To the naked eye, plants don’t move around a whole lot. Take a closer look, inside of a plant cell, and a whole new world is opened. From cytoplasmic streaming to mitosis (cellular division), a cell is a bustling city with a plethora of different molecules and organelles being moved all around so it can grow and survive. And how are these molecules and organelles moving about? How are they getting to their very important destinations to ensure that vital signals or nutrients are delivered on time? The answer is molecular motor proteins. Molecular motors are proteins that all cells have. They have feet, can walk, and carry stuff. These proteins are the workforce of the cell, moving along the cytoskeleton (fibrous protein bundles that give the cell structure), carrying precious cargo from one place to another.
Not all of these microscopic walkers are created equal, however, some can walk farther or faster than others and Allison Gicking wants to know why and how this happens. She is using a particular kind of microscopy called TIRF (Total Internal Reflection Fluorescence) to put a spotlight on individual protein molecules so she can observe the unique ballet of life dancing on minuscule tightropes. Because these proteins are important for cell division, her work on understanding the movements of these proteins could have implications in cancer remedies or even drug delivery.
A 4th year Ph. D. student in the department of Physics, Allison has always had a passion for science. From high school to college, she was constantly looking for ways to blend her love of physics and biology. In a time when fewer than 20% of physics degrees are awarded to women, Allison is using her experience to advocate for women in science by being involved in science communication and co-organizing the Conference for Undergraduate Women in Physics here at OSU.
Tune in Sunday, July 17th at 7PM PDT on KBVR, 88.7 FM or stream live at http://www.orangemedianetwork.com/kbvr_fm/ to hear Allison’s journey.