Technosphere Energy Flow:  Time for a Course Correction

David P. Turner / February 5, 2024

Figure 1. The Earth at night gives an indication of technosphere energy flow. Image Credit.

The combustion of fossil fuels has powered the rise of humans from hunter/gatherers to planet-orbiting astronauts.  Currently, the energy production capacity of Earth’s technosphere (Figure 1) is on the order of 16 TW (see Box 1 or below for background on units).  Like Earth’s biosphere (the sum of all living organisms), the technosphere is a dissipative structure and requires energy to maintain itself and grow.

Two big problems with current technosphere energy flow are: 1) most of the energy is generated by combustion of fossil fuels, which release greenhouse gases that are rapidly altering global climate; and 2) the per capita distribution of global energy is highly uneven, with billions of people at the low end of the distribution receiving little to nothing.

The magnitude of technosphere energy flow is not really an issue.  Sixteen TW is small compared to the flow of energy associated with biosphere net primary production (on land and in the ocean).  The global NPP of around 100 PgC yr-1 is equivalent to about 63 TW of production capacity.  Note that the technosphere appropriates close to 25% of global NPP for food and biomass energy.  The technosphere and biosphere energy flows are both much smaller than the rate of solar energy reaching the Earth, which is about 1700 TW.

Transitioning away from combustion of fossil fuel to more environmentally benign forms of energy production is feasible, but will be extremely challenging and will take decades.  To do so, all sectors of the global economy – notably the transportation sector – must be designed to run on electricity.

A significant constraint to the transformation of the power sector is the slow turnover rate of the fossil fuel infrastructure (e.g. a coal fired power plant will typically last 50 years), which raises the issue of stranded assets if they are retired early.  Large reserves of fossil fuels will likely have to be abandoned, unless carbon capture and storage can be economically implemented (so far, a doubtful proposition).  Transitioning away from fossil fuels also means cessation of investment in the infrastructure supporting fossil fuel consumption, notably oil and gas pipelines, liquid natural gas (LNG) terminals (for liquification and regasification), and LNG shipping vessels.  The neoliberal doctrine about leaving investment decisions to the marketplace does not apply to the renewable energy revolution because fossil fuel users are still externalizing the costs of fossil fuel combustion (i.e. not paying for the impacts of associated climate change).  Hence, various subsidies, taxes, and regulations are necessary.

Despite the challenges, the global renewable energy revolution is underway, with rapid deployment of energy technologies such as solar, wind, and geothermal.  Nuclear energy is not strictly renewable but can contribute to minimizing carbon emissions.  The International Energy Association (IEA) suggests that 2023 was a turning point regarding the magnitude of global investment in renewable energy (spurred on by the Inflation Reduction Act in the U.S.).  Employment of technologies such as hydrogen fuel cells, grid scale rechargeable batteries, smart grids, and supersized wind turbines will speed up the transition process.  Decentralized energy production (e.g. household solar panels and small power plants) offers many benefits to both developing and developed countries.

With respect to the per capita energy use distribution problem, total energy consumption could stay the same while per capita energy use evened out to a level approximating that in Europe today.  However, consumers at the high end of the distribution are resisting reduction in their energy use (such as less air travel).  The more likely path to raising consumption at the low end of the distribution will be to increase total energy production.  The IEA projects global energy use will increase by 33 to 75 per cent by 2050 (to about 25 TW). 

The new energy demand will arise from increased per capita consumption along with an increased  global population (topping out at 9-10 billion this century).  More energy will be needed to substitute for various ecosystem services that are degraded or broken, e.g. energy to power water desalinization plants.  New energy intensive applications like AI are also emerging.

As developing countries build out their local manifestations of the technosphere, it is crucial that the more developed world helps them leapfrog reliance on fossil fuels and go directly to renewable energy sources.  In support of that trend, China has announced it will stop funding construction of coal-fired power plants in developing countries (albeit that it continues to build such facilities domestically).  The World Bank and IMF have introduced similar policies.  Critical political decisions about increased reliance on natural gas in particular are being made now (e.g. in Mexico) and should be strongly informed by the climate change issue.

Getting technosphere energy flow right will require continued technological and political innovation.  Success in this communal project will help actualize humanity’s long-term goal to build a sustainable planetary civilization.

Box 1.  Background on energy units

________________________________________________________________________

A watt is a unit of energy flow at the rate of 1 joule per second.

One joule is the amount of work done when a force of one newton displaces a mass through a distance of one meter in the direction of that force.

TW = Terra Watt = 1012 Watts = 1,000,000,000,000 Watts.

GigaWatt = 109 Watts = approximate capacity of 1 large coal-fired power plant.

PgC yr-1 = Peta grams of carbon per year = 1015 gC yr-1 = global net primary production in terms of carbon.

The energy equivalence of 1 gC (2 g organic matter) = 36 * 103 J

­­­­­­­­­­­_________________________________________________________________________

Forms of Agency in the Earth System

David P. Turner / Januanry 5, 2024

When psychologists refer to individuals as having agency, they mean having the potential to control their own thoughts and behavior, as well as shape their environment.  As humans mature, they gain independence and agency.

The term is also used by sociologists in reference to collectives of humans who are organized to fulfill a specific purpose, e.g. a nongovernmental organization such as the Nature Conservancy that aims to conserve biodiversity.

As summed effects of the human enterprise on Earth begins to significantly impact the global biogeochemical cycles, one could say that humanity as a whole is beginning to acquire agency with respect to the Earth system.  We inadvertently pushed up the atmospheric concentration of CFCs to a level that significantly depleted stratospheric ozone, and we are now reducing global CFC emissions to restore stratospheric ozone.  Thus far, this new form of collective agency is better able to instigate global scale environmental changes than to mitigate or reverse them in the interest of self-preservation. 

Of course, human animals alone are ineffectual relative to the Earth system; it is really humans in combination with their physical machines, structures, and support infrastructure that have agency and are impacting the global environment.  Earth system scientists have proposed the term technosphere   for the amalgamation of humans and their manufactured artifacts.  Efforts are ongoing to estimate the mass and flows of energy and materials of the technosphere, and the principles by which it operates.

The technosphere was constructed over time to support human welfare, but in some views it has taken on a life of its own, e.g. witness our great difficulty in reducing fossil fuel emissions to mitigate climate change.  The rapid infusion of Artificial Intelligence into the technosphere will likely strengthen its autonomous tendency. 

The view of the technosphere as autonomous, as having more agency than the humans who are part of it, has generated considerable pushback from social scientists.  Firstly, it allows humans to abdicate their responsibility for technosphere impacts on the global environment, i.e. if technosphere dynamics favor ever increasing combustion of fossil fuel, what chance is there for mere humans to reverse that trend?  In contrast, a social scientist might argue that we must do the work of building institutions for global environmental governance and economic governance.

