Today ocean acidification is one of the most significant threats to marine biodiversity in recorded human history. Caused primarily by excess carbon dioxide in the atmosphere, the decreasing pH of the world’s oceans is projected to reach a level at which a majority of coral reefs will die off by 2050. This would have global impacts on marine life; when it comes to maintaining total worldwide biodiversity, coral reefs are the most diverse and valuable ecosystems on the planet.
Unfortunately, there is reason to believe that ocean acidification might proceed at levels even faster than those predicted. Large resevoirs methane hydrates locked away in deep sea ice deposits under the ocean floor appear to be melting and releasing methane into the ocean and surrounding sediments due to the increasing temperature of the world’s oceans. If this process accelerates as waters continue to warm, then the gas escaping into the ocean and air might accelerate ocean acidification and other aspects of global climate change. That is, unless something– or someone– can stop it.
This is where methanotrophs and Scott Klasek come in. A 3rd year PhD student in Microbiology at Oregon State University, Scott works with his advisor in CEOAS Rick Colwell and with Marta Torres to study the single celled creatures that live in the deep sea floor and consume excess methane. Because of their importance in the carbon cycle, and their potential value in mitigating the negative effects of deep sea methane hydrate melting, these methanotrophs have become a valuable subject of study in the fight to manage the changes in our environment occurring that have been associated with anthropogenic climate change.
Most people don’t wake up one morning as a kid and say to themselves, “You know what I want to be when I grow up? Someone who studies methanotrophs and the threat of warming arctic waters.” Scott Klasek is no exception, in fact, he went into his undergraduate career at University of Wisconsin, Madison expecting to pursue an academic career path in pre med. To learn all about Scott’s research, and the twists and turns that led him to it, tune in this Sunday, April 10th, at 7pm to 88.7 KBVR FM or stream the show live!