the local electricity grid, but a portion is directed to the electrolyzer to split water molecules into oxygen and hydrogen. The hydrogen gas is stored on site. At night, the hydrogen is supplied to the fuel cell generator. The short-term battery storage system helps maintain a steady flow of energy as needed.
This kind of facility largely solves the intermittency problem for renewable solar energy. Its design could be adapted to other renewable energy sources with an intermittency problem, notably wind energy farms. Excess hydrogen could potentially be transported to other locations by pipeline or in liquid form.
Successful operation of the facility (slated to open in 2024) will provide a model that potentially could be scaled up and widely adopted. Since garnering the political will and financing for renewable energy development is still a significant challenge, the completion and operation of this power plant would send of strong signal about the feasibility of decarbonization to government, industry, and sources of investment.
News that this facility is actually under construction inspires the feeling that the global we (such as it is) can indeed accomplish a needed renewable energy revolution.
Copernicus, Darwin, and Freud are credited with delivering major blows to humanity’s self-image. They didn’t do it on their own of course, but their ideas were notably illuminating. Here, I revisit their insights and discuss two additional blows of that type rendered in more recent years. Awareness of the human limitations implied by these blows may help save us from our present environmental predicament.
Copernicus (1473 -1543) established that – contrary to Church dogma – Earth rotated on its axis and revolved around the sun. Humans could no longer maintain that we are living at the center of the universe. The scientific discipline of astronomy has gone on to reveal how remarkably tiny this planet really is in the context of an immense universe. Knowing that we live on a small planet points to biophysical limits on our current demands for natural resources.
Darwin (1809 – 1882) elucidated the theory of biological evolution, and the corresponding fact that Homo sapiens originated the same way every other animal species on this planet did – through natural processes. We were no longer a special creation of an omnipotent, benevolent god who dictates our aspirations and values. Ironically, though, humanity is coming to have a kind of dominion over the Earth even without the hand of god.
Freud (1856 – 1939) suggested that unconscious processes within our brains have a substantial influence on our thoughts and emotions. He turned out to be wrong in many respects, but his primary insight had merit. We are not even in full control of our own minds. Contemporary cognitive science aims to understand (1) the function (adaptive significance) of specific mental processes, (2) the representations and algorithms by which those processes are implemented, and (3) the underlying neurobiological mechanisms. Insights along those lines may help modify our destructive impulses.
The two recent blows to our self-image come from a biologist and an atmospheric chemist.
The fifth blow is truly aimed at the whole of humanity. Around 2000, atmospheric chemist Paul Crutzen (1933 – 2021) helped consolidate a wide array of observations by Earth System Scientists concerning the baleful influences of humanity on the biosphere and the global environment. He suggested that we have entered a new geologic epoch – the Anthropocene.
In the scientific Anthropocene narrative, humanity has become the equivalent of a geologic force; we are now capable of significantly altering the global biogeochemical cycles. This shocking realization and consequent shift in worldview have been characterized as the “second Copernican revolution”.
Unfortunately, we are altering the global environment in a way that may ultimately be self-destructive (e.g. by inducing rapid global climate change). Our self-image must therefore include the conclusion that we are an existential threat to ourselves.
Recognition of the Anthropocene epoch places a new responsibility on each of us as individuals, and a new responsibility on our species as a whole, to begin managing ourselves – and to some degree begin managing the Earth system – in support of global sustainability.
The prescription for better integration of the human enterprise (the technosphere) with the Earth system requires that humanity become aware of itself as a social entity, having agency at the global scale, before it can learn to self-regulate and reintegrate with the Earth system. Awareness of the five blows covered here introduces an element of humility to this project of understanding ourselves as a planetary phenomenon.
Given the vast amount of order in the universe, can humans reasonably hope to add a new increment of order in the form of a sustainable, high-technology, global civilization?