A second social sciences objection to assigning the technosphere too much agency is that it is not a homogeneous entity; there is not a species-wide “we” with its associated technosphere when discussing human agency at the global scale.  A relatively small proportion of humanity accounts for a large proportion of fossil fuels burned to date.  Since responsibility for fossil fuel impacts resides primarily with this proportion of humanity, support is building for differentiated responsibility with respect to mitigating and adapting to anthropogenic global environmental change.

Besides the technosphere, one other form of agency in the Earth system worth contemplating is the planet itself.  Geoscientist James Lovelock and biologist Lynn Margulis developed a conceptualization of planet Earth as a quasi-homeostatic system.  They named it Gaia – not to imply teleology, but to suggest its active, generative nature.  Despite a gradually strengthening sun and recurrent collisions with asteroids, Gaia has managed over billions of years to maintain an environment suitable for life.  Gaia operates by way of interactions among geophysical and biophysical processes, including mechanisms such as the rock weathering thermostat

At times, Lovelock was rather strident about evoking Gaia’s agency; he referred to the “Revenge of Gaia” in one of his book titles, alluding to the way Earth will react to anthropogenic changes.  Philosopher Isabelle Stengers likewise elevates the agency of Gaia to the level of “intruder” on our human-centric narrative about conquering nature.  These perspectives are perhaps overly anthropomorphic, but they succeed in evoking a sense of Gaia’s power.

An emerging synthesis of the ambiguities in applying the agency concept to the contemporary Earth system is the concept of Earth as Gaia 2.0.  Here, the technosphere is included along with the geosphere, atmosphere, hydrosphere, and biosphere in a new formulation of the Earth system.  Gaia 2.0 is meant to suggest that a network of feedback loops, including the technosphere, will be built so that a new form of global regulation involving both conscious acts (like a renewable energy revolution) and Gaian dynamics (like increasing sequestration of CO2 in the biosphere) is achieved.

The discourse on agency in the Earth system is rather abstract, and one might ask what work is really done by elaborating the agency concept in the context of the Earth system?  How does it help humanity deal with the multiple challenges posed by anthropogenic global environmental change?

Humanities scholar Bruno Latour argues that a conceptual benefit of thinking in terms of agents lies in creating a new arena of politics  ̶  the politics of life agents.  This new forum is where our attempts to alter the current dangerous trajectory of the Earth system (e.g. from an icehouse state to a hothouse state) will be negotiated.  Besides the technosphere, the participants in this new arena include Gaia – and all the biophysical forms (e.g. the Amazon rain forest) and geophysical forms (e.g. the Southern Ocean) within it.  These nonhuman forms are agents in the Earth system, though they cannot represent themselves directly; they must be represented by individual humans, civil society, and governmental institutions. 

Designating Gaian agents as participants in Earth system politics reminds us of our responsibility to represent them.  In my home river basin (the Willamette River, Oregon, USA), a nongovernmental organization (Willamette Riverkeepers) is currently in conflict with the federal Bureau of Land Management because BLM is not considering effects of proposed logging on fish and wildlife species, water quality, and carbon sequestration.  The Riverkeepers advocate for inclusion of all the river basin components  ̶  humans as well as nonhumans  ̶  as co-participants in an integrated process of river basin management. 

The interactions of humans, technology, and Gaia can be organized in the form of socio-ecological systems (SES) at various scales.  Levels of SES organization include watersheds, bioregions, and the planet as a whole.  In an SES, all the actors having agency regarding a particular resource are assembled to negotiate co-existence – again, evoking a political arena.  Feedback loops within an SES that involve humans, technology, and biophysical processes must be designed to maintain economic, social, and ecological well-being across the full array of SES constituents.  Building the relevant SES institutions remains a major challenge to natural resource managers.

Extreme Weather Events, Social Tipping Points, and a Step-Change in Climate Change Mitigation

David P. Turner / August 12, 2023

Figure 1.  Annual additions of coal-fired electricity generation in recent years. Image Credit.

The rash of extreme weather events and associated impacts on humans around the world in recent years (especially 2023) is setting the stage for radical societal changes at the local and global scale with respect to climate change mitigation efforts.  One recognizable step-change in that direction would be a planet-wide cessation in the issuing of permits to build new coal-fired power plants.

Extreme weather events (droughts, heat waves, fires, and floods) are very much in the news recently everywhere on the planet.  Within the scientific community, these events are understood as part of normal weather variability, but also as attributable in part to on-going anthropogenic climate warming.  This year (2023) is proving to be especially prone to extreme weather events because of an extra boost of warming associated with an El Nino event

Globally, climate scientists suggest that 85% of people have suffered from extreme weather events that are partially attributed to climate change.

Social science research has shown that people respond markedly to their personal experience with weather events.  In the U.S., polls (2022) find that 71% of Americans say their community has experienced an extreme weather event in the last 12 months and 80% of those respondents believe climate change contributed at least in some measure to the cause.  In China and India, recent polls suggest strong awareness about the climate change issue and support for governmental mitigation policies. 

Admittedly, awareness of the issue is much lower elsewhere.  Some countries in Sub-Saharan Africa have relatively high proportions of inhabitants that have “never heard of” climate change. 

Nevertheless, billions of people around the world are making the connection between their personal experience of an extreme weather event and climate change.  Perhaps a new level of political support for mitigation efforts will emerge?

The concept of tipping points is common in the climate change literature, i.e. that distinct large-scale processes such as the melting of the Greenland ice sheet eventually reach a point where strong positive (amplifying) feedbacks are engaged and the process becomes irreversible (on a human timescale).  The concept has also begun to be applied to changes in social systems.  Given widespread changes in personal views about climate change, and perhaps appropriate societal interventions, particular societies and ultimately the global society may tip into a strong climate change mitigation stance.

A clear step-change in the global climate change mitigation effort would be a planet-wide cessation of permits for building new coal-fired electricity generating plants.  Coal emissions contribute about 40% to global fossil fuel emissions.

Tremendous momentum has already built up in that direction based on anti-coal environmentalism and the improving cost differential between coal power and other energy sources (primarily natural gas and renewables).  The U.S. and E.U. do not formally prohibit new coal plants but few have been built in recent years.

The World Bank, the International Monetary Fund, and China’s Belt and Road Initiative are no longer supporting construction of new coal-burning facilities and many countries have made commitments in their Nationally Determined Contribution statements that will require reduction in the burning of coal.

Remarkably, India has recently announced consideration of a policy to prohibit planning of new coal-fired plants for at least the next 5 years.

China is still permitting and building about 2 coal-fired power plants per week.  It is no doubt a big ask for China to adopt a no-new-coal-plants policy.  However, the country is suffering significantly from extreme weather events, from the negative effects of air pollution from coal combustion, and from the interaction of the those two factors.  And China leads the world in production of renewable energy. 

