Forms of Agency in the Earth System

David P. Turner / Januanry 5, 2024

When psychologists refer to individuals as having agency, they mean having the potential to control their own thoughts and behavior, as well as shape their environment.  As humans mature, they gain independence and agency.

The term is also used by sociologists in reference to collectives of humans who are organized to fulfill a specific purpose, e.g. a nongovernmental organization such as the Nature Conservancy that aims to conserve biodiversity.

As summed effects of the human enterprise on Earth begins to significantly impact the global biogeochemical cycles, one could say that humanity as a whole is beginning to acquire agency with respect to the Earth system.  We inadvertently pushed up the atmospheric concentration of CFCs to a level that significantly depleted stratospheric ozone, and we are now reducing global CFC emissions to restore stratospheric ozone.  Thus far, this new form of collective agency is better able to instigate global scale environmental changes than to mitigate or reverse them in the interest of self-preservation. 

Of course, human animals alone are ineffectual relative to the Earth system; it is really humans in combination with their physical machines, structures, and support infrastructure that have agency and are impacting the global environment.  Earth system scientists have proposed the term technosphere   for the amalgamation of humans and their manufactured artifacts.  Efforts are ongoing to estimate the mass and flows of energy and materials of the technosphere, and the principles by which it operates.

The technosphere was constructed over time to support human welfare, but in some views it has taken on a life of its own, e.g. witness our great difficulty in reducing fossil fuel emissions to mitigate climate change.  The rapid infusion of Artificial Intelligence into the technosphere will likely strengthen its autonomous tendency. 

The view of the technosphere as autonomous, as having more agency than the humans who are part of it, has generated considerable pushback from social scientists.  Firstly, it allows humans to abdicate their responsibility for technosphere impacts on the global environment, i.e. if technosphere dynamics favor ever increasing combustion of fossil fuel, what chance is there for mere humans to reverse that trend?  In contrast, a social scientist might argue that we must do the work of building institutions for global environmental governance and economic governance.

A second social sciences objection to assigning the technosphere too much agency is that it is not a homogeneous entity; there is not a species-wide “we” with its associated technosphere when discussing human agency at the global scale.  A relatively small proportion of humanity accounts for a large proportion of fossil fuels burned to date.  Since responsibility for fossil fuel impacts resides primarily with this proportion of humanity, support is building for differentiated responsibility with respect to mitigating and adapting to anthropogenic global environmental change.

Besides the technosphere, one other form of agency in the Earth system worth contemplating is the planet itself.  Geoscientist James Lovelock and biologist Lynn Margulis developed a conceptualization of planet Earth as a quasi-homeostatic system.  They named it Gaia – not to imply teleology, but to suggest its active, generative nature.  Despite a gradually strengthening sun and recurrent collisions with asteroids, Gaia has managed over billions of years to maintain an environment suitable for life.  Gaia operates by way of interactions among geophysical and biophysical processes, including mechanisms such as the rock weathering thermostat

At times, Lovelock was rather strident about evoking Gaia’s agency; he referred to the “Revenge of Gaia” in one of his book titles, alluding to the way Earth will react to anthropogenic changes.  Philosopher Isabelle Stengers likewise elevates the agency of Gaia to the level of “intruder” on our human-centric narrative about conquering nature.  These perspectives are perhaps overly anthropomorphic, but they succeed in evoking a sense of Gaia’s power.

An emerging synthesis of the ambiguities in applying the agency concept to the contemporary Earth system is the concept of Earth as Gaia 2.0.  Here, the technosphere is included along with the geosphere, atmosphere, hydrosphere, and biosphere in a new formulation of the Earth system.  Gaia 2.0 is meant to suggest that a network of feedback loops, including the technosphere, will be built so that a new form of global regulation involving both conscious acts (like a renewable energy revolution) and Gaian dynamics (like increasing sequestration of CO2 in the biosphere) is achieved.

The discourse on agency in the Earth system is rather abstract, and one might ask what work is really done by elaborating the agency concept in the context of the Earth system?  How does it help humanity deal with the multiple challenges posed by anthropogenic global environmental change?