On the plus side, the universe is said to be order-friendly. Complexity is a rough measure of order, and we can observe that from its Big Bang origin to the present, the universe displays a gradual build-up of complexity. Systems theorist Stuart Kaufmann says that we are “at home in the universe” and he emphasized the widespread occurrence of self-organization (Figure 1). From atoms to molecules, to living cells, to multicellular organisms, to societies, to nation states – why not onward to a sustainable planetary civilization?
Figure 1. The Belousov-Zhabotinsky Reaction. This mixture of chemicals generates geometric forms (order) that oscillate until chemical equilibrium is reached.
Whether the universe is order-friendly or not is of course not strictly a scientific question, but scientists do aspire to explain the origins and elaboration of order. Broadly speaking, they refer to the process of cosmic evolution with its components of physical evolution, biological evolution, and cultural evolution. Cosmic evolution is a unifying scientific narrative now studied by the discipline of Big History; it covers the temporal sequence from Big Bang to the present, emphasizing the role of energy transformations in the buildup of complexity.
Physical evolution of the universe consists of the emergence of a series of physical/chemical processes powered by gravity. Formation of the higher atomic weight elements by way of fusion reactions in successive generations of stars is a particularly important aspect of physical evolution because it sets the stage for the inorganic and organic chemistry necessary for a new form of order – life.
Biological evolution on Earth began with single-celled organisms, and by way of genetic variation and natural selection, led to the vast array of microbes and multi-cellular organisms now extant. Each creature is understood as a “dissipative structure”, which must consume energy of some kind to maintain itself and reproduce. Biological evolution produced increments of order – such as multicellularity – because each step allows for new capabilities and specializations that help the associated organisms prevail in competition for resources.
Scientists are just beginning to understand how biological evolution favors cooperation among different types of organisms at higher levels of organization. Ecosystems, which are characterized by energy flows and nutrient cycling, depend on feedback relationships among different types of organism (e.g. producers, consumers, decomposers). The biosphere (i.e. the sum of all organisms) is itself a dissipative structure fueled by solar energy. Biosphere metabolism participates in the regulation of Earth’s climate (e.g. by its influence of the concentration of greenhouse gases in the atmosphere), thus making the planet as a whole an elaborate system, now studied by the discipline of Earth System Science.
Cultural evolution introduces the possibility of order in the form of human societies and their associated artifacts. It depends on the capacity for language and social learning, and helps account for the tremendous success of Homo sapiens on this planet. As with variation and selection of genes in biological evolution, there must be variation and selection of memes in the course of cultural evolution. In the process of cultural evolution, we share information, participate in the creation of new information, and establish the reservoirs of information maintained by our societies.
The inventiveness of the human species has recently produced a new component of the Earth system – the technosphere. This summation of all human artifacts and associated processes rises to the level of a sphere in the Earth system because it has become the equivalent of a geologic force, e.g. powerful enough to drive global climate change.
Unfortunately, the technosphere is rather unconstrained, and in a sense its growth is consuming the biosphere upon which it depends (e.g. tropical rain forest destruction). Technosphere order (or capital) is increasing at the expense of biosphere order. The solution requires better integration within the technosphere, and between the technosphere and the other components of the Earth system – essentially a more ordered Earth system.
How might the technosphere mature into something more sustainable? One model for the addition of order to a system is termed a metasystem transition. I have discussed this concept elsewhere, but briefly, it refers to the aggregation of what were autonomous systems into a greater whole, e.g. the evolution of single-celled organisms into multicellular organisms, or the historical joining of multiple nations to form the European Union.
In the case of a global civilization, the needed metasystem transition would constitute cooperation among nation states and civil society organizations to reform or build new institutions of global governance, specifically in the areas of environment, trade, and geopolitics. Historically, the drivers of ever larger human associations have included 1) the advantages of large alliances in war, and 2) a sense of community associated with sharing a religious belief system. But perhaps in the future we might look towards planetary citizenship. Clear benefits to global cooperation would accrue in the form of a capacity to manage global scale threats like climate change.
Conclusion
Living in an order-friendly universe allows us to imagine the possibility of global sustainability. However, the next increment of order-building on this planet will require humans and humanity to take on a new level of responsibility.