The autocratic style government in China is not conducive to bottom-up social tipping dynamics, but how the Zero-Covid policy was dropped is an interesting case study in social change.  Rumblings within the bureaucracy and multi-city protests appear to have influenced Xi Jinping to make the radical policy shift.  Given its massive contribution to the global total of new coal plants coming on line (Figure 1), if China stopped issuing building permits, the battle would be nearly won.

Two caveats to ending coal-fired power plant construction should be considered.  First is that the global demand for electricity will likely increase in the future because of 1) growth in the global population and increased per capita energy use in the developing world, 2) increasing demand from the conversion to electricity powered vehicles, and 3) wide application of AI technology.  To generate that energy from non-coal sources will be challenging but feasible.  The second consideration is the possibility of Carbon Capture and Storage, i.e. continuing to burn coal but capturing the associated CO2 emissions and sequestering them belowground.  This technological fix sounds good in theory but thus far decades of research and pilot studies do not support that it can be economically implemented at scale.

Across all of humanity, cultural differences tend to build silos around each society – especially differences in language, religion, and degree of technological development.  That isolation has diminished over the course of human development to this point, and with the advent of the Anthropocene we can begin to see humanity as a unified whole and as capable of working collaboratively  on global environmental change issues.

When the world does achieve consensus on ending the construction of new coal power plants, it will be a step-change in the global climate change mitigation effort.  It will also signal a step towards the emergence of a collective humanity, an indication that “we” can agree on, and implement, a path to a sustainable future on Earth.

Redesign of Earth’s Technosphere to Pass Through the “Great Filter”

David P. Turner / June 20, 2023

The universe is vast, and appears to be order-friendly.  Astrobiologists  ̶  who study the phenomenon of life in the universe   ̶  have thus concluded that life has likely arisen spontaneously on many planets.  The recurrent emergence of intelligent life by way of natural processes is also considered plausible.

Although astronomers began looking for signs of life and intelligence elsewhere in the universe in the 1960s (e.g. with radio telescopes), they have not as yet found a signal. 

That we expect planets inhabited by intelligent creatures to be plentiful, but have not encountered any, is referred to as the Fermi Paradox.  The explanation may lie simply in the  vast distances involved relative to the speed of light and how long we have been looking.  However, this silence also raises a question about possible factors that could constrain the development of exoplanetary, advanced-technology, civilizations. 

Astrobiologists have designated the constellation of factors that could prevent the evolution of a civilization capable of interstellar communication as “The Great Filter”.  The supposition here is that there are many crucial steps along the way, and only rarely would they all fall into place.  Some of the crucial roadblocks are the origin of life in the first place, the biological evolution of complex multicellular organisms, and the cultural evolution of technologically advanced societies. 

To help us think about patterns in planetary evolution, astrobiologists refer to the possibility of technospheres as well as biospheres.  A biosphere comes into existence on a planet when the summed biogeochemical effects of all living organisms begins to significantly affect the global environment (e.g. the oxygenation of Earth’s atmosphere around 2.5 billion years ago).  A technosphere comes into existence when the summed biogeochemical effects of all the material artifacts generated by a highly evolved (probably self-aware) biological species begins to affect the global environment (e.g. the recent boost in the CO2 concentration of Earth’s atmosphere).  Like a biosphere, a technosphere maintains a throughput of energy (such as fossil fuel) to power its metabolism, and a throughput of materials (e.g. minerals and wood) to maintain and grow its mass.

Earth’s biosphere has existed for billions of years and operates in a way that its influence on the global environment tends to keep the planet habitable (the Gaia Hypothesis).  Reconciling this mode of operation with Darwinian evolution is controversial, but Earth system scientists have proposed that components of the biosphere (i.e. guilds of organisms that perform particular biogeochemical cycling functions) have been gradually configured and reconfigured (by chance in combination with persistence of favorable states) into a planetary biogeochemical cycling system with sufficient negative feedback processes to maintain the habitability of the planet. 

In contrast to the biosphere, Earth’s technosphere exploded into existence quite recently and has grown wildly since its inception.  Few negative feedbacks to its growth have yet evolved.  Possible causes for truncated efforts towards a long-lived technosphere include factors such as apocalyptic warfare (a nuclear winter), pandemics, AI related take downs, and environmental degradation.  Any of these could qualify as the Great Filter. 

The most obvious problem with technosphere evolution on Earth appears to be the momentum of its early growth.  A Great Acceleration of technosphere growth, as seen on Earth in the last 100 years, is perhaps common in the course of technosphere evolution.  On a finite planet, exponential growth must end as some point, and a Great Transition must be made.  This transition is to a state that thrives even in a world of biophysical limits.  Given the quasi-autonomous nature of a technosphere, conscious reining in and redesign of technosphere metabolism may be necessary.

The key impact of overexuberant technosphere growth on Earth is rapid global climate change induced by greenhouse gas emissions.  A continued high level of these emissions could trigger a cascade of positive feedback mechanisms within the climate system that drive the global environment to a state fatal to the technosphere itself.  That process may turn out to be the distinctive manifestation of the Great Filter on Earth.

The transition to a mature (sustainable) technosphere on Earth will require 1) recognizing the danger of rapid environmental change, 2) understanding what must be done to redesign the technosphere, and 3) organizing collectively (globally) to carry out a program of change.

Earth system scientists have gotten quite good at simulating the causes and consequences of global climate change.  Thus, the scientific community recognizes the danger of uncontrolled technosphere growth and understands what must be done to avoid a climate change catastrophe.

But deliberately pushing our current technosphere through the sustainability phase of the Great Filter will require the difficult political work (within and between nations) of changing values and better organizing ourselves at the global scale.

If humanity does ever encounter extra-terrestrial intelligence, I imagine that it will stimulate global solidarity in an “us vs. them” context, and perhaps strengthen our willingness to work together on issues of global sustainability and defense.

As long as we do not encounter extra-terrestrial intelligence, we must face the enormous moral responsibility to conserve and cultivate our biosphere and technosphere as possibly unique, hence supremely valuable, cosmic experiments.

Commentary on “The Letter: Laudato Si Film”, and “Laudato Si” (the encyclical)

David P. Turner / January 23, 2023

Pope Francis issued an encyclical (Laudato Si) in 2015 about “care for our common home”.  The document discussed a wide range of global environmental change topics, notably climate change and loss of biodiversity.  It aimed to provide a moral rationale for simultaneously addressing the issues of global environmental change and human inequity.  The encyclical runs to nearly 200 pages and is not a light read.  Perhaps to make its message more accessible, the Vatican recently produced and released (October 12, 2022) a related video (The Letter: Laudato Si Film), clocking in at 81 minutes.

