Monthly Archives: April 2019

Repair, don’t replace: developing a new treatment for lower back pain

Chances are that you, or someone you know, has had lower back pain get in the way of daily life. For some people it is merely an inconvenience, but for many, it is debilitating. In the United States, over 70% of adults suffer from back pain at some time during their lives. Lower back pain is the second-most common reason for missed work, after the common cold. Lost productivity due to lower back pain is estimated to be over $30 billion dollars annually.

Out of the myriad causes of lower back pain, one of the most common is degeneration of the intervertebral disk. The intervertebral disk is like a shock absorber between bones in the spine. As people age, wear-and-tear on these disks leads to damage: essentially only children have intervertebral disks without any signs of deterioration. By middle age, lower back pain is sometimes bad enough that people resort to invasive surgeries.

Ward presenting his research at the Graduate Research Showcase, 2019.

Ward Shalash, a first-year PhD student studying bioengineering with Dr. Morgan Giers, is working to find a better way to treat deteriorated intervertebral disks. Currently, the primary method for treating severe back pain caused by a deteriorated intervertebral disk is to either replace the disk with an artificial disk, or to remove the disk and fuse the neighboring vertebra. Although these methods are effective in relieving pain, patients often need to have the procedure redone after ten years. In addition, particularly for the method where vertebra are fused, patients experience loss of flexibility. In 2003 a new method, cell replacement therapy, was demonstrated on a rabbit. This treatment involves collecting mesenchymal stem cells from a patient (generally from fat cells), and injecting them into the gel-like material in the center of the intervertebral disk. Ideally, this process allows the disk to be restored in place. While this treatment has been applied with some success to human patients, the procedure is not yet standardized or tested well enough for FDA approval in the US. In particular it isn’t yet clear how to determine the number of cells to inject for best results.

This is where Ward’s research comes in. “The goal is to develop a method so that doctors can know whether cell replacement therapy will work for patients or not,” said Ward. An intervertebral disk consists of three main parts: the nucleous puplosus, a jelly-like substance in the center; the anulus fibrosus, stiff, fibrous walls around the jelly center; and cartilage endplates above and below.

Cross-section of an intervertebral disk. As the disk deteriorates, the gel-like nucleus pulposus leaks into the fibers of the anulus fibrosus.

Cells require a supply of nutrients to survive; as there is no blood flow into the disk, cells inside rely on water seeping through the cartilage endplates. Dissolved in the water are nutrients such as glucose and oxygen which are vital for cell survival.

Ward uses a combination of MRI imaging and mathematical modeling to study the flow of water through the intervertebral disk. From this information, he hopes to find a method doctors can use to determine the number of stem cells to inject. Ward hopes that the ability to algorithmically predict the success of treatment this way would cut down the cost of clinical trials.

Ward’s parents at the commencement ceremony in 2018. As a first-generation college student Ward mentions that his family’s support was important for him to continue his education towards a PhD degree.

Ward first came to Oregon as an exchange student from Israel. After finishing an associate’s degree at Portland Community College, he came to Oregon State to study bioengineering. He has a dream of a world where people don’t have to worry about injuries. One of his concerns is making sure that progress in bioengineering is ethical.  For example, says Ward, “How do you make sure that it’s accessible for all kinds of people?”

Along with his academic pursuits, Ward enjoys the outdoors, playing the oud, and volunteering. To hear more about Ward’s story and his science, tune in this Sunday at 7PM (PST). You can stream the show live online, or listen to the interview live on the air at 88.7 KBVR FM, Corvallis. If you miss the broadcast, you can also listen to the episode on our podcast soon after the broadcast.

In the background is Mt. Broken Top in the Deschutes Basin. Despite common belief that PhD degrees are scary and stressful, Ward believes that there is always time for adventures!

 

References:
Summary of stem cell treatment for back pain: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347696/
Discussion of current strategies for treatment of lower back pain: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651638/

 

 

Environmental planning in an age of human-animal interactions

Many people enjoy their time visiting wildlands whether it means hiking, birding, or searching for exotic mushrooms, but as more people visit the outdoors there are more and more layers of expected uses for a single patch of forest. Since a 1960 Congressional act, National Forests have been designated multi-use which includes managing the land for “outdoor recreation, range, timber, watershed, and wildlife and fish purposes.” Hikers and bird-enthusiasts may have overlapping expectations of calm and serenity when stepping foot on the trailhead, but that’s a far cry from what a mountain biker wants out of a trail system where speed and steepness are prioritized. Additionally, there are demands for timber production vital to rural community survival and finding recreational areas for hunting and fishing. With all these expected uses, there is no doubt there will be conflicts. The vexing questions that simmer for land managers is understanding where on the landscape federal dollars can be utilized for maximum public good.