Humanities scholar Bruno Latour argues that a conceptual benefit of thinking in terms of agents lies in creating a new arena of politics  ̶  the politics of life agents.  This new forum is where our attempts to alter the current dangerous trajectory of the Earth system (e.g. from an icehouse state to a hothouse state) will be negotiated.  Besides the technosphere, the participants in this new arena include Gaia – and all the biophysical forms (e.g. the Amazon rain forest) and geophysical forms (e.g. the Southern Ocean) within it.  These nonhuman forms are agents in the Earth system, though they cannot represent themselves directly; they must be represented by individual humans, civil society, and governmental institutions. 

Designating Gaian agents as participants in Earth system politics reminds us of our responsibility to represent them.  In my home river basin (the Willamette River, Oregon, USA), a nongovernmental organization (Willamette Riverkeepers) is currently in conflict with the federal Bureau of Land Management because BLM is not considering effects of proposed logging on fish and wildlife species, water quality, and carbon sequestration.  The Riverkeepers advocate for inclusion of all the river basin components  ̶  humans as well as nonhumans  ̶  as co-participants in an integrated process of river basin management. 

The interactions of humans, technology, and Gaia can be organized in the form of socio-ecological systems (SES) at various scales.  Levels of SES organization include watersheds, bioregions, and the planet as a whole.  In an SES, all the actors having agency regarding a particular resource are assembled to negotiate co-existence – again, evoking a political arena.  Feedback loops within an SES that involve humans, technology, and biophysical processes must be designed to maintain economic, social, and ecological well-being across the full array of SES constituents.  Building the relevant SES institutions remains a major challenge to natural resource managers.

Earth Day 2020

Earth Day 2020 and Global Solidarity

David P. Turner / April 19, 2020

Earth Day in 2020 is the 50th Anniversary for this annual gathering of our global tribe.  Historically, it has been an opportunity to note declines in environmental quality and to envision a sustainable relationship of humanity to the rest of the Earth system.

This year, in addition to the usual concerns about issues like climate change and ocean acidification, Earth Day is accompanied by concern about the specter of the COVID-19 pandemic.  A glance at the geographic distribution of this virus is the latest reminder that interactions with the biosphere, in this case the microbial component, can link all humans in powerful ways. 

Environmental issues that were on the front burner when Senator Gaylord Nelson initiated Earth Day in 1970 were mostly local − polluted rivers, polluted air, and degraded land cover.  These issues were addressed to a significant degree in the U.S. by passage of the Clean Water Act (1972), the Clean Air Act (1970), and the Endangered Species Act (1973).  These were national level successes inspired by environmental activism.

Awareness of global environmental change in 1970 was only dimly informed by geophysical observations such as the slow rise in the atmospheric CO2 concentration.  But by the 1980s, climate scientists began a drumbeat of testimony to governments and the media that the environmental pollution issue extended to the global scale and might eventually threaten all of humanity. 

The United Nations has functioned as a forum for international deliberations about global environmental change issues, and the signing of the Montreal Protocol on Substances that Deplete the Ozone Layer in 1987 hinted at the possibilities for global solidarity with respect to the environment.

To help matters, economic globalization in the 1990s began uniting the world in new ways.  Huge flows in goods and services across borders fueled a truly global economy.  The level of communication required to support the global economy was based on the rapidly evolving Internet.  It provided the foundation for a global transportation/telecommunications infrastructure that now envelops the planet.

A political backlash to economic and cultural globalization has recently brought to power leaders like Donald Trump (U.S.) and Jair Bolsonaro (Brazil).  Their inclination is much more towards nationalism than towards global solidarity on environmental issues.

However, humanity is indeed united – in fear of climate change and coronavirus pandemics if nothing else.

Each year, the growing incidence of extreme weather events associated with anthropogenic climate change negatively impinges on the quality of life of a vast number of people around the planet.  This year, billions of us are locked down in one form or another to slow the spread of a virus that likely emerged from trafficking in wild animals.  In a mythopoetic sense, it is as if Earth was responding to the depredations imposed upon it by our species.

Philosopher Isabelle Stengers refers to the “intrusion” of Gaia (the Earth system) upon human history.  The message from Gaia is that she is no longer just a background for the infinite expansion of the human enterprise (the technosphere). 