The encyclical was released just prior to the United Nations Framework Convention on Climate Change COP21 meeting that was held in Paris.  The product of that meeting was The Paris Agreement, which is widely perceived as a significant step towards mitigating global climate change.  Considering that there are 1.3 billion Catholics who ostensibly consider the pope infallible, the encyclical may well have strengthened global political will to seriously address the climate change issue.

The film is a very different vehicle from the encyclical, leaving behind the encyclical’s more controversial aspects (discussed below) and presenting an engaging narrative about global change with good visuals and music.  The premise of the film is that the Pope invites a set of 5 people from widely different backgrounds to Rome for a “dialogue” about the encyclical.

The five participants included the following.

1.  A poor black man from Senegal who is considering an attempt to migrate to the EU because of the deteriorating environment in his home country.  He represents the billion or so people expected to be displaced by climate change this century.

2.  An indigenous man from Brazil whose forest homeland in the Amazon Basin is under siege.  He represents forest dwellers throughout the tropical zone who are losing their homes to rampant deforestation.

3.  A young woman from India.  She represents the voice of a younger generation who will be forced to deal with the massive environmental change problems caused by their elders (intergenerational inequity).

4.  A man and a woman from the U.S. who are scientists working on monitoring and understanding coral reef decline.  They represent the community of research scientists trying to understand climate change impacts and what to do about them.

Each participant is shown in their home environment receiving a letter of invitation from the Pope.  The film then documents their experiences in Rome, including discussions amongst themselves and with the pope.

The film was engaging and had a positive message about the need for solidarity across all humanity in the face of threats from climate change and loss of biodiversity.

However, I did have some concerns.

First was that the film seemed to be more about the victims of global environmental change (both human and nonhuman) than about the solutions.  The participants were certainly sincere, and helped put a human face on the challenges ahead; but little was said about the personal changes and the political realities involved in transitioning to global sustainability.

Second was the emphasis on climate change as the sole driving force in the current surge of migration.  Climate change is indeed driving international migration but a host of other factors are of equal or greater importance, including civil war, overuse of local natural resources, and gross defects in local governance.  If indeed a billion people will potentially be displaced by climate change in this century, they can’t all migrate.  Alternatives to migration include foreign aid for adaptation, and aid to improve local educational opportunities that would help train citizens for local economic activity and help limit population growth (the fertility rate in Senegal is 4.3 births per woman).

Third was that the film may point viewers towards reading the actual encyclical, which has inspired much more commentary  ̶  both positive and negative  ̶  than the film.

The proclamations of the pope usually do not draw much attention from the scientific community, but in the case of the Laudato Si encyclical, the science of global environmental change is front and center.

As I started reading the encyclical, I was surprised because the tone sounded as if it were written by an environmental science policy analyst rather than a religious leader (apparently there was a ghost writer).  The scientific causes of climate change and biodiversity loss were reasonably explained, and it was refreshing to see the “dominion” over the Earth given to humanity by God presented more in terms of responsibility to conserve environmental quality than as a license to exploit limitless natural resources.  The intrinsic value of all species, independent of their utility to humans, was recognized.  When the text veered into explaining the Christian belief system (e.g. the Holy Trinity), it lost cogency from an Earth system science perspective.

The encyclical was well received by scientific authorities in some cases, perhaps because the Pope broadened the usual rationales for caring about climate change and biodiversity loss to include the moral dimension.  Wealth-based inequity (relatively wealthy people have caused most of the greenhouse gas emissions but it is relatively poor people who will suffer the greatest impacts) and intergenerational inequity (recent generations have caused most of the greenhouse gas emissions but future generations will suffer the greatest impacts of climate change) are  clearly moral issues.

Critiques of the encyclical have referred to its limited regard for the full suite of dimensions (technical, political, and economic) needed to address global environmental change.  The encyclical comes across as hostile to the “technocratic paradigm”, suggesting some technofixes will induce more problems than they solve.  There is much emphasis on reducing excess consumption.  Realistically though, there must be a revolutionary change in technology towards renewable energy and complete product recycling.  Likewise, beyond calling for a stronger climate change treaty (as the Pope did), we must have stronger institutions of global environmental governance, and new economic policies that prioritize sustainability.

The section of the encyclical about population control was especially provocative.  The pope took issue with calls for limiting population growth for the sake of the environment, a position  consistent with formal Catholic doctrine against contraception.  This view rings false, however, because of the contradiction between saying that Earth’s natural resources are limited (as stated several times in the encyclical) and that all humans deserve a decent quality of life (which inevitably consumes natural resources), while at the same time maintaining that high rates of population growth in developing countries are not an issue.  In contrast, the recent World Scientists’ Warning of a Climate Emergency 2022  called for “stabilizing and gradually reducing the human population by providing education and rights for girls and women”.  Ehrlich and Harte also point out that unchecked population pressure on food supply and natural resources pushes development into ever more vulnerable ecosystems, and fosters ever more inegalitarian forms of government.

Pope Francis deserves credit for bringing attention to the moral questions raised by anthropogenically-driven global environmental change.  Our contemporary materialistic and instrumental value system has proven to be unsustainable and should indeed be influenced by values based on respect for the natural environment, as well as values derived from human solidarity.  The Laudato Si encyclical and film (along with associated praise and critique) are contributing in a positive way to the ongoing process of cultural evolution, which has now begun to operate at the global scale.

Products of an Order-friendly Universe

David P. Turner  /  August 4, 2022

Given the vast amount of order in the universe, can humans reasonably hope to add a new increment of order in the form of a sustainable, high-technology, global civilization?

On the plus side, the universe is said to be order-friendly.  Complexity is a rough measure of order, and we can observe that from its Big Bang origin to the present, the universe displays a gradual build-up of complexity.  Systems theorist Stuart Kaufmann says that we are “at home in the universe” and he emphasized the widespread occurrence of self-organization (Figure 1).  From atoms to molecules, to living cells, to multicellular organisms, to societies, to nation states – why not onward to a sustainable planetary civilization?

chemical dissapative structure

Figure 1.  The Belousov-Zhabotinsky Reaction.  This mixture of chemicals generates geometric forms (order) that oscillate until chemical equilibrium is reached.

Whether the universe is order-friendly or not is of course not strictly a scientific question, but scientists do aspire to explain the origins and elaboration of order.  Broadly speaking, they refer to the process of cosmic evolution with its components of physical evolution, biological evolution, and cultural evolution.  Cosmic evolution is a unifying scientific narrative now studied by the discipline of Big History; it covers the temporal sequence from Big Bang to the present, emphasizing the role of energy transformations in the buildup of complexity. 

Physical evolution of the universe consists of the emergence of a series of physical/chemical processes powered by gravity.  Formation of the higher atomic weight elements by way of fusion reactions in successive generations of stars is a particularly important aspect of physical evolution because it sets the stage for the inorganic and organic chemistry necessary for a new form of order life.