Biological evolution gave us the capacity for consciousness and now we must use guided cultural evolution to devise and implement a pathway to global sustainability. Besides self-preservation, the motivation to do so has a moral dimension in terms of 1) minimizing the suffering of relatively poor people who have had little to do with causing global environmental change but are disproportionately vulnerable to it, 2) insuring future generations do not suffer catastrophically because of a deteriorating global environment caused by previous generations, and 3) an aesthetic appreciation or love (biophilia) for the beauty of nature and natural processes.
Our brains, with their capacity for abstract thought, are the product of biological evolution. They were “designed” to help a bipedal species of hunter-gatherers survive in a demanding biophysical and social environment. Hence, they don’t necessarily equip us to understand how and why the universe is order-friendly. But we can see the pattern of increasing complexity in the history of the universe, and aspire to move it forward one more step – to the level of a planetary civilization.
The technosphere is a component of the contemporary Earth system. Like the biosphere ̶ also an Earth system component ̶ the technosphere has a mass, requires a steady input of materials, and utilizes a throughput of energy.
Technosphere mass is composed of all human-made objects, including the mass of buildings, transportation networks, and communication infrastructure. That mass has built up over centuries, and is still accumulating at the rate of 3-5% per year.
The material inputs to the technosphere (besides fossil fuels) include food, water, wood, and minerals. These inputs are derived from the geosphere, hydrosphere, and biosphere ̶ often with destructive consequences. Upward trends in consumption of these inputs are associated with an upward trend in global Gross Domestic Product of about 3% per year.
The energy that drives technosphere metabolism comes mostly from fossil fuels (80%). Global fossil fuel consumption was increasing at a rate of about 5% per year (2009 – 2019) until the recent dip associated with the Covid-19 pandemic.
Earth system scientists have estimated both current technosphere mass (in use) and the current biosphere mass (i.e. including all microbes and multicellular organisms). Coincidentally, those numbers are of approximately the same magnitude (about 1018 g). However, technosphere mass is increasing substantially each year, while the multi-century trend in biosphere mass and diversity is towards a diminished and depauperate state. The technosphere is essentially now growing at the expense of the biosphere.
There are a few cases at the national scale where peak technosphere mass has been reached, albeit not specifically by design. In Japan, the number of automobiles is close to its peak and the length of pipelines and high-speed rail are not increasing. Ninety-two percent of the population is urban. Total energy use is declining. These trends can be traced to a high level of development and a declining population.
A low birth rate and a low level of immigration account for the decreasing population. As a case study, Japan points to the role of population size in stabilization of technosphere mass. Per capita technosphere mass is relatively high, but is not rising because the country is already highly developed. Hence, technosphere mass at the national scale has likely peaked. By 2050, population is projected to decline about 25% from its peak, which may allow for a decrease in national technosphere mass.
China is an interesting case at the other extreme of technosphere mass dynamics, with vast on-going growth of its technosphere mass. Despite a low birth rate, China’s population is still growing (slowly). More importantly, per capita wealth is increasing. Consequently, the number of people owning modern housing and an automobile is rising rapidly. The government is also making huge investments in infrastructure – notably in power plants and high-speed rail.
Humans do sometimes place limits on technosphere mass expansion ̶ as in the urban growth boundaries around cites in the state of Oregon (USA), and in areas of land and ocean that are in a protected status (e.g. wilderness areas in the U.S.). Idealized prescriptions for future land use include 30 X 30 and 50 X 50. These values refer to 30 percent of Earth’s surface dedicated to biosphere conservation by 2030, and 50% by 2050. Seventeen percent of land and ten percent of ocean are in a protected status at present.
These conservation goals are consistent with the strong global trend towards urbanization. Over half of humanity now lives in an urban setting, a proportion that is projected to rise to 66% by 2050. The key benefits of urbanization with respect to technosphere mass are that 1) it potentially frees up rural land for inclusion in biosphere protection zones, 2) the per capita technosphere mass of urban dwellers is less than that of equally wealthy rural dwellers (e.g. living in multiple unit buildings as opposed to living in dispersed separate building, and using public transportation rather than everyone owning an automobile), and 3) birth rates decline as people urbanize, which speeds the global demographic transition.