Humanity can reply to Gaia with ad hoc measures like building sea walls for protection from sea level rise.  Or we can get organized and develop a framework for global environmental governance.

There are many impediments to becoming a global “we” that will work collectively on global environmental change issues.  Nevertheless, the incentives for doing so are arriving hard and fast.  The diminishment of the wild animal trade in China in response to COVID-19, and the unintended reduction of greenhouse gas emissions globally associated with efforts to slow the spread of COVID-19, signal that radical change is possible. 

Fitting testaments to an emerging global solidarity about environmental issues would be eradication of commercial exploitation of wild land animals everywhere in the world, and stronger national commitments to reduce greenhouse gas emissions relative to current obligations under the Paris Climate Agreement. 

Both initiatives of course face strong cultural and political headwinds.  But Earth Day, as one of the largest recurring secular celebrations in the world, is an opportunity to think anew.

Recommended audio/video:
One World (Not Three), The Police

The Second Revival of Gaia

January 11, 2020/David P. Turner

Gaia was originally a figure from Greek mythology: the mother goddess who gave birth to the sky, the mountains, and the sea.  Gaia was adopted by the Romans when they conquered the Mediterranean basin, but her myth was largely abandoned with the ascendency of Christianity by the third century CE.

The first revival of Gaia was a product of the nascent Earth system science community in the 1970s.  Atmospheric chemist James Lovelock was impressed by the finding of geologists that life had persisted on Earth for over 3 billion years despite a 25% increase in the strength of solar radiation (associated with an aging sun), and numerous catastrophic collisions with asteroids.  He also understood that the chemistry of the atmosphere − which provides oxygen for animal respiration, protection from toxic solar UV-B radiation, and influences the global climate − was maintained by the metabolism of the biosphere. 

These observations led him to suggest that the Earth as a whole was in a sense homeostatic, it was able to maintain certain life enhancing properties in the face of significant perturbations.    

In casting around for a name to give this organism-like version of the planet, he was inspired by author William Golding to revive the term Gaia.  Lovelock and microbiologist Lynn Margulis went on to write many influential peer-reviewed papers, and later books, on Gaia.

By the 1990s, the question of what regulated the functioning of the Earth system had become of more than academic interest.  Earth system scientists had observed that the Earth system was changing and begun to worry about possible impacts of those changes on the human enterprise.  Concentrations of greenhouse gases were rising, stratospheric ozone was declining, and a wave of extinctions was sweeping the planet. 

Geoscientists were initially intrigued by the Gaia Hypothesis about planetary homeostasis, hoping perhaps that Gaian homeostasis might save us from ourselves.  But by around 2000 they had largely rejected Gaia as an entity.  Many of the feedbacks in the Earth system (see my Teleological Feedback blog) were positive (amplifying climate change) rather than negative (damping), hence not contributing to homeostasis.

The second revival of Gaia came predominantly from scholars in the humanities.  Historians typically begin human history about 10,000 years ago when humans adopted an agricultural way of life.  However, the discovery that humans have recently begun to alter the global environment on a geologic scale changes everything (as activist Naomi Klein says).  The Earth system is no longer a benevolent background state that will provide a growing humanity with unlimited resources.  Earth has a Gaian history that is now imposed upon by human history.  The new field of Big History aims to juxtapose the geologic and anthropocentric time frames.

Historians needed a term to evoke an Earth system that in a sense has its own agency, and scholars like science historian Bruno Latour and philosopher Isabelle Stengers settled on Gaia.  They emphasized Gaia not as a nurturing mother, but rather a force that will smack humanity down if the current trajectory of global environmental change continues.

In a recent hybrid interpretation, geoscientist Tim Lenton and humanities scholar Bruno Latour have dubbed the newly revived Gaia as Gaia 2.0.  This version refers to an Earth system on which a sentient species has evolved and begun to alter the planet but has collectively taken on the project of developing an advanced technological civilization (a technosphere) that will live on the planet sustainably.  That means comprehensive renewable energy, nearly closed material cycling, conservation of biodiversity to support the background metabolism of Gaia 1.0, implementation of multiple strategies to moderate climate change, and forms of governance that facilitate self-regulation at multiple scales.

Gaia 2.0 is the combination of the pre-human Gaian Earth system and the recently emergent technosphere.