Biological evolution on Earth began with single-celled organisms, and by way of genetic variation and natural selection, led to the vast array of microbes and multi-cellular organisms now extant.  Each creature is understood as a “dissipative structure”, which must consume energy of some kind to maintain itself and reproduce.  Biological evolution produced increments of order – such as multicellularity – because each step allows for new capabilities and specializations that help the associated organisms prevail in competition for resources. 

Scientists are just beginning to understand how biological evolution favors cooperation among different types of organisms at higher levels of organizationEcosystems, which are characterized by energy flows and nutrient cycling, depend on feedback relationships among different types of organism (e.g. producers, consumers, decomposers).  The biosphere (i.e. the sum of all organisms) is itself a dissipative structure fueled by solar energy.  Biosphere metabolism participates in the regulation of Earth’s climate (e.g. by its influence of the concentration of greenhouse gases in the atmosphere), thus making the planet as a whole an elaborate system, now studied by the discipline of Earth System Science.

Cultural evolution introduces the possibility of order in the form of human societies and their associated artifacts.  It depends on the capacity for language and social learning, and helps account for the tremendous success of Homo sapiens on this planet.  As with variation and selection of genes in biological evolution, there must be variation and selection of memes in the course of cultural evolution.  In the process of cultural evolution, we share information, participate in the creation of new information, and establish the reservoirs of information maintained by our societies.

The inventiveness of the human species has recently produced a new component of the Earth system – the technosphere.  This summation of all human artifacts and associated processes rises to the level of a sphere in the Earth system because it has become the equivalent of a geologic force, e.g. powerful enough to drive global climate change. 

Unfortunately, the technosphere is rather unconstrained, and in a sense its growth is consuming the biosphere upon which it depends (e.g. tropical rain forest destruction).  Technosphere order (or capital) is increasing at the expense of biosphere order.  The solution requires better integration within the technosphere, and between the technosphere and the other components of the Earth system – essentially a more ordered Earth system.

How might the technosphere mature into something more sustainable?  One model for the addition of order to a system is termed a metasystem transition.  I have discussed this concept elsewhere, but briefly, it refers to the aggregation of what were autonomous systems into a greater whole, e.g. the evolution of single-celled organisms into multicellular organisms, or the historical joining of multiple nations to form the European Union. 

In the case of a global civilization, the needed metasystem transition would constitute cooperation among nation states and civil society organizations to reform or build new institutions of global governance, specifically in the areas of environment, trade, and geopolitics.  Historically, the drivers of ever larger human associations have included 1) the advantages of large alliances in war, and 2) a sense of community associated with sharing a religious belief system.  But perhaps in the future we might look towards planetary citizenship.  Clear benefits to global cooperation would accrue in the form of a capacity to manage global scale threats like climate change. 

Conclusion

Living in an order-friendly universe allows us to imagine the possibility of global sustainability.  However, the next increment of order-building on this planet will require humans and humanity to take on a new level of responsibility.

Biological evolution gave us the capacity for consciousness and now we must use guided cultural evolution to devise and implement a pathway to global sustainability.  Besides self-preservation, the motivation to do so has a moral dimension in terms of 1) minimizing the suffering of relatively poor people who have had little to do with causing global environmental change but are disproportionately vulnerable to it, 2) insuring future generations do not suffer catastrophically because of a deteriorating global environment caused by previous generations, and 3) an aesthetic appreciation or love (biophilia) for the beauty of nature and natural processes.

Our brains, with their capacity for abstract thought, are the product of biological evolution.  They were “designed” to help a bipedal species of hunter-gatherers survive in a demanding biophysical and social environment.  Hence, they don’t necessarily equip us to understand how and why the universe is order-friendly.  But we can see the pattern of increasing complexity in the history of the universe, and aspire to move it forward one more step – to the level of a planetary civilization.

Peak Technosphere Mass and Global Sustainability

David P. Turner / June 21, 2022

The technosphere is a component of the contemporary Earth system.  Like the biosphere  ̶  also an Earth system component  ̶  the technosphere has a mass, requires a steady input of materials, and utilizes a throughput of energy.

Technosphere mass is composed of all human-made objects, including the mass of buildings, transportation networks, and communication infrastructure.  That mass has built up over centuries, and is still accumulating at the rate of 3-5% per year.

The material inputs to the technosphere (besides fossil fuels) include food, water, wood, and minerals.  These inputs are derived from the geosphere, hydrosphere, and biosphere  ̶  often with destructive consequences.  Upward trends in consumption of these inputs are associated with an upward trend in global Gross Domestic Product of about 3% per year.

The energy that drives technosphere metabolism comes mostly from fossil fuels (80%).  Global fossil fuel consumption was increasing at a rate of about 5% per year (2009 2019) until the recent dip associated with the Covid-19 pandemic.

The growing impact of the technosphere on the Earth system has been widely documented by the scientific community (IPCC, IPBES) and scenarios for a sustainable high technology global civilization require that technosphere mass, inputs, and use of fossil fuels peak as soon as possible.  If the peaks are left to occur spontaneously, the outcome may well be a collapse of civilization driven by the stress of global environmental change, rather than a soft landing at a state of global sustainability.

Peak Technosphere Mass

Earth system scientists have estimated both current technosphere mass (in use) and the current biosphere mass (i.e. including all microbes and multicellular organisms).  Coincidentally, those numbers are of approximately the same magnitude (about 1018 g).  However, technosphere mass is increasing substantially each year, while the multi-century trend in biosphere mass and diversity is towards a diminished and depauperate state.  The technosphere is essentially now growing at the expense of the biosphere

There are a few cases at the national scale where peak technosphere mass has been reached, albeit not specifically by design.  In Japan, the number of automobiles is close to its peak and the length of pipelines and high-speed rail are not increasing.  Ninety-two percent of the population is urban.  Total energy use is declining.  These trends can be traced to a high level of development and a declining population. 

A low birth rate and a low level of immigration account for the decreasing population.  As a case study, Japan points to the role of population size in stabilization of technosphere mass.  Per capita technosphere mass is relatively high, but is not rising because the country is already highly developed.  Hence, technosphere mass at the national scale has likely peaked.  By 2050, population is projected to decline about 25% from its peak, which may allow for a decrease in national technosphere mass.

China is an interesting case at the other extreme of technosphere mass dynamics, with vast on-going growth of its technosphere mass.  Despite a low birth rate, China’s population is still growing (slowly).  More importantly, per capita wealth is increasing.  Consequently, the number of people owning modern housing and an automobile is rising rapidly.  The government is also making huge investments in infrastructure – notably in power plants and high-speed rail.

Humans do sometimes place limits on technosphere mass expansion  ̶  as in the urban growth boundaries around cites in the state of Oregon (USA), and in areas of land and ocean that are in a protected status (e.g. wilderness areas in the U.S.).  Idealized prescriptions for future land use include 30 X 30 and 50 X 50.  These values refer to 30 percent of Earth’s surface dedicated to biosphere conservation by 2030, and 50% by 2050.  Seventeen percent of land and ten percent of ocean are in a protected status at present.