Peak technosphere mass will occur sometime after peak global population. That assumes global per capita technosphere mass will also peak eventually, which brings up the fraught issue of wealth inequality. Individual wealth is equivalent in some ways to individual technosphere mass (e.g. owning a yacht vs. owing a row boat). Given that there are biophysical limits to human demands on the Earth system, the nearly 8 billion people on the planet cannot all live like billionaires. From a humanist perspective, a wealth distribution that brings standards of living for everyone up to a modest level is desirable. That worthy principle is the guiding light for significant philanthropic efforts and should figure into policies related to taxation of income and wealth. Whether to explicitly attempt to reduce the ecological footprint of the wealthy is a related, and highly contested, question.
An estimate of technosphere mass that includes landfills, and other cases of human-made objects not in use, is much larger that the 1018g estimate of technosphere mass in use. Indeed, geoscientists looking for a depositional signal for the Anthropocene are considering discarded plastic as a marker. It will take a concerted effort to decrease material flows into landfills before we will see a peak in unused technosphere mass.
Peak Technosphere Input of Material Resources
Humans already appropriate around 25% of terrestrial net primary production, and divert 54% of available fresh water flows. Mining geosphere minerals for input to the technosphere covers approximately 57,000 km2 globally.
The concept of the Great Acceleration captures the problem of exponentially rising technosphere demands on the Earth system. It refers to the period since 1950 during which many metrics of human impact on the global environment have risen sharply (Figure 1). Obviously, those trends cannot continue. Humanity must bend those usage curves and redesign the technosphere to maintain itself sustainably.
Figure 1. The Great Acceleration refers to the period after 1950 when impacts of the technosphere on the global environment grew rapidly. Image Credit: Adapted from Welcome to the Anthropocene.
Some metrics, like wild fish consumption, have already peaked but that is because the resource itself has been degraded. Future increases in fish consumption will have to come from cultured sources.
Many rivers around the world are already fully utilized (and then some), e.g. the Colorado River Basin in Southwestern United States. Policies like tearing out lawns in Las Vegas to save water portend the future.
Global wood consumption increases several percent per year and is projected to continue doing so for decades. Much of current industrial roundwood production is from natural forests, sometimes in association with deforestation. Forest sector models suggest that high yield plantations in the tropical zone could supply most of the projected global demand for industrial wood, thus reducing pressure on natural forests.
Resource use efficiency can be increased by extending product lifetimes (e.g. automobiles), boosting rates of recycling (e.g. paper), and improvement in design (e.g. more efficient solar panels). Again, these changes must be made along with the stabilization of population if we are to end continuing growth of technosphere demand for natural resources.
In 2021, fossil fuel emissions roared back to about the level of 2019. Emissions in 2022 will likely be impacted significantly by the war in Ukraine, possibly reducing global emissions since moves to avoid purchasing Russian gas, oil, and coal are driving up prices for fossil fuels. Certainly, there is increased political support in the EU and elsewhere for rapid transition from fossil fuels to renewable energy sources. Technological constraints will slow the pace of that conversion, and emissions will continue to increase in many countries outside the EU (especially China and India). Thus, the actual peak year for global fossil fuel emissions is uncertain.
The faster that fossil fuel-based energy is replaced by renewable energy sources, the better chance of avoiding a climate change catastrophe. Multiple policy rationales, beside reducing carbon dioxide emissions, support the goal of a global renewable energy revolution.
Note that total energy consumption need not decline within the context of global sustainability if the energy sources are renewable. Projected peak global energy use – with accounting for increasing efficiency, population growth, and the curing cases of energy poverty – is on the order of current global energy use.
Conclusion
The sprawling mass of the technosphere, its demands on natural resources, and its flood of chemicals and solid waste into the global environment, have begun to diminish the biosphere and threaten human welfare on a massive scale. Humanity must begin to work as a collective to redesign technosphere metabolism such that it conforms to the biophysical limits of the Earth system.
