Category Archives: ocean

Global ocean modeling, with a microscope on Micronesia

How could an equation developed by a German mathematician in 1909 help Micronesian conservation networks plan for the future in the face of climate change? 

In this week’s episode, we interview Dr. Steven Johnson, a graduate of Oregon State University’s Geography graduate program. Steven completed his doctorate earlier in 2021, under the guidance of Dr. James Watson, a professor in the College of Earth, Ocean, and Atmospheric Sciences. He’s now a postdoctoral fellow at Arizona State University. During his time at Oregon State, the focus of his work was oceans. “I study the ocean – in particular, people’s relationship with the ocean. The condition of the ocean has implications for people all over the world and millions depend on it for their livelihood,” he explains.

Steven Johnson, a recent graduate of OSU and now a postdoctoral fellow at Arizona State University

“There used to be this idea that the ocean was ‘too big to fail’, but Oregon State University Distinguished Professor and White House Deputy Director for Climate and the Environment Jane Lubchenco made the point that ‘the ocean is too big to fail, but too big to ignore,’” Steven recounts. “Not a single part of the ocean has not been impacted by people.” Plastic waste, rising temperatures, increasing acidification, and other byproducts of human activity have been changing the ocean as we know it, and it will continue to worsen if the problem can’t be solved. One challenge that arises as a result of these changes is the future of aquatic resource management and conservation programs, which are designed to work in current ocean and climate conditions.

So how does Steven’s research tackle these problems? In the first chapter of his thesis, he developed a novel model for predicting the way the ocean will change due to climate change. This approach is titled the Ocean Novelty Index, or the ONo Index. The Ocean Novelty Index quantifies the relative impact of climate change across all parts of the ocean, using a statistical metric applied to six different ocean surface variables (chlorophyll, O2, pH, sea surface temperature, silica, and zooplankton.) The metric is derived from the Hellinger distance, developed by a German mathematician in 1909, which is a nonparametric analysis that measures the similarity and dissimilarity between two distributions and their overlap. The baseline, or ‘normal’, conditions are derived from the period between 1970-2014, a 50 year period which recognizes 1970 as the birth of the modern Western climate movement. The model can then be used to assess and predict what climate change will do to one part of the ocean, and compare it to how that part of the ocean looked previously. The model better encapsulates the dynamic and unpredictable changes of the ocean resulting from climate change, as opposed to just rising temperatures. 

In addition to the development of this climate change index, Steven’s research also focused on conservation networks and initiatives across Micronesia, the Caribbean, and Southeast Asia. These networks and cooperatives are collaborative efforts between regional governments to meet certain conservation goals, taking into account the differing social, cultural, and economic needs of the different countries involved. Part of Steven’s work has focused on applying the ONo index on a local scale, to help determine what changes may occur in the regions as well as where. What will the regions of these networks look like at different points as the climate changes, and how can we create strong policies and political relationships in these cooperatives and their respective countries to ameliorate potential issues in the future? Steven discusses these topics and more with us on this week’s ID podcast.

If you are interested in learning more about the ONo index and Steven’s work, you can read his paper here.

This post was written by Grace Deitzler

Exploring the disconnect between humans and the ocean

Unseen associations

We are all connected to the ocean, and organisms living in the ocean are an integral – if often unseen – part of our lives. You might be more connected to the ocean than you think. For example, fertilizer used to grow vegetables is often made from fish, and ingredients derived from fish are often added to processed foods. And amazingly, the ocean produces more than half of the oxygen on the planet, while also being responsible for storing 50 times more carbon dioxide than is found in the atmosphere.

The impact of human activity can be observed in a variety of ways. Run-off from agriculture empties into fragile marine ecosystems, and plastic accumulates in the ocean and cycles back into our food supply, for example. Consequences of human activity disturb a precarious balance that is not fully understood. Within the American mind, there is a fractured connection to the ocean, and it is this disconnect that Samm Newton is studying. As a 3rd year Master’s student in the Environmental Arts and Humanities program in the College of Liberal Arts, she is exploring multiple questions as part of her thesis. What has been the role of science and technology in how we have known the ocean? What has been the relationship between that knowledge and how we have valued and made decisions about marine systems? And, how can scholars approach the study of these relationships in new ways?

Scientific inquiry is a tangled knot: the direction of research is often decided based on narrow criteria

Scientific funding agencies have often determined the direction of research based on the priorities of a moment in time. Some priorities arose from crises, while others might have been derived from a perceived risk to lives in human or animal communities. Other priorities were influenced by what types of technology and datasets were available. Within that structure, it has been difficult for science to be innovative if it doesn’t address a problem that has been classified as relevant by funding authorities. Samm explains further, “we have taken the environment, deconstructed its components, and focused only on certain aspects that we deemed interesting at a given moment, while the rest of the pieces slid into the background.”

Samm studies the ocean using methods traditionally associated with the humanities. She describes her method as an interdisciplinary approach to unpack how we have generated knowledge about the ocean through science. Her approach includes extracting information from scientific history and papers, archives, oral histories, as well as popular literature from sources like National Geographic and the Washington Post.

Different ways to think about our connection with the ocean

How can we encourage people to recognize their connection to the ocean, and direct their attention to how their lives are impacted by ocean issues? Samm indicates how advancements in technology and media have created new ways for people to access scientific knowledge about the ocean. With outlets such as Nautilus live, people can learn about ocean ecosystems by watching videos of organisms living in the sea. They can also interact with scientists in real time (check out this one about a large number of octopus brooding near Monterey Bay, CA. Science videos on the internet have become an engaging and popular way to share knowledge of the ocean and science with a broad audience.

