Category Archives: Uncategorized

Taking Shape: Disordered Proteins, Viruses, and Magnets

For most of the time that biochemists have been studying proteins they have preached the widely adopted dogma that structure equals function. Proteins are macromolecules made of chains of amino acids, and as they are produced they fold into intricate and specific shapes. These shapes or ‘structures’ are critical to the tasks that they perform, like producing energy for the cell, carrying molecular cargo from one end of the cell to the other, or letting ions across the cell membrane. However, over 30% of the protein humans produce has no specific structure. These are called intrinsically disordered proteins, and only in the last 15 years have they been brought into the spotlight of biochemistry and biophysics research (Structural Disorder in Eukaryotes).
Hannah Stuwe is a fourth-year PhD candidate in Biochemistry and Biophysics, and her research revolves around disordered proteins, particularly a protein from SARS-CoV-2 called the nucleocapsid protein. In her work she uses state-of-the-art techniques specifically suited for studying disordered proteins to understand how the flexibility of this protein changes throughout the viral replication cycle.

Hannah filling an NMR spectrometer with liquid nitrogen.


To hear from Hannah, ID host and this week’s interviewee, about all things NMR, protein, and virus, tune in to KBVR 88.7 FM at 7 pm PST on April 13th, or listen wherever you get your podcasts, including on our KBVR page, Spotify, Apple Podcasts, or anywhere else!

Progress: A Natural Product of Science

From penicillin to aspirin, some of the best known and life changing medications are natural products. To progress science and humanity we need diligent scientists on the front lines helping bring reason and understanding to the natural world. Natural product synthesis is not only a cornerstone of drug development, but it has also changed humanity for the better by allowing science to isolate and/or enhance the potency of certain drugs. On the show this week we have someone who does just that, Evie Starchman.

Evie is a 5th year Chemistry PhD student in Dr. Chris Beaudry’s lab. Her current research focuses on Asterelin A which is known to have some anti-fungal properties. By creating and better understanding the fine details of this molecule Evie hopes to further deepen the understanding of molecules like it. Evie is from Snohomish, Washington where growing up she loved figure skating and (to this day) reading any book she could get her hands on. When she isn’t in the lab you can find her doing anything from white-water rafting, browsing packs at her local card shop, or training for her next marathon.



Tune into KBVR 88.7 FM at 7 pm PST on April 27th to hear Evie talk about what drives her to keep going in this chaotic world and if we’re lucky, hear about her latest Pokémon card finds.

Written by E Hernandez

No Rest for the Massless

Sometimes the smallest things in the universe can answer some of the largest questions. That seems to be the case with neutrinos. Neutrinos are fundamental particles – which just means they are the smallest of the small and that they are indivisible. The name neutrino literally means electrically neutral (neutr-) and small (-ino). For a long time, scientists believed neutrinos had no mass. Now, it is known to have a mass, but nobody has been able to enumerate it. Despite their size (or maybe because of it) they are the most abundant particle in the universe. Every second, 100 trillion neutrinos pass through your body without interacting with any particles in your body. 

Noah at the Wilson Hall atrium at Fermilab, the national particle physics lab outside of Chicago where their experiments are based

Noah Vaughan (they / them) is a PhD Student in the Physics Department at Oregon State University whose research focuses on experimental high energy particle physics, specifically neutrinos! They are co-author on over 50 publications, which is an incredible feat at this career stage and demonstrates the collaborative nature of the field. Noah works on the Main Injector Neutrino ExpeRiment to study v-A interactions (MINERvA) Project which is the first neutrino experiment in the world to use a high-intensity beam to study neutrino reactions with five different nuclei. Basically, MINERvA provides understanding on how neutrinos interact with other particles which inform scientists about the bigger role they play, including in star supernovas, the creation of the universe, and the structure of protons.

Noah in the underground hall at Fermilab

Noah’s experiments for their dissertation were performed at Fermalab, which is 100 meters underground. That’s something I bet a lot of PhD students couldn’t claim! These experiments have given Noah a dataset with over 1,000,000 points, which is the largest of its type. The nature of neutrinos makes them difficult to study. They interact through gravity and something called the weak force. The weak force is one of the four fundamental forces of nature. It’s much weaker than electromagnetism, but it’s incredibly important. The weak force changes one type of particle into another. It’s one of the driving forces in radioactive decay and helps fuel the sun through nuclear reactions. The weak force changes the identity or “flavor” of particles, at a very small range (smaller than the size of a proton). This allows neutrinos to navigate through atoms of massive objects without interacting.

The top parts of the MINERvA detector that Noah helped rebuild for use in a new prototype detector to be used for DUNE, a future neutrino experiment. Each of the blue and red cylinders is a photomultiplier tube that reads out the light collected from the scintillation strips in the detector (Photo provided by Noah)

This all means that Noah’s work is very important, and answering questions about some of the smallest things in the universe leads to answers to the biggest questions in the universe.

The front face of the MINERVA detector in its original commissioning (photo provided by Noah, from Reider Hahn at Fermilab)

Written by Taylor Azizeh.