The threat of global climate change points to the dire need for a renewable energy revolution in which energy from combustion of fossil fuels (coal, oil, natural gas) is rapidly displaced by energy from renewable sources (wind, solar, geothermal, hydro). Research by engineers and economists attests to the feasibility of building a global energy infrastructure that runs on renewable energy. However, forward looking policies must be designed and strong political will must be generated.
In a heavily politicized environment such as Washington D.C., policies are much more likely to get implemented when they are supported for more than one reason. The underlying mechanism is that with powerful forces aligned for and against any given policy proposal, several constituencies ̶ each supporting a desired policy for a different reason ̶ must coalesce to overcome opposition.
Clearly, the strongest rationale for a global renewable energy revolution is to reduce greenhouse gas emissions and mitigate climate change. But here are six additional rationales that should motivate leaders and legislators to support renewable energy policies.
1. Geopolitical strategy. The Russian invasion of Ukraine has thrown a spotlight on the vulnerability of nations to energy blackmail. Domestic production of renewable energy reduces dependency on imported fossil fuels and gives a nation greater flexibility in foreign policy. Many countries in the European Union are now ramping up renewable energy production in the face of threatened cut-off of fossil fuels from Russia.
2. The cost of renewable energy is decreasing. Renewable energy is already cheaper than fossil fuel energy in some cases, and technological advances in generation, storage, and distribution will continue to drive down costs. Each time a component of the global fossil fuel infrastructure ages to the point of needing replacement, a decision must be made to continue burning fossil fuel or switch to renewables. From a purely economic perspective, the better decision may be to go with renewable energy.
3. The cost of fossil fuels is increasing. Currently, much of the environmental and social costs of fossil fuels are externalized, but as those costs begin to be covered by more stringent regulation and carbon taxes, the overall costs of fossil fuels will be pushed up.
4. Public health. Combustion of fossil fuels results in emissions of nitrogen compounds and hydrocarbons that participate in the formation of harmful ground-level ozone and particulates (Figure 1). A long history of research and monitoring by environmental agencies supports the conclusion that ground-level ozone is detrimental to human and crop health. The non-climate related economic benefits of reducing fossil fuel combustion (e.g. reduced sickness and death from air pollution) exceed the climate-related benefits in the early decades of greenhouse gas mitigation scenarios.
5. Nitrogen deposition. The nitrogen compounds associated with fossil fuel combustion eventually fall out of the atmosphere in precipitation or as dry deposition. This excess nitrogen is deposited to terrestrial, aquatic, and marine ecosystems and drives eutrophication and soil acidification.
6. Job creation. Building and maintaining an expansive renewable energy infrastructure will create on the order of seven times more jobs than will be lost from the fossil fuel and nuclear industries as they recede. The issue of job creation will become increasingly important in the coming decades as computer-driven artificial intelligence displaces human beings.
The multiple rationales noted here for policies that support a renewable energy expansion will hopefully, in aggregate, move the needle away from further investments in the fossil fuel infrastructure. Policies that stimulate renewable energy technology include subsidies on electric vehicles and residential solar power installation, whereas carbon taxes and regulation of drilling rights on public land can serve to limit fossil fuel development.
Of immediate concern is that a desire to reduce consumption of Russian fossil fuels will be used as a justification for increasing fossil fuel production in the U.S. and elsewhere. Considering the long turnover time of fossil fuel infrastructure (e.g. 50 years for a coal burning power plant) and the ample opportunities for expanding renewable energy, great caution should be taken with investments that prolong the era of fossil fuels.
Globalization refers to the increasing interconnectedness of individuals and social groups everywhere on the planet, and to the increasing inability of any particular social group to isolate itself from outside influences. The process has geopolitical, economic, cultural, and environmental dimensions.