The way we’ve approached that question has changed over time. In the past, these management decisions were answered with a pure ecological understanding of the area such as: which soils can support mushrooms growth, or what trees species can support a bird species of interest. Making decisions completely within the ecological framework could miss the fact that the local community prioritizes river access because of its strength as a tourism hub for whitewater rafting, for example. Instead of spending money on a bird exploration trail they may prioritize the repair of a boat ramp or a wildfire prevention treatment around a heavily used section of river that is susceptible to summer fires. The latter two options are likely to have much stronger public support, gain local advocates in the process and, in the long run, make it possible to expand the range of successful recreational programs. Those ideas are examples of an idea where the ecology of the land and the social factors are taken into account to better focus management decisions in a process called Human Ecology Mapping.

Jackie Delie and brother, Anthony Delie, exploring the Great Bear Rainforest, British Columbia Canada

If we can take into account the ecological factors of the area that bracket what is physically possible on the land and better understand the priorities of the local community, then land managers can make more informed decisions that are less likely to result in user conflicts and are more likely to create long-term positive impacts on the relationships humans have with the land. Our guest is Jackie Delie a Masters student in the Department of Fisheries and Wildlife who is using the Human Ecology Mapping technique in a more visceral relationship: human and black bear interactions in Oregon. Jackie is advised by Dr. Kelly Biedenweg, a social scientist, who previously had another student exploring social spatial data for sustainable management in the Hood Canal between Oregon and Washington. This study suggested that this is a method that can yield positive results across a variety of user groups.

Black bear sighting on the river bank in the Great Bear Rainforest, British Columbia Canada

Furry and curious or big and scary? Your immediate thoughts about black bears is likely related to your previous experiences with them. If you’ve seen bears napping in the sun from behind a glass enclosure at a zoo, you probably think they’re gentle giants. If you’re chasing bears out of your backyard while they scatter trash across your front lawn every week, you probably have different feelings. You may expect the more you are exposed to bears the more you know about them; however, what kind of exposure is critical to your feeling about bears. If you’re a hunter or hiker, you likely have very positive experiences with bears compared to a homeowner nestled in the wildland urban interface but does not recreate in the forest. Jackie is leveraging the spatial GPS data of black bears killed over the past decade, as reported from the Oregon Department of Fisheries and Wildlife, and examining how the cluster of those points relate to how people use the landscape and their experiences and values.

Jackie Delie checking on camera trap cameras in black bear habitat on the urban-wildlife fringe in King County, Washington

This is the first study of its kind that looks at the human dimensions of human and black bear interactions in Oregon, as Oregon is one of the few places that mandate GPS points be recorded for black bear kills. Jackie collected in-person interviews at 18 different trailheads throughout Oregon asking participants a variety of questions. One of them is to physically draw where in Oregon they use the landscape and for what use –  hiking, hunting, rafting, or another activity.  Using both spatial and social datasets she may begin to elucidate not only where there are overlapping user areas, but how those areas may influence the human perceptions of black bears in the environment. The larger goal of Jackie’s project is to help inform the management plan through the Oregon Department Fish and Wildlife so they can make better decisions on where to prioritize resources on the landscape to better understand why human opinions differ about black bears.

Jackie Delie conducting research in the Panama rainforest on the behavior of mantled howler monkeys (Alouatta palliata) or you can say solo research time in the Panama rainforest

Merging two (somewhat) disparate fields of science is rare for a graduate degree, but knowing Jackie’s road to graduate school makes it seem rather natural. She conducted her undergraduate degree in Switzerland doing countless endeavors from Australia to Kenya learning about new foods, cultures, and sciences. After many travels and internships, she knew she wanted to purse graduate school. It was almost one year from the first time Jackie contacted her advisor until she became a student here at Oregon State.

Be sure to listen to the interview Sunday 7PM, either on the radio 88.7KBVR FM or live-stream, to learn how a holistic approach to land management can ensure a more successful project outcome, and how Jackie traveled the world and ended up back in the Pacific Northwest, an area she calls home.

Dr. Biedenweg Research Website

Jackie Delie’s Website

 

Zebrafish sentinels: studying the effects of cadmium on biology and behavior

Cadmium exposure is on the rise

There’s a good chance you might have touched cadmium today. A heavy metal semi-conductor used in industrial manufacturing, cadmium is found in batteries and in some types of solar panels. Fertilizers and soil also contain cadmium because it is present in small levels in the Earth’s crust. The amount of cadmium in the environment is increasing because of improper disposal of cell phone batteries, contaminating groundwater and soil. This is a problem that impacts people all over the world, particularly in developing countries.