The News about Roadway Runoff? It’s Wheely Bad.

In the Pacific Northwest, Salmon hold significant ecological, economical, and cultural importance. They are a significant part of cultural identity for many Columbia River Basin tribes (Importance of Salmon – Pacific Coast). For several Pacific Northwest salmon species, returning to spawning grounds may pose previously unknown and deadly threats. Mass salmon die-off events have been linked to roadway runoff and a particular toxicant that comes from leachate from tire tread wear particles. The compound, called 6PPD-quinone, is an oxidation product of an additive intended to prevent damage to tire rubber from ozone (6PPD-quinone in Science).

Miranda Jackson is a fourth year PhD student in the labs of Stacey Harper and Manuel Garcia-Jaramillo in the department of Environmental and Molecular Toxicology at OSU. She is a self-described aquatic ecotoxicologist, and she’s been investigating the toxins making their way into our surface waters and eventually salmon habitats. Her research involves investigating the toxicity of micro and nano-sized rubber particles and 6PPD-quinone that are derived from car tires, elucidating their mechanisms of toxicity in various fish species, and working on remediation strategies for removing 6PPD-quinone from the environment.

Miranda Jackson dosing fish tanks.

Tune into KBVR 88.7 FM at 7 pm PST on April 13th to hear Miranda talk about the impressive and scary toxicity of 6PPD-quinone (that also somehow is incredibly species specific to salmonids), how to remove these toxins from the environment, and what we can do to limit it from the source.

Listen wherever you get your podcasts, including on our KBVR page, Spotify, Apple Podcasts, or anywhere else!

Written by Hannah Stuwe

Changes, Dreams, and Everything In-Between

Per- or Polyfluoroalkyl substances (PFAS) are a class of chemicals that are found in everything from food wrappers to the inside of firefighter turnout gear. Certain PFAS have been linked to things like high blood pressure, low infant birth weight, and an increased risk to certain kinds of cancers. Their toxicity mixed with PFAS’ resistance to breakdown in the environment means that a better understanding of their prevalence is necessary to keep people and the environment safe.

Derek Muensterman recently received his PhD while working in the lab of Jennifer Field as a chemistry graduate student. His research focuses on using various analytical techniques to quantitatively and qualitatively understand PFAS in various household products and environmental matrices. By creating a deeper understanding of PFAS, Derek hopes that his research can be used to further protect people and the environment from these emerging toxins. Derek is an Oregon native growing up in Bend, if he wasn’t snowboarding on Mt. Bachelor he was enjoy the natural beauty of the Cascades. Derek has always been a pillar of the Field lab and though we’re sad to see him go we’re excited to send him off with a great interview!

Tune into KBVR 88.7 FM at 7 pm PST on March 16th to hear Derek talk about the challenges of coming back to school after working in industry and his dive into the world of vinyl collecting.

Written by E Hernandez

Listen wherever you get your podcasts, including on our KBVR page, Spotify, Apple Podcasts, or anywhere else!

PFAS? Seems a little zebrafishy to me

Per- or Polyfluoroalkyl substances (PFAS) are a class of chemicals that are known for their ability to contaminate our environment and be resistant to breaking down. However, there’s still a lot to learn about their potential for toxicity. One way scientists can better understand PFAS toxicity is by using the embryonic zebrafish models. These tiny fish have a genome that is around 70% similar to humans. This makes the zebrafish a powerful tool in understanding how some chemicals may express toxicity in humans.

Eli Cowan is a second-year PhD student in the lab of Robyn Tanguay, which is a part of the Environmental and Molecular Toxicology lab here at OSU. His research focuses on using the zebrafish model to understand how PFAS exposure may lead to adverse effects in development. With this data and using his in-dept knowledge of biology, Eli then can help answer questions about how PFAS may be toxic to people. Eli was raised in Vicksburg, Mississippi, where he first encountered zebrafish toxicology in a locally-based lab. Eli has always been a natural born scientist, and that curiosity has led him all the way across the country pushing the bounds of science.

Tune into KBVR 88.7 FM at 7 pm PST on March 2nd to hear Eli talk about cold calling researchers looking for a job and how he fell in love with organic chemistry from an Obi-Wan Kenobi doppelganger.

Written by E Hernandez

If you miss the show, you can check out the interview wherever you get your podcasts, including on our KBVR pageSpotifyApple Podcasts, or anywhere else!

Growing Crystals to Stop Global Warming

As global temperatures rise, ocean levels and extreme weather occurrences rise with it. One of the leading causes of global warming are greenhouse gases like CO2. However, if science could figure out cheap and effective methods for capturing CO2 humanity can start down the path of reversing the damage to our planet. Currently, there are many methods being researched to capture CO2, but most struggle with issues like being expensive to make and maintain or being difficult to scale up to useful size. This means that research on cheap, robust ways of CO2 capture are hot right now. Hotter than the rising global temps.