Despite globalization’s significant detrimental impacts on the global environment – notably a large stimulus to growth in the global Gross Domestic Product and associated greenhouse gas emissions – it has also had significant beneficial effects on the global environment, e.g. progressive environmental standards have been widely promulgated, and a global environmental governance infrastructure has begun to function.
However, globalization is currently in retreat, and any possible environmental benefits from it are in jeopardy. Causes of the current wave of deglobalization include: 1) the economic suffering imposed on workers in the most developed countries by globalization of the labor market (which has inspired efforts to reduce imports of manufactured goods), 2) the psychological shock of juxtaposing very different cultures (e.g. secular vs. religious) made possible by modern transportation and communication technology (hence leading to revivals of xenophobic fundamentalism), and 3) the political benefits to autocratic leaders from rousing nationalist fervor (hence leading to outbreaks of war, as in Ukraine).
The rise of nationalism and deglobalization is associated with a retreat from global environmental change issues, e.g. the withdrawal of the U.S. from the Paris Climate Agreement by the Trump administration in 2017, and the anti-environmental policies of the Bolsonaro administration in Brazil. That kind of nationalism shirks responsibility for planetary scale problems and in practice is a false nationalism. It ultimately endangers all nations on Earth as the global biophysical environment deteriorates and ecosystem services to humans are lost.
Reformed globalization (reglobalization) is a new concept that could help overcome the dangers of deglobalization. Reglobalization would include stronger national and international efforts to reduce economic inequality and to extend the benefits of globalization more uniformly. It would mean a wide recognition that we live on a crowded planet, which must be managed collectively to insure continued delivery of nature’s services. Indeed, global environmental change issues could be the major driver towards an era of greater global unity.
With respect to the environment, reglobalization would include stepped-up green-tech transfer to developing countries for mitigation of climate change, stronger institutions of global environmental governance, and a revived commitment by individuals, institutions, and nations to global sustainability.
Environmental reglobalization will likely not have the prodigious force of the neoliberal globalization wave that began in the 1980s. Rather, it must be cultivated based on wide public awareness, active civil society organizations, and wise political leadership.
There are many specific prescriptions about how humanity must change to restore a hopeful future (e.g. a global renewable energy revolution), and implementing these prescriptions will require new pro-environmental behaviors by individuals along with shifts in societal values. In this post, I briefly examine four aspects of a simple psychological framework that shapes the personal sphere of social transformation, and I consider how adoption of that framework could inspire pro-environmental behavior.
A common first approximation to explaining how humans behave is by reference to “nature and nurture”. I will add a third factor – the influence of self-determination, i.e. the products of self-directed thought. My fourth factor in this framework is one’s personal experience, which of course can crush us or enable us to blossom.
1. Nature refers to our genetic inheritance. Neurologists broadly understand the genetically-based architecture of the brain, and the role of neural circuity in brain function, but they are still working on how processes like memory and consciousness actually work biophysically.
Studies of brain function associated with specific activities show that certain areas or modules of the brain (genetically derived) perform particular functions, e.g. mathematical operations or making music. Psychologists and neurologists generally believe that humans are born with genetic predispositions in how we feel, think, and act (presumably related to the wiring of our brain). Some examples include our attraction to sweet foods, our fear of snakes, and how readily as children we learn a language.
Without going overboard (i.e. espousing that genes alone determine behavior), we might use a computer programming metaphor to indicate significant genetic influences on behavior.Sociobiologist E.O. Wilson opined that “genes hold culture on a leash”, referring specifically to the influence of genes on values.
Regarding our feelings and behaviors related to the environment, it is important to recognize that some genetically-influenced traits – while being the product of millions of years of biological evolution – may be obsolete in the context of our contemporary high technology civilization. We are much better at paying attention to rapidly changing threats (e.g. a charging rhinoceros) than to slow onset threats (e.g. climate change), yet now we must attend closely to threats in the long-term future.
On the other hand, some proposed genetically-based traits – such as biophilia (love of nature) – may be particularly helpful in the context of fostering pro-environmental behavior.
