Safe nuclear power and its future in our energy portfolio

Humanity’s appetite for energy is insatiable. The US Energy Information Administration projects almost a 30% increase in world energy demand by 2040. The fastest expansion of energy production is projected for renewables, whereas coal demand is expected to flat line. By 2040, the world will also practically double electricity production from nuclear fission, and for good reason: nuclear power is a reliable source of carbon free energy. In the United States, for instance, about 60% of carbon free electricity is generated by nuclear power.

Dylan Addison recently earned a Master’s degree from OSU’s Materials Science program.

However, significant barriers exist to making nuclear energy a stable and lasting piece of the puzzle. The way things are going, most new nuclear power in the coming decades will be installed in China, which has recognized the societal costs of air polluting fossil fuels, and is taking massive corrective action. Meanwhile, the rest of the world is hesitating when it comes to the nuclear option.

Our guest this week hopes to change that, by helping to qualify the world’s first small modular nuclear reactor design. Dylan Addison recently received his Master’s Degree in Materials Science from OSU. His focus was high temperature crack propagation in a nickel superalloy that is slated for use in a Generation IV reactor. Dylan transitioned to work with NuScale Power here in Corvallis, where he’ll continue to study the safety of materials exposed to high temperatures and pressures.

There are many reasons why you should keep track of NuScale Power in the coming years. In addition to being a local company, they stand to solve two key issues facing the nuclear energy industry: (1) NuScale stands to alter the economics of nuclear energy by radically reducing the upfront capital investment and time associated with plant construction, and (2) the passive safety features built into NuScale’s design will quell the fears of even the most skeptical among us.

The NuScale Power Module takes advantage of natural convection to circulate water through the nuclear core, eliminating a host of safety concerns.

Dylan’s Master’s thesis work was in performing high temperature crack growth experiments. Shown here is a sample at 800 °C!

Like many of us, Dylan’s meandering path through higher education took him longer than expected, and through several fields. While studying rhetoric at Willamette University, he started selling health-products over the phone from his dorm room. After dropping out of Willamette, he put in two years as a line cook at a thai food restaurant to see what life would look like in the service sector (his conclusion? It wasn’t for him). Then he decided to return to school and study engineering at OSU. While at OSU, he maintained the web presence of a marketing firm that continued to employ him after graduating with a Bachelor’s of Mechanical engineering in 2014. However, he wasn’t satisfied with the impact he was making by selling stuff on the internet, and entered graduate school in 2015 with a firm resolve to apply his technical knowledge to problems that have real weight. Working under Dr. Jamie Kruzic, Dylan was introduced to the field of fracture mechanics, which qualified him to apply for a job with NuScale upon graduation. Now, a few months into an engineering job, he gets to share his story on this week’s episode of Inspiration Dissemination!

Be sure to tune in Sunday October 1st at 7PM on 88.7FM or live to hear more about how Dylan’s schooling at Oregon State has positioned him to help bring reliable carbon free energy to all the world’s people.

You can also download Dylan’s iTunes Podcast Episode!