“The ocean is very special to me.”

Samm grew up in the “shadow of the petrochemical industry” in Freeport, Texas, where the sea is brown, and air and water pollution are an everyday reality. Observing these anthropogenic forces impacting her coast and community, and how disconnected people seem to be from the ocean, led her to question the relationship between humans and marine environments. She found that science and technology have played a dominant role in how we have known the ocean—and possibly how we have valued it. Samm also found that methods from the humanities, particularly marine environmental history, as well as science and technology studies, provide a meaningful framework to examine that relationship further.

During her undergrad, Samm studied psychology and behavioral neuroendocrinology, with a focus toward consciousness and philosophy of the mind. She spent 10 years working outside of academia before pursuing a Master’s degree at OSU. Samm credits the Environmental Arts and Humanities program at OSU with providing a flexible framework for people from different backgrounds – including art and science – to decide how they want to study a topic of interest.

After finishing her Master’s degree, Samm plans to pursue a PhD in an interdisciplinary field studying environmental issues. As a graduate student at OSU, Samm has enjoyed working in a “scholarly space, and getting the opportunity to do research.” Beyond grad school, Samm’s goal is to be involved in work that transforms the world, and to contribute to projects that strengthen interdisciplinary associations between diverse, yet interconnected, academic fields.

Check out Samm’s exhibit at Autzen House on the OSU campus:The Need to Know Comes in Waves: Paintings by Samm Newton

On view from Sept. 20th – Dec. 15th, 10 AM – 4 PM at Autzen House (811 SW Jefferson)

Reception Oct. 18th, 4 – 6 PM; mini artist talks at 4:30 and 5:30

Samm will also be the Featured Artist at Hatfield Marine Science Center in Newport, OR in January 2019. Check out this page for more details!

The Evolving Views of Plastic Pollution

Oceans cover more than 70% of the Earth’s surface and some studies suggest we still have over 91% of marine species that await discovery. Even as far back as 2010 some NASA scientists admit we knew more about the surface of Mars than we did about the bottom of our own oceans! Despite the fact we may not know everything about our oceans just yet, one thing is certain: plastics are becoming part of ecosystems that have never experienced it and we’re beginning to understand its massive impact. One estimate suggests that even if you had 100 ships towing for 10 hours a day, with 200 meters of netting and perfectly capturing every large and tiny piece of plastic, we could only clean up 2% of the Great Pacific Garbage Patch every year. It would take 50 years to clean everything up, assuming we magically stopped using plastics on Earth. As one Nature research article suggests, the problems lies mostly with local municipalities; but that means with targeted local action, individuals can make a real difference and limit how much plastic makes it to our oceans. So you may be thinking “let’s tell all our friends these plastic facts and then everyone will stop using plastic, right?”. Not so fast, unfortunately a host of studies show just informing people about the scope of the problem doesn’t always make them change their behavior to ameliorate the problem in question.

Katy getting a seal kiss from Boots the harbor seal at the Oregon Coast Aquarium

Our guest this evening is Katy Nalven, a 2nd year Masters student in the Marine Resources Management program, who is using a community based social marketing approach to ask people not only IF they know about the problem of plastics in oceans, but she also seeks to understand how people think about this problem and what could be individual hurdles to decreasing plastic usage. Using a survey based approach administered at the Oregon Coast Aquarium, Katy plans to examine a few specific communities of interest to identify how the views around plastic usage from Aquarium visitors and local community members may differ and hopefully where they overlap.

This community based social marketing approach has many steps, but it’s proven more effective in changing behaviors for beneficial outcomes rather than just mass media information campaigns by themselves. By identifying a target goal for a community of interest you can tailor educational material that will have the greatest chance of success. For example, if your goal is to decrease plastic usage for coastal communities in Oregon, you may find that a common behavior in the community you can target to have the greatest impact such as bringing your own mug to coffee shops for a discount, or automatically saying “no straw please” whenever going out to eat. Katy is beginning to pin down how these Oregon coast communities view plastic usage with the hope that a future student can begin implementing her recommended marketing strategies to change behaviors for a more positive ocean health outlook.

Hugs from Cleo, the Giant Pacific Octopus, at the Oregon Coast Aquarium

Katy grew up in the landlocked state of Arizona constantly curious about animals, but on a childhood visit to SeaWorld San Diego she became exposed to the wonders of the ocean and was wonderstruck by a close call with a walrus. Near the end of a Biology degree in her undergraduate years, simultaneously competing as an NAIA Soccer player for Lyons College, Katy was looking for career options and with a glimpse of her stuffed walrus she got at the San Diego Zoo, she decided to look at Alaska for jobs. After a few summers being a whale watching guide in Juneau, an animal handling internship in Florida, and then another internship in Hawaii Katy decided she wanted to formally revisit her science roots but with a public policy perspective. Oregon State University’s Marine Resource Management Program was the perfect fit. In fact, once she was able to connect with her advisor, Dr. Kerry Carlin-Morgan who is also the Education Director for the Oregon Coast Aquarium, Katy knew this was the perfect step for her career.

Meeting Jack Johnson at the 6th International Marine Debris Conference. He and his wife are the founders of the Kokua Hawaii Foundation whose mission is to “provide students with experiences that will enhance their appreciation for and understanding of their environment so they will be lifelong stewards of the earth.”

 

 

Be sure to tune in to Katy’s interview Sunday August 19th at 7PM on 88.7FM, or listen live, to learn more about her findings about how we view plastic pollution, and how we can potentially make local changes to help the global ecosystem.