2) Nurture refers to the influences of our cultural environment on how we think, feel, and act. The success of Homosapiens is attributed in part to our capacity for social learning. Children mimic behaviors of their caregivers and tend to adopt their belief system. As adults, we continue to learn from a variety of cultural sources.
Learned behaviors (e.g. hunting in a hunter/gatherer society) are often adapted to the local environment, and learned cultural beliefs help bind us to our local social group. Here again, I think the term “programming” is appropriate if used in a metaphorical sense. We are culturally programmed in some respects.
Richard Dawkins referred to the units of cultural inheritance as memes. Note that memes do not have to be true to be useful. A mythical narrative of tribal origins may help create a sense of tribal identity, which could strengthen within group solidarity in the face of inter-tribal rivalry.
As with our genetic influences, some of our cultural influences may be obsolete or need modifying in the context of on-going environmental change, e.g. the current emphasis on consumerism in the developed countries.
To complicate things, we have significant biases (going back to our genetic programming) about what we learn. We are particularly likely to believe or imitate leaders (prestige bias) and tend to believe what is believed by a majority of our peers (conformity bias).
3) Self-determination (self-programming) is an overlay on genetic and cultural programming. Mature human beings can consciously consider alternative views and reflect on what to believe and how to act (albeit there is always a lot going on unconsciously). This capacity introduces a sense of agency and inspiration.
Self-determination is certainly impacted by emotions, thoughts, and information that originate from genetic and cultural programming. To some degree, however, impulses from these sources can be consciously recognized and over-ridden.
Education is in a sense cultural programming, but training in critical thinking and more broadly learning how to learn, can open the door to robust self-programming. The firehose of information now available through the various media (some true and some not) makes this kind of thinking especially relevant now.
4. Personal Experience. Many genes are expressed only under particular circumstances, and learned behaviors can only be acquired when there is exposure to a relevant example or information. Additionally, the degree to which learned information is internalized and begins to affect behavior depends on other psychological factors. Motivation to learn is stimulated by a) a positive connection between teacher and learner, b) a sense of autonomy or self-direction rather than being controlled, and c) a feeling of competence associated with accomplishing a well-designed gradation of tasks and getting approval from significant others.
Let’s consider two cases of pro-environmental behavior in which the three types of programming and experience interact.
Slowing Population Growth. Historically, most cultures encouraged high levels of reproduction, which is certainly predictable in the face of the kind of intergroup competition common in human history. More group members make for stronger groups.
Considering the importance of reproduction in biological evolution, it also makes sense that there is a strong genetic influence in favor of reproductive behavior (e.g. mate seeking and sexual pleasure in humans).
For a woman or couple to decide to have few or no children for pro-environmental reasons (potentially in the face of their own instincts and pro-natal cultural policies) would require significant self-programming. Growing up (experiencing) a society that values education and opportunities for self-actualization other than parenthood would make the choice easier.
Global andPlanetary Citizenship. Global scale problems, like anthropogenic climate change, require humanity to work collaboratively towards changing the current dangerous trajectory. However, we seem to be genetically primed to identify with a social group of some kind, which also implies a tendency to classify everyone outside the group as suspect.
Our local society inculcates a unique language and a belief system that differentiates us from outsiders and may induce xenophobia. Nationalism is on the ascendency these days, but it is not the limit of what a society can be.
Thus, becoming a global citizen requires some degree of self-programming. Individuals must learn about issues of global environmental change and deliberate on how to participate in ameliorating the problems.
A common model for societal change begins with an early adopter minority that inspires broader uptake of new values, leading (with some help from prestige and conformity biases) to a majority view (e.g. the broad adoption of anti-littering in the U.S. in the 1960s). The early adopter minority may come from people who recognize the possibility that the majority view is wrong, and then begin to envision and act on alternatives. It is encouraging to see a bubbling up of pro-environmental minorities nearly everywhere on the planet now that could grow in an organic manner to become a pro-environment majority.
In the case of hunter/gatherers, the human contribution to production of harvested food was limited. But as technology became more important in provision of ecosystem services, the human element (including machines and knowledge) began to dominate.