These conservation goals are consistent with the strong global trend towards urbanization.  Over half of humanity now lives in an urban setting, a proportion that is projected to rise to 66% by 2050.  The key benefits of urbanization with respect to technosphere mass are that 1) it potentially frees up rural land for inclusion in biosphere protection zones, 2) the per capita technosphere mass of urban dwellers is less than that of equally wealthy rural dwellers (e.g. living in multiple unit buildings as opposed to living in dispersed separate building, and using public transportation rather than everyone owning an automobile), and 3) birth rates decline as people urbanize, which speeds the global demographic transition.

Peak technosphere mass will occur sometime after peak global population.  That assumes global per capita technosphere mass will also peak eventually, which brings up the fraught issue of wealth inequality.  Individual wealth is equivalent in some ways to individual technosphere mass (e.g. owning a yacht vs. owing a row boat).  Given that there are biophysical limits to human demands on the Earth system, the nearly 8 billion people on the planet cannot all live like billionaires.  From a humanist perspective, a wealth distribution that brings standards of living for everyone up to a modest level is desirable.  That worthy principle is the guiding light for significant philanthropic efforts and should figure into policies related to taxation of income and wealth.  Whether to explicitly attempt to reduce the ecological footprint of the wealthy is a related, and highly contested, question.

An estimate of technosphere mass that includes landfills, and other cases of human-made objects not in use, is much larger that the 1018g estimate of technosphere mass in use.  Indeed, geoscientists looking for a depositional signal for the Anthropocene are considering discarded plastic as a marker.  It will take a concerted effort to decrease material flows into landfills before we will see a peak in unused technosphere mass.

Peak Technosphere Input of Material Resources

Humans already appropriate around 25% of terrestrial net primary production, and divert 54% of available fresh water flows.  Mining geosphere minerals for input to the technosphere covers approximately 57,000 km2 globally.

The concept of the Great Acceleration captures the problem of exponentially rising technosphere demands on the Earth system.  It refers to the period since 1950 during which many metrics of human impact on the global environment have risen sharply (Figure 1).  Obviously, those trends cannot continue.  Humanity must bend those usage curves and redesign the technosphere to maintain itself sustainably. 

Figure 1. The Great Acceleration refers to the period after 1950 when impacts of the technosphere on the global environment grew rapidly.  Image Credit: Adapted from Welcome to the Anthropocene.

Some metrics, like wild fish consumption, have already peaked but that is because the resource itself has been degraded.  Future increases in fish consumption will have to come from cultured sources.

Many rivers around the world are already fully utilized (and then some), e.g. the Colorado River Basin in Southwestern United States.  Policies like tearing out lawns in Las Vegas to save water portend the future.

Global wood consumption increases several percent per year and is projected to continue doing so for decades.  Much of current industrial roundwood production is from natural forests, sometimes in association with deforestation.  Forest sector models suggest that high yield plantations in the tropical zone could supply most of the projected global demand for industrial wood, thus reducing pressure on natural forests.

Resource use efficiency can be increased by extending product lifetimes (e.g. automobiles), boosting rates of recycling (e.g. paper), and improvement in design (e.g. more efficient solar panels).  Again, these changes must be made along with the stabilization of population if we are to end continuing growth of technosphere demand for natural resources.

Peak Technosphere Consumption of Fossil Fuels

An abrupt decline in carbon emissions from fossil fuel combustion in 2020 was induced by the COVID-19 pandemic, hinting at the possibility that 2019 was inadvertently the year of peak fossil fuel emissions

In 2021, fossil fuel emissions roared back to about the level of 2019.  Emissions in 2022 will likely be impacted significantly by the war in Ukraine, possibly reducing global emissions since moves to avoid purchasing Russian gas, oil, and coal are driving up prices for fossil fuels.  Certainly, there is increased political support in the EU and elsewhere for rapid transition from fossil fuels to renewable energy sources.  Technological constraints will slow the pace of that conversion, and emissions will continue to increase in many countries outside the EU (especially China and India).  Thus, the actual peak year for global fossil fuel emissions is uncertain.

The faster that fossil fuel-based energy is replaced by renewable energy sources, the better chance of avoiding a climate change catastrophe.  Multiple policy rationales, beside reducing carbon dioxide emissions, support the goal of a global renewable energy revolution.

Note that total energy consumption need not decline within the context of global sustainability if the energy sources are renewable.  Projected peak global energy use – with accounting for increasing efficiency, population growth, and the curing cases of energy poverty – is on the order of current global energy use.

Conclusion

The sprawling mass of the technosphere, its demands on natural resources, and its flood of chemicals and solid waste into the global environment, have begun to diminish the biosphere and threaten human welfare on a massive scale.  Humanity must begin to work as a collective to redesign technosphere metabolism such that it conforms to the biophysical limits of the Earth system.

Six More Rationales for Supporting a Renewable Energy Revolution

David P. Turner / May 12, 2022

The threat of global climate change points to the dire need for a renewable energy revolution in which energy from combustion of fossil fuels (coal, oil, natural gas) is rapidly displaced by energy from renewable sources (wind, solar, geothermal, hydro).  Research by engineers and economists attests to the feasibility of building a global energy infrastructure that runs on renewable energy.  However, forward looking policies must be designed and strong political will must be generated.

In a heavily politicized environment such as Washington D.C., policies are much more likely to get implemented when they are supported for more than one reason.  The underlying mechanism is that with powerful forces aligned for and against any given policy proposal, several constituencies  ̶  each supporting a desired policy for a different reason  ̶  must coalesce to overcome opposition.

Clearly, the strongest rationale for a global renewable energy revolution is to reduce greenhouse gas emissions and mitigate climate change.  But here are six additional rationales that should motivate leaders and legislators to support renewable energy policies.

1. Geopolitical strategy.  The Russian invasion of Ukraine has thrown a spotlight on the vulnerability of nations to energy blackmail.  Domestic production of renewable energy reduces dependency on imported fossil fuels and gives a nation greater flexibility in foreign policy.  Many countries in the European Union are now ramping up renewable energy production in the face of threatened cut-off of fossil fuels from Russia. 

2.  The cost of renewable energy is decreasing.  Renewable energy is already cheaper than fossil fuel energy in some cases, and technological advances in generation, storage, and distribution will continue to drive down costs.  Each time a component of the global fossil fuel infrastructure ages to the point of needing replacement, a decision must be made to continue burning fossil fuel or switch to renewables.  From a purely economic perspective, the better decision may be to go with renewable energy.

3.  The cost of fossil fuels is increasing.  Currently, much of the environmental and social costs of fossil fuels are externalized, but as those costs begin to be covered by more stringent regulation and carbon taxes, the overall costs of fossil fuels will be pushed up.