Plants take up cadmium from the soil, which is how exposure through food can occur. Leafy greens like spinach and lettuce can contain high levels of cadmium. From the soil, cadmium can leach into groundwater, contaminating the water supply. Cadmium is also found in a variety of other foods, including chocolate, grains and shellfish, as well as drinking water.

Cadmium has a long half-life, reaching decades, which means that any cadmium you are exposed to will persist in your body for a long time. Once in the body, cadmium ends up in the eyes or can displace minerals with similar chemical properties, such as zinc, copper, iron, and calcium. Displacement can cause grave effects related to the metabolism of those minerals. Cadmium accumulation in the eyes is linked to age-related macular degeneration, and for people in the military and children, elevated cadmium is linked to psychosocial and neurological disorders.

Read more about cadmium in the food supply:



Using zebrafish to study the effects of cadmium

Delia Shelton, a National Science Foundation post-doctoral fellow in the Department of Environmental and Molecular Toxicology, uses zebrafish to investigate how cadmium exposure in an individual affects the behavior of the group. Exposing a few individuals to cadmium changes how the group interacts and modifies their response to novel stimuli and environmental landmarks, such as plants. For example, poor vision in a leader might lead a group closer to predators, resulting in the group being more vulnerable to predation.

Zebrafish

As part of her post-doctoral research, Delia is asking questions about animal behavior in groups: how does a zebrafish become a leader, how do sick zebrafish influence group behavior, and what are the traits of individuals occupying different social roles? These specific questions are born from larger inquiries about what factors lead to individual animals wielding inordinately large influence on a group’s social dynamic. Can we engineer groups that are resilient to anthropogenic influences on the environment and climate change?

Zebrafish

Zebrafish are commonly used in biomedical research because they share greater than 75% similarity with the human genome. Because zebrafish are closely related to humans, we can learn about human biology by studying biological processes in zebrafish. Zebrafish act as a monitoring system for studying the effects of compounds and pollution on development. It is possible to manipulate their vision, olfactory system, level of gene expression, size, and aggression level to study the effects of pollutants, drugs, or diseases. As an added benefit, zebrafish are small and adapt easily to lab conditions. Interestingly, zebrafish are transparent, so they are great for imaging. Zebrafish have the phenomenal ability to regenerate their fins, heart and brain. What has Delia found? Zebrafish exposed to cadmium are bolder and tend to be attracted more to novel stimuli, and they have heightened aggression.

Read more about zebrafish:

ZFIN- Zebrafish Information Network – https://zfin.org/
Zebrafish International Research Center in Eugene Or – http://zebrafish.org/home/guide.php



What led Delia to study cadmium toxicity in zebrafish?

As a child, Delia was fascinated by animals and wanted to understand why they do the things they do. As an undergrad, she enjoyed research and pursued internships at Merck pharmaceutical, a zoo consortium, and Indiana University where she worked with Siamese fighting fish. She became intrigued by social behavior, social roles, and leadership. Delia studied the effects of cadmium in grad school at Indiana University, and decided to delve into this area of research further.

Delia began her post-doctoral work after she finished her PhD in 2016. She was awarded an NSF Postdoctoral Fellowship to complete a tri-institute collaboration: Oregon State University, Leibniz Institute for Freshwater Ecology and Inland Fisheries in Berlin, Germany, and University of Windsor in Windsor, Ontario. She selected the advisors she wanted to work with by visiting labs and interviewing past students. She wanted to find advisors she would work well with and who would help her to accomplish her goals. Delia also outlined specific goals heading into her post-doc about what she wanted to accomplish: publish papers, identify collaborators, expand her funding portfolio, learn about research institutes, and figure out if she wanted to stay in academia.

Research commercialization and future endeavors

During her time at OSU, Delia developed a novel assay to screen multiple aspects of vision, and saw an opportunity to explore commercialization of the assay. She was awarded a grant through the NSF Innovation Corps and has worked closely with OSU Accelerator to pursue commercialization of her assay. Delia is now wrapping up her post-doc, and in the fall, she will begin a tenure track faculty position at University of Tennessee in the Department of Psychology, where she will be directing her lab, Environmental Psychology Innovation Center (E.P.I.C) and teaching! She is actively recruiting graduate students, postdocs, and other ethnusiatic individuals to join her at EPIC.

Please join us tonight as we speak with Delia about her research and navigation of the transition from PhD student to post-doc and onwards to faculty. We will be talking to her about her experience applying for the NSF Postdoctoral Fellowship, how she selected the labs she wanted to join as a post-doc, and her experience working and traveling in India to collect zebrafish samples.

Tune in to KBVR Corvallis 88.7 FM or stream the show live on Sunday, April 7th at 7 PM. You can also listen to the episode on our podcast.