A problem has arisen because humans have tended to consume not only ecosystem services (flows) from natural capital, but also the nature-built capital (stocks) itself. A striking example is the cod fishery in the North Atlantic Ocean: overfishing led to a collapse of the cod population and an abrupt decline in productivity.
For centuries, humans have gotten away with depleting or destroying natural capital by simply moving on to the next unexploited natural resource. Commodity frontiers often have a geographic dimension, e.g. the wave of primary forest exploitation in temperate North America that extended from the New England hardwoods, through the pines of the Great Lakes states, and on to the Pacific Northwest conifers.
A massive erosion of nature-built capital over the last two centuries is evident in the spatial patterns of land use change, distortions in animal and plant population structure, and outright extinction of species. As natural capital is depleted, human interventions (often subsidized by energy from fossil fuels) must be ramped up to maintain the same level of ecosystem services.
From an Earth system science perspective, we can describe the interaction of the human enterprise and natural capital in terms of interaction of the technosphere with its natural resources base.
The technosphere is the global aggregate of human made artefacts and includes machines, buildings, transportation infrastructure, and communications infrastructure, along with the humans and their knowledge needed to maintain it. Estimates of technosphere manufactured capital are on the order of 800 Pg.
The technosphere requires a large stream of materials and energy to maintain itself and to produce the outputs of goods and services that keep the 7.8 billion people on Earth alive. Here, I am particularly interested in the interaction of the technosphere with the biosphere.
Biosphere capital is the sum of all organisms and the associated information in the form of genetic material. It is a subset of global natural capital.
Biosphere mass is estimated at 550 Pg (carbon) and the estimates for the number of species range from 5.3 million and 1 trillion. Inputs to the biosphere include solar energy and material flows from the geosphere (minerals) and hydrosphere. Besides sustaining itself, the biosphere outputs vast flows of food and fiber (including wood) to the technosphere.
From the global perspective, technosphere manufactured capital is clearly increasing and biosphere capital is clearly decreasing. Examples include:
Our limited understanding of the biosphere makes it difficult to even quantify the on-going loss of biosphere capital. Note that the biosphere contributes to regulation of atmospheric and marine chemistry by way of the global biogeochemical cycles. Thus, as we lose biosphere capital, we are beginning to lose those free regulatory services.
Meanwhile, technosphere manufactured capital is growing at a rate of 1-8% per year, depending on the level of development in a given country. It will likely peak at a much higher level than at present because of the still growing global population and increases in per capita manufactured capital in the developing world.
In principle, biosphere inputs to the technosphere can be derived in a sustainable manner. A landscape of tree plantations can be continuously harvested and replanted to produce a sustained yield of wood. Plantation forests supplied about one third of industrial roundwood in 2000. Likewise, there is such a thing as a sustainable marine fishery if the harvest is properly managed.
However, much of the current material transfer from biosphere to technosphere is drawing down biosphere capital. Differentiating between sustainable and depleting production of food and fiber, and increasing attention to sourcing, will play an important role in the transition to a soci-economic metabolism that is sustainable. Accounting practices that treat all forms of capital – including natural capital and technosphere capital in its various forms (manufactured, financial, human, social) – is necessary.
Since different natural resources must be managed at different scales, a hierarchy of socio-ecological systems is needed. This arrangement points to the importance of zonation on the Earth surface in terms of the strength of the coupling between technosphere and biosphere. We can have large areas of relatively undisturbed intact ecosystems (e.g. marine reserves and terrestrial wilderness areas), significant areas of heavy technosphere dominance (as in urban and industrial zones), significant areas of intensive food and fiber production (e.g. forest plantations), and a scattering of areas with a moderate intensity of biosphere/technosphere interaction. This view supports the development of spatially-explicit simulation models – implemented at a range of spatial scales – that can be used within a socio-ecological system to organize the co-production of ecosystem services. Potentially, with a well-designed combination of monitoring, modeling, and environmental governance, the technosphere will drive increases rather than decreases in biosphere capital (e.g. the recovery of whale populations).