4.  Public health.  Combustion of fossil fuels results in emissions of nitrogen compounds and hydrocarbons that participate in the formation of harmful ground-level ozone and particulates (Figure 1).  A long history of research and monitoring by environmental agencies supports the conclusion that ground-level ozone is detrimental to human and crop health.  The non-climate related economic benefits of reducing fossil fuel combustion (e.g. reduced sickness and death from air pollution) exceed the climate-related benefits in the early decades of greenhouse gas mitigation scenarios.

smog at sunset
Figure 1. Impacts of air pollution on human health and vegetation drive support for a global renewable energy revolution. Image Credit: jplenio from Pixabay

5.  Nitrogen deposition.  The nitrogen compounds associated with fossil fuel combustion eventually fall out of the atmosphere in precipitation or as dry deposition. This excess nitrogen is deposited to terrestrial, aquatic, and marine ecosystems and drives eutrophication and soil acidification.

6.  Job creation.  Building and maintaining an expansive renewable energy infrastructure will create on the order of seven times more jobs than will be lost from the fossil fuel and nuclear industries as they recede.  The issue of job creation will become increasingly important in the coming decades as computer-driven artificial intelligence displaces human beings.

The multiple rationales noted here for policies that support a renewable energy expansion will hopefully, in aggregate, move the needle away from further investments in the fossil fuel infrastructure.  Policies that stimulate renewable energy technology include subsidies on electric vehicles and residential solar power installation, whereas carbon taxes and regulation of drilling rights on public land can serve to limit fossil fuel development.

Of immediate concern is that a desire to reduce consumption of Russian fossil fuels will be used as a justification for increasing fossil fuel production in the U.S. and elsewhere.  Considering the long turnover time of fossil fuel infrastructure (e.g. 50 years for a coal burning power plant) and the ample opportunities for expanding renewable energy, great caution should be taken with investments that prolong the era of fossil fuels.

Genetic Programming, Cultural Programming, and Self-programming

image of axons in the human brain
Axonal nerve fibers in the brain as determined by the measured anisotropy (directionality) of water molecules inside them.  Image Credit: Connectome

David P. Turner / March 13, 2022

There are many specific prescriptions about how humanity must change to restore a hopeful future (e.g. a global renewable energy revolution), and implementing these prescriptions will require new pro-environmental behaviors by individuals along with shifts in societal values.  In this post, I briefly examine four aspects of a simple psychological framework that shapes the personal sphere of social transformation, and I consider how adoption of that framework could inspire pro-environmental behavior.

A common first approximation to explaining how humans behave is by reference to “nature and nurture”.  I will add a third factor – the influence of self-determination, i.e. the products of self-directed thought.  My fourth factor in this framework is one’s personal experience, which of course can crush us or enable us to blossom.

1. Nature refers to our genetic inheritance.  Neurologists broadly understand the genetically-based architecture of the brain, and the role of neural circuity in brain function, but they are still working on how processes like memory and consciousness actually work biophysically. 

Studies of brain function associated with specific activities show that certain areas or modules of the brain (genetically derived) perform particular functions, e.g. mathematical operations or making music.  Psychologists and neurologists generally believe that humans are born with genetic predispositions in how we feel, think, and act (presumably related to the wiring of our brain).  Some examples include our attraction to sweet foods, our fear of snakes, and how readily as children we learn a language.  

Without going overboard (i.e. espousing that genes alone determine behavior), we might use a computer programming metaphor to indicate significant genetic influences on behavior.  Sociobiologist E.O. Wilson opined that “genes hold culture on a leash”, referring specifically to the influence of genes on values. 

Regarding our feelings and behaviors related to the environment, it is important to recognize that some genetically-influenced traits – while being the product of millions of years of biological evolution – may be obsolete in the context of our contemporary high technology civilization.  We are much better at paying attention to rapidly changing threats (e.g. a charging rhinoceros) than to slow onset threats (e.g. climate change), yet now we must attend closely to threats in the long-term future. 

On the other hand, some proposed genetically-based traits – such as biophilia (love of nature) – may be particularly helpful in the context of fostering pro-environmental behavior.

2) Nurture refers to the influences of our cultural environment on how we think, feel, and act.  The success of Homo sapiens is attributed in part to our capacity for social learning.  Children mimic behaviors of their caregivers and tend to adopt their belief system.  As adults, we continue to learn from a variety of cultural sources.

Learned behaviors (e.g. hunting in a hunter/gatherer society) are often adapted to the local environment, and learned cultural beliefs help bind us to our local social group.  Here again, I think the term “programming” is appropriate if used in a metaphorical sense.  We are culturally programmed in some respects. 

Richard Dawkins referred to the units of cultural inheritance as memes.  Note that memes do not have to be true to be useful.  A mythical narrative of tribal origins may help create a sense of tribal identity, which could strengthen within group solidarity in the face of inter-tribal rivalry.

As with our genetic influences, some of our cultural influences may be obsolete or need modifying in the context of on-going environmental change, e.g. the current emphasis on consumerism in the developed countries.

To complicate things, we have significant biases (going back to our genetic programming) about what we learn.  We are particularly likely to believe or imitate leaders (prestige bias) and tend to believe what is believed by a majority of our peers (conformity bias).

3) Self-determination (self-programming) is an overlay on genetic and cultural programming.  Mature human beings can consciously consider alternative views and reflect on what to believe and how to act (albeit there is always a lot going on unconsciously).  This capacity introduces a sense of agency and inspiration.

Self-determination is certainly impacted by emotions, thoughts, and information that originate from genetic and cultural programming.  To some degree, however, impulses from these sources can be consciously recognized and over-ridden

Education is in a sense cultural programming, but training in critical thinking and more broadly learning how to learn, can open the door to robust self-programming.  The firehose of information now available through the various media (some true and some not) makes this kind of thinking especially relevant now. 

4.  Personal Experience.  Many genes are expressed only under particular circumstances, and learned behaviors can only be acquired when there is exposure to a relevant example or information.  Additionally, the degree to which learned information is internalized and begins to affect behavior depends on other psychological factors.  Motivation to learn is stimulated by a) a positive connection between teacher and learner, b) a sense of autonomy or self-direction rather than being controlled, and c) a feeling of competence associated with accomplishing a well-designed gradation of tasks and getting approval from significant others.

Let’s consider two cases of pro-environmental behavior in which the three types of programming and experience interact.

Slowing Population Growth.  Historically, most cultures encouraged high levels of reproduction, which is certainly predictable in the face of the kind of intergroup competition common in human history.  More group members make for stronger groups.

Considering the importance of reproduction in biological evolution, it also makes sense that there is a strong genetic influence in favor of reproductive behavior (e.g. mate seeking and sexual pleasure in humans). 