Emily Hiatt is a second-year PhD student in the May Nyman lab in the Department of Chemistry here at OSU. Her research focuses around creating organic/inorganic crystal clusters to be used in the capture of CO2 with the goal to create a renewable way to combat this potent greenhouse gas. Originally from Fredrick, Maryland, Emily has always been fascinated by science and now she’s using her love of chemistry and science communication to not only fight the good fight against global warming but inspire others to do the same.  

Tune in at 7 pm PST on KBVR 88.7 FM on February 23rd to hear Emily talk about everything from taking AP Chemistry out of spite to her love of the stars and beyond. It’s guaranteed to be out of this world! 

Written by E Hernandez

If you miss the show, you can check out the interview wherever you get your podcasts, including on our KBVR pageSpotifyApple Podcasts, or anywhere else!

Diving into Underwater Robots

Have you ever wondered what goes into designing and building a robot? In an age of seemingly exponential technological growth, robots are becoming more and more commonplace. On land, robots have excelled at tasks such as assembly line manufacturing, warehouse logistics, and even household chores. Engineers and researchers are now designing robots capable of exploring other environments such as the ocean. The use of robots underwater can aid humans in many tasks, including engineering projects like offshore construction. This approach significantly improves safety by removing humans from often dangerous situations, while also increasing efficiency. However, the underwater environment differs dramatically from land, posing many challenges for researchers.

Akshaya Agrawal, a fifth-year PhD candidate in the Robotics Department at Oregon State University’s College of Engineering, is tackling the challenges of implementing robots underwater. Ocean currents create drag—up to 800 times greater than what we experience on land—and communication signals like Wi-Fi do not travel well underwater, making it difficult to localize (determine the robot’s exact position). Akshaya’s research involves developing and testing motion-planning algorithms designed to help teams of robots coordinate movement and perform tasks underwater. She utilizes realistic simulations to assess the performance of robots underwater, coupled with laboratory tests on ground-based robots, and plans to transition to an underwater testing phase in the future.

DCIM\100GOPRO\G0054727.

Akshaya’s passion for engineering and robotics began at an early age. Her journey from India to Oregon is inspirational, as is how she’s redefining the academic landscape for women in robotics. To hear more about her story, all the cool robots she’s working with, and the steps involved in getting them underwater, tune in to KBVR 88.7 FM this Sunday, Feb. 2. You can listen to the episode anywhere you listen to your podcasts, including on KBVRSpotifyApple, or anywhere else!

Take a Deep Breath: Tracing the Carbon in our Air back to the Source

Carbon emissions in our air have long-term consequences for our health and our planet. Despite this, yearly carbon emissions are in the range of billions of metric tons. However, not all the carbon in our air is chemically the same, and the differences in these compounds can give researchers forensic evidence on where these pollutants are coming from.
Alison Clark is in the lab of Kim Anderson in the Department of Environmental and Molecular Toxicology. In her research she aims to answer the question “where do the things that we are exposed to over time come from and how can we tell?” In particular, she is investigating ways to detect and trace the origins of polycyclic aromatic hydrocarbons (PAH). PAH are found in engine exhaust fumes, tobacco smoke, wildfire smoke, coal and petroleum products. Long-term exposure to PAH can lead to various cancers and cardiovascular issues.
Currently, Clark is investigating human exposure to PAH and how it moves through the environment by analyzing data from a town with a known source of PAH emissions.

Tune in at 7pm on January 26th at 7 pm PST on KBVR 88.7 FM to hear all about the sounds and silence of our forests and what that tells us about them! 

If you miss the show, you can check out the interview wherever you get your podcasts, including on our KBVR page, Spotify, Apple Podcasts, or anywhere else!

Hear ye! Hear ye! Bioacoustics are telling us about the health of our forests

If you’ve ever recreated in the stunning forests of the pacific northwest, you’ve probably taken in a peaceful moment listening to the wind rush through the trees, the pattering of the rain, the buzz of insects, and the chattering of birds. What you may not have considered, is that these sounds could be indicators of forest health. Second year masters student in Fisheries and Wildlife, Anna Bloch Kohlberg, is assessing the health of Pacific Northwest forests with bioacoustics. Bioacoustics uses sound to study an ecosystem or species. From animal communication and behavior to coral reef health, the study of bioacoustics has broad applications.


Anna is specifically investigating forests covered by the Northwest Forest Plan (NWFP). The NWFP is a series of federal policies and guidelines governing land use on federal lands in the Pacific Northwest. It was established to protect threatened and endangered species while also contributing to the social and economic sustainability of the region. In her research with Damon Lesmeister and Taal Levi, she analyzes bioacoustics data collected from 4000 recorders across the Northwest for acoustic signatures of indicator species. The processing and analysis of these massive datasets is aided by AI tools developed by the lab. From the analysis of these datasets they are able to get key information on the health of forests across the Northwest, which inform policy and conservation efforts.
Tune in at 7pm on November 10th at 7 pm PST on KBVR 88.7 FM to hear all about the sounds and silence of our forests and what that tells us about them!

If you miss the show, you can check out the interview wherever you get your podcasts, including on our KBVR page, Spotify, Apple Podcasts, or anywhere else!