For a woman or couple to decide to have few or no children for pro-environmental reasons (potentially in the face of their own instincts and pro-natal cultural policies) would require significant self-programming.  Growing up (experiencing) a society that values education and opportunities for self-actualization other than parenthood would make the choice easier.

Global and Planetary Citizenship.  Global scale problems, like anthropogenic climate change, require humanity to work collaboratively towards changing the current dangerous trajectory.  However, we seem to be genetically primed to identify with a social group of some kind, which also implies a tendency to classify everyone outside the group as suspect. 

Our local society inculcates a unique language and a belief system that differentiates us from outsiders and may induce xenophobia.  Nationalism is on the ascendency these days, but it is not the limit of what a society can be. 

Thus, becoming a global citizen requires some degree of self-programming.  Individuals must learn about issues of global environmental change and deliberate on how to participate in ameliorating the problems.

Besides identifying with humanity as their tribe, it will be important that people identify with the Earth system as their home, as a whole of which they are a part

A common model for societal change begins with an early adopter minority that inspires broader uptake of new values, leading (with some help from prestige and conformity biases) to a majority view (e.g. the broad adoption of anti-littering in the U.S. in the 1960s).  The early adopter minority may come from people who recognize the possibility that the majority view is wrong, and then begin to envision and act on alternatives.  It is encouraging to see a bubbling up of pro-environmental minorities nearly everywhere on the planet now that could grow in an organic manner to become a pro-environment majority.

Continued Growth of Technosphere Capital by Destruction of Natural Capital is not Sustainable

Figure 1.  An aerial view of the edge of Manaus (Brazil), where the city meets the forest. Image credit: Greenpeace.

David P. Turner / January 27, 2022

Environmental scientists define natural capital in the context of natural resources management.  It commonly refers to a “stock of materials or information” that yields a flow of ecosystem services: an ocean fishery produces a yield of fish; a forest landscape produces a yield of wood.  In practice, most ecosystem services are produced by a combination of natural capital and human management.

In the case of hunter/gatherers, the human contribution to production of harvested food was limited.  But as technology became more important in provision of ecosystem services, the human element (including machines and knowledge) began to dominate.

A problem has arisen because humans have tended to consume not only ecosystem services (flows) from natural capital, but also the nature-built capital (stocks) itself.  A striking example is the cod fishery in the North Atlantic Ocean:  overfishing led to a collapse of the cod population and an abrupt decline in productivity.   

For centuries, humans have gotten away with depleting or destroying natural capital by simply moving on to the next unexploited natural resource.  Commodity frontiers often have a geographic dimension, e.g. the wave of primary forest exploitation in temperate North America that extended from the New England hardwoods, through the pines of the Great Lakes states, and on to the Pacific Northwest conifers.

A massive erosion of nature-built capital over the last two centuries is evident in the spatial patterns of land use change, distortions in animal and plant population structure, and outright extinction of species.  As natural capital is depleted, human interventions (often subsidized by energy from fossil fuels) must be ramped up to maintain the same level of ecosystem services.

From an Earth system science perspective, we can describe the interaction of the human enterprise and natural capital in terms of interaction of the technosphere with its natural resources base. 

The technosphere is the global aggregate of human made artefacts and includes machines, buildings, transportation infrastructure, and communications infrastructure, along with the humans and their knowledge needed to maintain it.  Estimates of technosphere manufactured capital are on the order of 800 Pg. 

The technosphere requires a large stream of materials and energy to maintain itself and to produce the outputs of goods and services that keep the 7.8 billion people on Earth alive.  Here, I am particularly interested in the interaction of the technosphere with the biosphere.

Biosphere capital is the sum of all organisms and the associated information in the form of genetic material.  It is a subset of global natural capital. 

Biosphere mass is estimated at 550 Pg (carbon) and the estimates for the number of species range from 5.3 million and 1 trillion.  Inputs to the biosphere include solar energy and material flows from the geosphere (minerals) and hydrosphere.  Besides sustaining itself, the biosphere outputs vast flows of food and fiber (including wood) to the technosphere. 

From the global perspective, technosphere manufactured capital is clearly increasing and biosphere capital is clearly decreasing.  Examples include:

  1. The aforementioned degradation of marine fisheries by overharvesting.  Correspondingly, the mass of fishing boats is thought to be on the order of 30% higher than needed for a sustainable global catch of high value species.
  2. The continued conversion of intact ecosystems to agriculture use (estimated at 50% of the land surface) or urban development (Figure 1).
  3. The loss of soil organic matter by erosion and oxidation associated with agriculture. 

Our limited understanding of the biosphere makes it difficult to even quantify the on-going loss of biosphere capital.  Note that the biosphere contributes to regulation of atmospheric and marine chemistry by way of the global biogeochemical cycles.  Thus, as we lose biosphere capital, we are beginning to lose those free regulatory services.

Meanwhile, technosphere manufactured capital is growing at a rate of 1-8% per year, depending on the level of development in a given country.  It will likely peak at a much higher level than at present because of the still growing global population and increases in per capita manufactured capital in the developing world.

In principle, biosphere inputs to the technosphere can be derived in a sustainable manner.  A landscape of tree plantations can be continuously harvested and replanted to produce a sustained yield of wood.  Plantation forests supplied about one third of industrial roundwood in 2000.  Likewise, there is such a thing as a sustainable marine fishery if the harvest is properly managed. 

However, much of the current material transfer from biosphere to technosphere is drawing down biosphere capital.  Differentiating between sustainable and depleting production of food and fiber, and increasing attention to sourcing, will play an important role in the transition to a soci-economic metabolism that is sustainable.  Accounting practices that treat all forms of capital – including natural capital and technosphere capital in its various forms (manufactured, financial, human, social) – is necessary.

The view of ecosystem services as a co-production of technosphere capital and natural capital offers a way forward.  Essentially, all ecosystem services must now be managed as socio-ecological systems, i.e. as a coupling of a human subsystem, having full stakeholder participation, and a regenerating biophysical subsystem.

Since different natural resources must be managed at different scales, a hierarchy of socio-ecological systems is needed.  This arrangement points to the importance of zonation on the Earth surface in terms of the strength of the coupling between technosphere and biosphere.  We can have large areas of relatively undisturbed intact ecosystems (e.g. marine reserves and terrestrial wilderness areas), significant areas of heavy technosphere dominance (as in urban and industrial zones), significant areas of intensive food and fiber production (e.g. forest plantations), and a scattering of areas with a moderate intensity of biosphere/technosphere interaction.  This view supports the development of spatially-explicit simulation models – implemented at a range of spatial scales – that can be used within a socio-ecological system to organize the co-production of ecosystem services. Potentially, with a well-designed combination of monitoring, modeling, and environmental governance, the technosphere will drive increases rather than decreases in biosphere capital (e.g. the recovery of whale populations).